summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h200
1 files changed, 200 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h b/src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h
new file mode 100644
index 000000000..4eaaaa784
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h
@@ -0,0 +1,200 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
+// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATHFUNCTIONSIMPL_H
+#define EIGEN_MATHFUNCTIONSIMPL_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
+ Doesn't do anything fancy, just a 13/6-degree rational interpolant which
+ is accurate up to a couple of ulps in the (approximate) range [-8, 8],
+ outside of which tanh(x) = +/-1 in single precision. The input is clamped
+ to the range [-c, c]. The value c is chosen as the smallest value where
+ the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004]
+ the approxmation tanh(x) ~= x is used for better accuracy as x tends to zero.
+
+ This implementation works on both scalars and packets.
+*/
+template<typename T>
+T generic_fast_tanh_float(const T& a_x)
+{
+ // Clamp the inputs to the range [-c, c]
+#ifdef EIGEN_VECTORIZE_FMA
+ const T plus_clamp = pset1<T>(7.99881172180175781f);
+ const T minus_clamp = pset1<T>(-7.99881172180175781f);
+#else
+ const T plus_clamp = pset1<T>(7.90531110763549805f);
+ const T minus_clamp = pset1<T>(-7.90531110763549805f);
+#endif
+ const T tiny = pset1<T>(0.0004f);
+ const T x = pmax(pmin(a_x, plus_clamp), minus_clamp);
+ const T tiny_mask = pcmp_lt(pabs(a_x), tiny);
+ // The monomial coefficients of the numerator polynomial (odd).
+ const T alpha_1 = pset1<T>(4.89352455891786e-03f);
+ const T alpha_3 = pset1<T>(6.37261928875436e-04f);
+ const T alpha_5 = pset1<T>(1.48572235717979e-05f);
+ const T alpha_7 = pset1<T>(5.12229709037114e-08f);
+ const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
+ const T alpha_11 = pset1<T>(2.00018790482477e-13f);
+ const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
+
+ // The monomial coefficients of the denominator polynomial (even).
+ const T beta_0 = pset1<T>(4.89352518554385e-03f);
+ const T beta_2 = pset1<T>(2.26843463243900e-03f);
+ const T beta_4 = pset1<T>(1.18534705686654e-04f);
+ const T beta_6 = pset1<T>(1.19825839466702e-06f);
+
+ // Since the polynomials are odd/even, we need x^2.
+ const T x2 = pmul(x, x);
+
+ // Evaluate the numerator polynomial p.
+ T p = pmadd(x2, alpha_13, alpha_11);
+ p = pmadd(x2, p, alpha_9);
+ p = pmadd(x2, p, alpha_7);
+ p = pmadd(x2, p, alpha_5);
+ p = pmadd(x2, p, alpha_3);
+ p = pmadd(x2, p, alpha_1);
+ p = pmul(x, p);
+
+ // Evaluate the denominator polynomial q.
+ T q = pmadd(x2, beta_6, beta_4);
+ q = pmadd(x2, q, beta_2);
+ q = pmadd(x2, q, beta_0);
+
+ // Divide the numerator by the denominator.
+ return pselect(tiny_mask, x, pdiv(p, q));
+}
+
+template<typename RealScalar>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
+{
+ // IEEE IEC 6059 special cases.
+ if ((numext::isinf)(x) || (numext::isinf)(y))
+ return NumTraits<RealScalar>::infinity();
+ if ((numext::isnan)(x) || (numext::isnan)(y))
+ return NumTraits<RealScalar>::quiet_NaN();
+
+ EIGEN_USING_STD(sqrt);
+ RealScalar p, qp;
+ p = numext::maxi(x,y);
+ if(p==RealScalar(0)) return RealScalar(0);
+ qp = numext::mini(y,x) / p;
+ return p * sqrt(RealScalar(1) + qp*qp);
+}
+
+template<typename Scalar>
+struct hypot_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ static EIGEN_DEVICE_FUNC
+ inline RealScalar run(const Scalar& x, const Scalar& y)
+ {
+ EIGEN_USING_STD(abs);
+ return positive_real_hypot<RealScalar>(abs(x), abs(y));
+ }
+};
+
+// Generic complex sqrt implementation that correctly handles corner cases
+// according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt
+template<typename T>
+EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
+ // Computes the principal sqrt of the input.
+ //
+ // For a complex square root of the number x + i*y. We want to find real
+ // numbers u and v such that
+ // (u + i*v)^2 = x + i*y <=>
+ // u^2 - v^2 + i*2*u*v = x + i*v.
+ // By equating the real and imaginary parts we get:
+ // u^2 - v^2 = x
+ // 2*u*v = y.
+ //
+ // For x >= 0, this has the numerically stable solution
+ // u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
+ // v = y / (2 * u)
+ // and for x < 0,
+ // v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
+ // u = y / (2 * v)
+ //
+ // Letting w = sqrt(0.5 * (|x| + |z|)),
+ // if x == 0: u = w, v = sign(y) * w
+ // if x > 0: u = w, v = y / (2 * w)
+ // if x < 0: u = |y| / (2 * w), v = sign(y) * w
+
+ const T x = numext::real(z);
+ const T y = numext::imag(z);
+ const T zero = T(0);
+ const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y)));
+
+ return
+ (numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
+ : x == zero ? std::complex<T>(w, y < zero ? -w : w)
+ : x > zero ? std::complex<T>(w, y / (2 * w))
+ : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
+}
+
+// Generic complex rsqrt implementation.
+template<typename T>
+EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
+ // Computes the principal reciprocal sqrt of the input.
+ //
+ // For a complex reciprocal square root of the number z = x + i*y. We want to
+ // find real numbers u and v such that
+ // (u + i*v)^2 = 1 / (x + i*y) <=>
+ // u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2.
+ // By equating the real and imaginary parts we get:
+ // u^2 - v^2 = x/|z|^2
+ // 2*u*v = y/|z|^2.
+ //
+ // For x >= 0, this has the numerically stable solution
+ // u = sqrt(0.5 * (x + |z|)) / |z|
+ // v = -y / (2 * u * |z|)
+ // and for x < 0,
+ // v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z|
+ // u = -y / (2 * v * |z|)
+ //
+ // Letting w = sqrt(0.5 * (|x| + |z|)),
+ // if x == 0: u = w / |z|, v = -sign(y) * w / |z|
+ // if x > 0: u = w / |z|, v = -y / (2 * w * |z|)
+ // if x < 0: u = |y| / (2 * w * |z|), v = -sign(y) * w / |z|
+
+ const T x = numext::real(z);
+ const T y = numext::imag(z);
+ const T zero = T(0);
+
+ const T abs_z = numext::hypot(x, y);
+ const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z));
+ const T woz = w / abs_z;
+ // Corner cases consistent with 1/sqrt(z) on gcc/clang.
+ return
+ abs_z == zero ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
+ : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
+ : x == zero ? std::complex<T>(woz, y < zero ? woz : -woz)
+ : x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
+ : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) {
+ // Computes complex log.
+ T a = numext::abs(z);
+ EIGEN_USING_STD(atan2);
+ T b = atan2(z.imag(), z.real());
+ return std::complex<T>(numext::log(a), b);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATHFUNCTIONSIMPL_H