summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/StableNorm.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/StableNorm.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/StableNorm.h251
1 files changed, 251 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/StableNorm.h b/src/3rdparty/eigen/Eigen/src/Core/StableNorm.h
new file mode 100644
index 000000000..4a3f0cca8
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/StableNorm.h
@@ -0,0 +1,251 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_STABLENORM_H
+#define EIGEN_STABLENORM_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename ExpressionType, typename Scalar>
+inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
+{
+ Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
+
+ if(maxCoeff>scale)
+ {
+ ssq = ssq * numext::abs2(scale/maxCoeff);
+ Scalar tmp = Scalar(1)/maxCoeff;
+ if(tmp > NumTraits<Scalar>::highest())
+ {
+ invScale = NumTraits<Scalar>::highest();
+ scale = Scalar(1)/invScale;
+ }
+ else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
+ {
+ invScale = Scalar(1);
+ scale = maxCoeff;
+ }
+ else
+ {
+ scale = maxCoeff;
+ invScale = tmp;
+ }
+ }
+ else if(maxCoeff!=maxCoeff) // we got a NaN
+ {
+ scale = maxCoeff;
+ }
+
+ // TODO if the maxCoeff is much much smaller than the current scale,
+ // then we can neglect this sub vector
+ if(scale>Scalar(0)) // if scale==0, then bl is 0
+ ssq += (bl*invScale).squaredNorm();
+}
+
+template<typename VectorType, typename RealScalar>
+void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealScalar& scale, RealScalar& invScale)
+{
+ typedef typename VectorType::Scalar Scalar;
+ const Index blockSize = 4096;
+
+ typedef typename internal::nested_eval<VectorType,2>::type VectorTypeCopy;
+ typedef typename internal::remove_all<VectorTypeCopy>::type VectorTypeCopyClean;
+ const VectorTypeCopy copy(vec);
+
+ enum {
+ CanAlign = ( (int(VectorTypeCopyClean::Flags)&DirectAccessBit)
+ || (int(internal::evaluator<VectorTypeCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
+ ) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
+ && (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
+ };
+ typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<VectorTypeCopyClean>::Alignment>,
+ typename VectorTypeCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
+ Index n = vec.size();
+
+ Index bi = internal::first_default_aligned(copy);
+ if (bi>0)
+ internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
+ for (; bi<n; bi+=blockSize)
+ internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
+}
+
+template<typename VectorType>
+typename VectorType::RealScalar
+stable_norm_impl(const VectorType &vec, typename enable_if<VectorType::IsVectorAtCompileTime>::type* = 0 )
+{
+ using std::sqrt;
+ using std::abs;
+
+ Index n = vec.size();
+
+ if(n==1)
+ return abs(vec.coeff(0));
+
+ typedef typename VectorType::RealScalar RealScalar;
+ RealScalar scale(0);
+ RealScalar invScale(1);
+ RealScalar ssq(0); // sum of squares
+
+ stable_norm_impl_inner_step(vec, ssq, scale, invScale);
+
+ return scale * sqrt(ssq);
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar
+stable_norm_impl(const MatrixType &mat, typename enable_if<!MatrixType::IsVectorAtCompileTime>::type* = 0 )
+{
+ using std::sqrt;
+
+ typedef typename MatrixType::RealScalar RealScalar;
+ RealScalar scale(0);
+ RealScalar invScale(1);
+ RealScalar ssq(0); // sum of squares
+
+ for(Index j=0; j<mat.outerSize(); ++j)
+ stable_norm_impl_inner_step(mat.innerVector(j), ssq, scale, invScale);
+ return scale * sqrt(ssq);
+}
+
+template<typename Derived>
+inline typename NumTraits<typename traits<Derived>::Scalar>::Real
+blueNorm_impl(const EigenBase<Derived>& _vec)
+{
+ typedef typename Derived::RealScalar RealScalar;
+ using std::pow;
+ using std::sqrt;
+ using std::abs;
+
+ // This program calculates the machine-dependent constants
+ // bl, b2, slm, s2m, relerr overfl
+ // from the "basic" machine-dependent numbers
+ // nbig, ibeta, it, iemin, iemax, rbig.
+ // The following define the basic machine-dependent constants.
+ // For portability, the PORT subprograms "ilmaeh" and "rlmach"
+ // are used. For any specific computer, each of the assignment
+ // statements can be replaced
+ static const int ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
+ static const int it = NumTraits<RealScalar>::digits(); // number of base-beta digits in mantissa
+ static const int iemin = NumTraits<RealScalar>::min_exponent(); // minimum exponent
+ static const int iemax = NumTraits<RealScalar>::max_exponent(); // maximum exponent
+ static const RealScalar rbig = NumTraits<RealScalar>::highest(); // largest floating-point number
+ static const RealScalar b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(-((1-iemin)/2)))); // lower boundary of midrange
+ static const RealScalar b2 = RealScalar(pow(RealScalar(ibeta),RealScalar((iemax + 1 - it)/2))); // upper boundary of midrange
+ static const RealScalar s1m = RealScalar(pow(RealScalar(ibeta),RealScalar((2-iemin)/2))); // scaling factor for lower range
+ static const RealScalar s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(- ((iemax+it)/2)))); // scaling factor for upper range
+ static const RealScalar eps = RealScalar(pow(double(ibeta), 1-it));
+ static const RealScalar relerr = sqrt(eps); // tolerance for neglecting asml
+
+ const Derived& vec(_vec.derived());
+ Index n = vec.size();
+ RealScalar ab2 = b2 / RealScalar(n);
+ RealScalar asml = RealScalar(0);
+ RealScalar amed = RealScalar(0);
+ RealScalar abig = RealScalar(0);
+
+ for(Index j=0; j<vec.outerSize(); ++j)
+ {
+ for(typename Derived::InnerIterator iter(vec, j); iter; ++iter)
+ {
+ RealScalar ax = abs(iter.value());
+ if(ax > ab2) abig += numext::abs2(ax*s2m);
+ else if(ax < b1) asml += numext::abs2(ax*s1m);
+ else amed += numext::abs2(ax);
+ }
+ }
+ if(amed!=amed)
+ return amed; // we got a NaN
+ if(abig > RealScalar(0))
+ {
+ abig = sqrt(abig);
+ if(abig > rbig) // overflow, or *this contains INF values
+ return abig; // return INF
+ if(amed > RealScalar(0))
+ {
+ abig = abig/s2m;
+ amed = sqrt(amed);
+ }
+ else
+ return abig/s2m;
+ }
+ else if(asml > RealScalar(0))
+ {
+ if (amed > RealScalar(0))
+ {
+ abig = sqrt(amed);
+ amed = sqrt(asml) / s1m;
+ }
+ else
+ return sqrt(asml)/s1m;
+ }
+ else
+ return sqrt(amed);
+ asml = numext::mini(abig, amed);
+ abig = numext::maxi(abig, amed);
+ if(asml <= abig*relerr)
+ return abig;
+ else
+ return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
+}
+
+} // end namespace internal
+
+/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
+ * This version use a blockwise two passes algorithm:
+ * 1 - find the absolute largest coefficient \c s
+ * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
+ *
+ * For architecture/scalar types supporting vectorization, this version
+ * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
+ *
+ * \sa norm(), blueNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::stableNorm() const
+{
+ return internal::stable_norm_impl(derived());
+}
+
+/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
+ * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
+ * ACM TOMS, Vol 4, Issue 1, 1978.
+ *
+ * For architecture/scalar types without vectorization, this version
+ * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
+ *
+ * \sa norm(), stableNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::blueNorm() const
+{
+ return internal::blueNorm_impl(*this);
+}
+
+/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
+ * This version use a concatenation of hypot() calls, and it is very slow.
+ *
+ * \sa norm(), stableNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::hypotNorm() const
+{
+ if(size()==1)
+ return numext::abs(coeff(0,0));
+ else
+ return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_STABLENORM_H