summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/NumTraits.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/NumTraits.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/NumTraits.h335
1 files changed, 335 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/NumTraits.h b/src/3rdparty/eigen/Eigen/src/Core/NumTraits.h
new file mode 100644
index 000000000..72eac5a93
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/NumTraits.h
@@ -0,0 +1,335 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NUMTRAITS_H
+#define EIGEN_NUMTRAITS_H
+
+namespace Eigen {
+
+namespace internal {
+
+// default implementation of digits10(), based on numeric_limits if specialized,
+// 0 for integer types, and log10(epsilon()) otherwise.
+template< typename T,
+ bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
+ bool is_integer = NumTraits<T>::IsInteger>
+struct default_digits10_impl
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() { return std::numeric_limits<T>::digits10; }
+};
+
+template<typename T>
+struct default_digits10_impl<T,false,false> // Floating point
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() {
+ using std::log10;
+ using std::ceil;
+ typedef typename NumTraits<T>::Real Real;
+ return int(ceil(-log10(NumTraits<Real>::epsilon())));
+ }
+};
+
+template<typename T>
+struct default_digits10_impl<T,false,true> // Integer
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() { return 0; }
+};
+
+
+// default implementation of digits(), based on numeric_limits if specialized,
+// 0 for integer types, and log2(epsilon()) otherwise.
+template< typename T,
+ bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
+ bool is_integer = NumTraits<T>::IsInteger>
+struct default_digits_impl
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() { return std::numeric_limits<T>::digits; }
+};
+
+template<typename T>
+struct default_digits_impl<T,false,false> // Floating point
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() {
+ using std::log;
+ using std::ceil;
+ typedef typename NumTraits<T>::Real Real;
+ return int(ceil(-log(NumTraits<Real>::epsilon())/log(static_cast<Real>(2))));
+ }
+};
+
+template<typename T>
+struct default_digits_impl<T,false,true> // Integer
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static int run() { return 0; }
+};
+
+} // end namespace internal
+
+namespace numext {
+/** \internal bit-wise cast without changing the underlying bit representation. */
+
+// TODO: Replace by std::bit_cast (available in C++20)
+template <typename Tgt, typename Src>
+EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) {
+#if EIGEN_HAS_TYPE_TRAITS
+ // The behaviour of memcpy is not specified for non-trivially copyable types
+ EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED);
+ EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value,
+ THIS_TYPE_IS_NOT_SUPPORTED);
+#endif
+
+ EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED);
+ Tgt tgt;
+ EIGEN_USING_STD(memcpy)
+ memcpy(&tgt, &src, sizeof(Tgt));
+ return tgt;
+}
+} // namespace numext
+
+/** \class NumTraits
+ * \ingroup Core_Module
+ *
+ * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
+ *
+ * \tparam T the numeric type at hand
+ *
+ * This class stores enums, typedefs and static methods giving information about a numeric type.
+ *
+ * The provided data consists of:
+ * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real,
+ * then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real
+ * is a typedef to \a U.
+ * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values,
+ * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
+ * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
+ * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
+ * only intended as a helper for code that needs to explicitly promote types.
+ * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U.
+ * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here.
+ * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
+ * this means, just use \a T here.
+ * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
+ * type, and to 0 otherwise.
+ * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
+ * and to \c 0 otherwise.
+ * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
+ * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
+ * Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost.
+ * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
+ * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
+ * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
+ * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>,
+ * it returns a \a Real instead of a \a T.
+ * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
+ * value by the fuzzy comparison operators.
+ * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
+ * \li digits() function returning the number of radix digits (non-sign digits for integers, mantissa for floating-point). This is
+ * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a>
+ * which is used as the default implementation if specialized.
+ * \li digits10() function returning the number of decimal digits that can be represented without change. This is
+ * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
+ * which is used as the default implementation if specialized.
+ * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively,
+ * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent to
+ * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/
+ * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>.
+ * \li infinity() function returning a representation of positive infinity, if available.
+ * \li quiet_NaN function returning a non-signaling "not-a-number", if available.
+ */
+
+template<typename T> struct GenericNumTraits
+{
+ enum {
+ IsInteger = std::numeric_limits<T>::is_integer,
+ IsSigned = std::numeric_limits<T>::is_signed,
+ IsComplex = 0,
+ RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
+ ReadCost = 1,
+ AddCost = 1,
+ MulCost = 1
+ };
+
+ typedef T Real;
+ typedef typename internal::conditional<
+ IsInteger,
+ typename internal::conditional<sizeof(T)<=2, float, double>::type,
+ T
+ >::type NonInteger;
+ typedef T Nested;
+ typedef T Literal;
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline Real epsilon()
+ {
+ return numext::numeric_limits<T>::epsilon();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline int digits10()
+ {
+ return internal::default_digits10_impl<T>::run();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline int digits()
+ {
+ return internal::default_digits_impl<T>::run();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline int min_exponent()
+ {
+ return numext::numeric_limits<T>::min_exponent;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline int max_exponent()
+ {
+ return numext::numeric_limits<T>::max_exponent;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline Real dummy_precision()
+ {
+ // make sure to override this for floating-point types
+ return Real(0);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline T highest() {
+ return (numext::numeric_limits<T>::max)();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline T lowest() {
+ return IsInteger ? (numext::numeric_limits<T>::min)()
+ : static_cast<T>(-(numext::numeric_limits<T>::max)());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline T infinity() {
+ return numext::numeric_limits<T>::infinity();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline T quiet_NaN() {
+ return numext::numeric_limits<T>::quiet_NaN();
+ }
+};
+
+template<typename T> struct NumTraits : GenericNumTraits<T>
+{};
+
+template<> struct NumTraits<float>
+ : GenericNumTraits<float>
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline float dummy_precision() { return 1e-5f; }
+};
+
+template<> struct NumTraits<double> : GenericNumTraits<double>
+{
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline double dummy_precision() { return 1e-12; }
+};
+
+template<> struct NumTraits<long double>
+ : GenericNumTraits<long double>
+{
+ EIGEN_CONSTEXPR
+ static inline long double dummy_precision() { return 1e-15l; }
+};
+
+template<typename _Real> struct NumTraits<std::complex<_Real> >
+ : GenericNumTraits<std::complex<_Real> >
+{
+ typedef _Real Real;
+ typedef typename NumTraits<_Real>::Literal Literal;
+ enum {
+ IsComplex = 1,
+ RequireInitialization = NumTraits<_Real>::RequireInitialization,
+ ReadCost = 2 * NumTraits<_Real>::ReadCost,
+ AddCost = 2 * NumTraits<Real>::AddCost,
+ MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline int digits10() { return NumTraits<Real>::digits10(); }
+};
+
+template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
+{
+ typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
+ typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
+ typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
+ typedef ArrayType & Nested;
+ typedef typename NumTraits<Scalar>::Literal Literal;
+
+ enum {
+ IsComplex = NumTraits<Scalar>::IsComplex,
+ IsInteger = NumTraits<Scalar>::IsInteger,
+ IsSigned = NumTraits<Scalar>::IsSigned,
+ RequireInitialization = 1,
+ ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::ReadCost),
+ AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::AddCost),
+ MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::MulCost)
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
+
+ EIGEN_CONSTEXPR
+ static inline int digits10() { return NumTraits<Scalar>::digits10(); }
+};
+
+template<> struct NumTraits<std::string>
+ : GenericNumTraits<std::string>
+{
+ enum {
+ RequireInitialization = 1,
+ ReadCost = HugeCost,
+ AddCost = HugeCost,
+ MulCost = HugeCost
+ };
+
+ EIGEN_CONSTEXPR
+ static inline int digits10() { return 0; }
+
+private:
+ static inline std::string epsilon();
+ static inline std::string dummy_precision();
+ static inline std::string lowest();
+ static inline std::string highest();
+ static inline std::string infinity();
+ static inline std::string quiet_NaN();
+};
+
+// Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
+template<> struct NumTraits<void> {};
+
+template<> struct NumTraits<bool> : GenericNumTraits<bool> {};
+
+} // end namespace Eigen
+
+#endif // EIGEN_NUMTRAITS_H