summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h784
1 files changed, 784 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h b/src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h
new file mode 100644
index 000000000..870f4f1e4
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/VectorwiseOp.h
@@ -0,0 +1,784 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_PARTIAL_REDUX_H
+#define EIGEN_PARTIAL_REDUX_H
+
+namespace Eigen {
+
+/** \class PartialReduxExpr
+ * \ingroup Core_Module
+ *
+ * \brief Generic expression of a partially reduxed matrix
+ *
+ * \tparam MatrixType the type of the matrix we are applying the redux operation
+ * \tparam MemberOp type of the member functor
+ * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
+ *
+ * This class represents an expression of a partial redux operator of a matrix.
+ * It is the return type of some VectorwiseOp functions,
+ * and most of the time this is the only way it is used.
+ *
+ * \sa class VectorwiseOp
+ */
+
+template< typename MatrixType, typename MemberOp, int Direction>
+class PartialReduxExpr;
+
+namespace internal {
+template<typename MatrixType, typename MemberOp, int Direction>
+struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
+ : traits<MatrixType>
+{
+ typedef typename MemberOp::result_type Scalar;
+ typedef typename traits<MatrixType>::StorageKind StorageKind;
+ typedef typename traits<MatrixType>::XprKind XprKind;
+ typedef typename MatrixType::Scalar InputScalar;
+ enum {
+ RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
+ MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
+ Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0,
+ TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
+ };
+};
+}
+
+template< typename MatrixType, typename MemberOp, int Direction>
+class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type,
+ internal::no_assignment_operator
+{
+ public:
+
+ typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
+
+ EIGEN_DEVICE_FUNC
+ explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
+ : m_matrix(mat), m_functor(func) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ Index rows() const EIGEN_NOEXCEPT { return (Direction==Vertical ? 1 : m_matrix.rows()); }
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
+ Index cols() const EIGEN_NOEXCEPT { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
+
+ EIGEN_DEVICE_FUNC
+ typename MatrixType::Nested nestedExpression() const { return m_matrix; }
+
+ EIGEN_DEVICE_FUNC
+ const MemberOp& functor() const { return m_functor; }
+
+ protected:
+ typename MatrixType::Nested m_matrix;
+ const MemberOp m_functor;
+};
+
+template<typename A,typename B> struct partial_redux_dummy_func;
+
+#define EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,VECTORIZABLE,BINARYOP) \
+ template <typename ResultType,typename Scalar> \
+ struct member_##MEMBER { \
+ EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
+ typedef ResultType result_type; \
+ typedef BINARYOP<Scalar,Scalar> BinaryOp; \
+ template<int Size> struct Cost { enum { value = COST }; }; \
+ enum { Vectorizable = VECTORIZABLE }; \
+ template<typename XprType> \
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \
+ ResultType operator()(const XprType& mat) const \
+ { return mat.MEMBER(); } \
+ BinaryOp binaryFunc() const { return BinaryOp(); } \
+ }
+
+#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
+ EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,0,partial_redux_dummy_func)
+
+namespace internal {
+
+EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
+EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
+EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
+EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
+EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
+EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
+EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
+
+EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_sum_op);
+EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_min_op);
+EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_max_op);
+EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost, 1, internal::scalar_product_op);
+
+template <int p, typename ResultType,typename Scalar>
+struct member_lpnorm {
+ typedef ResultType result_type;
+ enum { Vectorizable = 0 };
+ template<int Size> struct Cost
+ { enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; };
+ EIGEN_DEVICE_FUNC member_lpnorm() {}
+ template<typename XprType>
+ EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const
+ { return mat.template lpNorm<p>(); }
+};
+
+template <typename BinaryOpT, typename Scalar>
+struct member_redux {
+ typedef BinaryOpT BinaryOp;
+ typedef typename result_of<
+ BinaryOp(const Scalar&,const Scalar&)
+ >::type result_type;
+
+ enum { Vectorizable = functor_traits<BinaryOp>::PacketAccess };
+ template<int Size> struct Cost { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
+ EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {}
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const
+ { return mat.redux(m_functor); }
+ const BinaryOp& binaryFunc() const { return m_functor; }
+ const BinaryOp m_functor;
+};
+}
+
+/** \class VectorwiseOp
+ * \ingroup Core_Module
+ *
+ * \brief Pseudo expression providing broadcasting and partial reduction operations
+ *
+ * \tparam ExpressionType the type of the object on which to do partial reductions
+ * \tparam Direction indicates whether to operate on columns (#Vertical) or rows (#Horizontal)
+ *
+ * This class represents a pseudo expression with broadcasting and partial reduction features.
+ * It is the return type of DenseBase::colwise() and DenseBase::rowwise()
+ * and most of the time this is the only way it is explicitly used.
+ *
+ * To understand the logic of rowwise/colwise expression, let's consider a generic case `A.colwise().foo()`
+ * where `foo` is any method of `VectorwiseOp`. This expression is equivalent to applying `foo()` to each
+ * column of `A` and then re-assemble the outputs in a matrix expression:
+ * \code [A.col(0).foo(), A.col(1).foo(), ..., A.col(A.cols()-1).foo()] \endcode
+ *
+ * Example: \include MatrixBase_colwise.cpp
+ * Output: \verbinclude MatrixBase_colwise.out
+ *
+ * The begin() and end() methods are obviously exceptions to the previous rule as they
+ * return STL-compatible begin/end iterators to the rows or columns of the nested expression.
+ * Typical use cases include for-range-loop and calls to STL algorithms:
+ *
+ * Example: \include MatrixBase_colwise_iterator_cxx11.cpp
+ * Output: \verbinclude MatrixBase_colwise_iterator_cxx11.out
+ *
+ * For a partial reduction on an empty input, some rules apply.
+ * For the sake of clarity, let's consider a vertical reduction:
+ * - If the number of columns is zero, then a 1x0 row-major vector expression is returned.
+ * - Otherwise, if the number of rows is zero, then
+ * - a row vector of zeros is returned for sum-like reductions (sum, squaredNorm, norm, etc.)
+ * - a row vector of ones is returned for a product reduction (e.g., <code>MatrixXd(n,0).colwise().prod()</code>)
+ * - an assert is triggered for all other reductions (minCoeff,maxCoeff,redux(bin_op))
+ *
+ * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
+ */
+template<typename ExpressionType, int Direction> class VectorwiseOp
+{
+ public:
+
+ typedef typename ExpressionType::Scalar Scalar;
+ typedef typename ExpressionType::RealScalar RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+ typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested;
+ typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
+
+ template<template<typename OutScalar,typename InputScalar> class Functor,
+ typename ReturnScalar=Scalar> struct ReturnType
+ {
+ typedef PartialReduxExpr<ExpressionType,
+ Functor<ReturnScalar,Scalar>,
+ Direction
+ > Type;
+ };
+
+ template<typename BinaryOp> struct ReduxReturnType
+ {
+ typedef PartialReduxExpr<ExpressionType,
+ internal::member_redux<BinaryOp,Scalar>,
+ Direction
+ > Type;
+ };
+
+ enum {
+ isVertical = (Direction==Vertical) ? 1 : 0,
+ isHorizontal = (Direction==Horizontal) ? 1 : 0
+ };
+
+ protected:
+
+ template<typename OtherDerived> struct ExtendedType {
+ typedef Replicate<OtherDerived,
+ isVertical ? 1 : ExpressionType::RowsAtCompileTime,
+ isHorizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
+ };
+
+ /** \internal
+ * Replicates a vector to match the size of \c *this */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ typename ExtendedType<OtherDerived>::Type
+ extendedTo(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1),
+ YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1),
+ YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
+ return typename ExtendedType<OtherDerived>::Type
+ (other.derived(),
+ isVertical ? 1 : m_matrix.rows(),
+ isHorizontal ? 1 : m_matrix.cols());
+ }
+
+ template<typename OtherDerived> struct OppositeExtendedType {
+ typedef Replicate<OtherDerived,
+ isHorizontal ? 1 : ExpressionType::RowsAtCompileTime,
+ isVertical ? 1 : ExpressionType::ColsAtCompileTime> Type;
+ };
+
+ /** \internal
+ * Replicates a vector in the opposite direction to match the size of \c *this */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ typename OppositeExtendedType<OtherDerived>::Type
+ extendedToOpposite(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1),
+ YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1),
+ YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
+ return typename OppositeExtendedType<OtherDerived>::Type
+ (other.derived(),
+ isHorizontal ? 1 : m_matrix.rows(),
+ isVertical ? 1 : m_matrix.cols());
+ }
+
+ public:
+ EIGEN_DEVICE_FUNC
+ explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
+
+ /** \internal */
+ EIGEN_DEVICE_FUNC
+ inline const ExpressionType& _expression() const { return m_matrix; }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** STL-like <a href="https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator">RandomAccessIterator</a>
+ * iterator type over the columns or rows as returned by the begin() and end() methods.
+ */
+ random_access_iterator_type iterator;
+ /** This is the const version of iterator (aka read-only) */
+ random_access_iterator_type const_iterator;
+ #else
+ typedef internal::subvector_stl_iterator<ExpressionType, DirectionType(Direction)> iterator;
+ typedef internal::subvector_stl_iterator<const ExpressionType, DirectionType(Direction)> const_iterator;
+ typedef internal::subvector_stl_reverse_iterator<ExpressionType, DirectionType(Direction)> reverse_iterator;
+ typedef internal::subvector_stl_reverse_iterator<const ExpressionType, DirectionType(Direction)> const_reverse_iterator;
+ #endif
+
+ /** returns an iterator to the first row (rowwise) or column (colwise) of the nested expression.
+ * \sa end(), cbegin()
+ */
+ iterator begin() { return iterator (m_matrix, 0); }
+ /** const version of begin() */
+ const_iterator begin() const { return const_iterator(m_matrix, 0); }
+ /** const version of begin() */
+ const_iterator cbegin() const { return const_iterator(m_matrix, 0); }
+
+ /** returns a reverse iterator to the last row (rowwise) or column (colwise) of the nested expression.
+ * \sa rend(), crbegin()
+ */
+ reverse_iterator rbegin() { return reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
+ /** const version of rbegin() */
+ const_reverse_iterator rbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
+ /** const version of rbegin() */
+ const_reverse_iterator crbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
+
+ /** returns an iterator to the row (resp. column) following the last row (resp. column) of the nested expression
+ * \sa begin(), cend()
+ */
+ iterator end() { return iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
+ /** const version of end() */
+ const_iterator end() const { return const_iterator(m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
+ /** const version of end() */
+ const_iterator cend() const { return const_iterator(m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
+
+ /** returns a reverse iterator to the row (resp. column) before the first row (resp. column) of the nested expression
+ * \sa begin(), cend()
+ */
+ reverse_iterator rend() { return reverse_iterator (m_matrix, -1); }
+ /** const version of rend() */
+ const_reverse_iterator rend() const { return const_reverse_iterator (m_matrix, -1); }
+ /** const version of rend() */
+ const_reverse_iterator crend() const { return const_reverse_iterator (m_matrix, -1); }
+
+ /** \returns a row or column vector expression of \c *this reduxed by \a func
+ *
+ * The template parameter \a BinaryOp is the type of the functor
+ * of the custom redux operator. Note that func must be an associative operator.
+ *
+ * \warning the size along the reduction direction must be strictly positive,
+ * otherwise an assertion is triggered.
+ *
+ * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
+ */
+ template<typename BinaryOp>
+ EIGEN_DEVICE_FUNC
+ const typename ReduxReturnType<BinaryOp>::Type
+ redux(const BinaryOp& func = BinaryOp()) const
+ {
+ eigen_assert(redux_length()>0 && "you are using an empty matrix");
+ return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func));
+ }
+
+ typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
+ typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
+ typedef PartialReduxExpr<const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ExpressionTypeNestedCleaned>,internal::member_sum<RealScalar,RealScalar>,Direction> SquaredNormReturnType;
+ typedef CwiseUnaryOp<internal::scalar_sqrt_op<RealScalar>, const SquaredNormReturnType> NormReturnType;
+ typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType;
+ typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType;
+ typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType;
+ typedef typename ReturnType<internal::member_sum>::Type SumReturnType;
+ typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SumReturnType,Scalar,quotient) MeanReturnType;
+ typedef typename ReturnType<internal::member_all>::Type AllReturnType;
+ typedef typename ReturnType<internal::member_any>::Type AnyReturnType;
+ typedef PartialReduxExpr<ExpressionType, internal::member_count<Index,Scalar>, Direction> CountReturnType;
+ typedef typename ReturnType<internal::member_prod>::Type ProdReturnType;
+ typedef Reverse<const ExpressionType, Direction> ConstReverseReturnType;
+ typedef Reverse<ExpressionType, Direction> ReverseReturnType;
+
+ template<int p> struct LpNormReturnType {
+ typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar,Scalar>,Direction> Type;
+ };
+
+ /** \returns a row (or column) vector expression of the smallest coefficient
+ * of each column (or row) of the referenced expression.
+ *
+ * \warning the size along the reduction direction must be strictly positive,
+ * otherwise an assertion is triggered.
+ *
+ * \warning the result is undefined if \c *this contains NaN.
+ *
+ * Example: \include PartialRedux_minCoeff.cpp
+ * Output: \verbinclude PartialRedux_minCoeff.out
+ *
+ * \sa DenseBase::minCoeff() */
+ EIGEN_DEVICE_FUNC
+ const MinCoeffReturnType minCoeff() const
+ {
+ eigen_assert(redux_length()>0 && "you are using an empty matrix");
+ return MinCoeffReturnType(_expression());
+ }
+
+ /** \returns a row (or column) vector expression of the largest coefficient
+ * of each column (or row) of the referenced expression.
+ *
+ * \warning the size along the reduction direction must be strictly positive,
+ * otherwise an assertion is triggered.
+ *
+ * \warning the result is undefined if \c *this contains NaN.
+ *
+ * Example: \include PartialRedux_maxCoeff.cpp
+ * Output: \verbinclude PartialRedux_maxCoeff.out
+ *
+ * \sa DenseBase::maxCoeff() */
+ EIGEN_DEVICE_FUNC
+ const MaxCoeffReturnType maxCoeff() const
+ {
+ eigen_assert(redux_length()>0 && "you are using an empty matrix");
+ return MaxCoeffReturnType(_expression());
+ }
+
+ /** \returns a row (or column) vector expression of the squared norm
+ * of each column (or row) of the referenced expression.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * Example: \include PartialRedux_squaredNorm.cpp
+ * Output: \verbinclude PartialRedux_squaredNorm.out
+ *
+ * \sa DenseBase::squaredNorm() */
+ EIGEN_DEVICE_FUNC
+ const SquaredNormReturnType squaredNorm() const
+ { return SquaredNormReturnType(m_matrix.cwiseAbs2()); }
+
+ /** \returns a row (or column) vector expression of the norm
+ * of each column (or row) of the referenced expression.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * Example: \include PartialRedux_norm.cpp
+ * Output: \verbinclude PartialRedux_norm.out
+ *
+ * \sa DenseBase::norm() */
+ EIGEN_DEVICE_FUNC
+ const NormReturnType norm() const
+ { return NormReturnType(squaredNorm()); }
+
+ /** \returns a row (or column) vector expression of the norm
+ * of each column (or row) of the referenced expression.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * Example: \include PartialRedux_norm.cpp
+ * Output: \verbinclude PartialRedux_norm.out
+ *
+ * \sa DenseBase::norm() */
+ template<int p>
+ EIGEN_DEVICE_FUNC
+ const typename LpNormReturnType<p>::Type lpNorm() const
+ { return typename LpNormReturnType<p>::Type(_expression()); }
+
+
+ /** \returns a row (or column) vector expression of the norm
+ * of each column (or row) of the referenced expression, using
+ * Blue's algorithm.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * \sa DenseBase::blueNorm() */
+ EIGEN_DEVICE_FUNC
+ const BlueNormReturnType blueNorm() const
+ { return BlueNormReturnType(_expression()); }
+
+
+ /** \returns a row (or column) vector expression of the norm
+ * of each column (or row) of the referenced expression, avoiding
+ * underflow and overflow.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * \sa DenseBase::stableNorm() */
+ EIGEN_DEVICE_FUNC
+ const StableNormReturnType stableNorm() const
+ { return StableNormReturnType(_expression()); }
+
+
+ /** \returns a row (or column) vector expression of the norm
+ * of each column (or row) of the referenced expression, avoiding
+ * underflow and overflow using a concatenation of hypot() calls.
+ * This is a vector with real entries, even if the original matrix has complex entries.
+ *
+ * \sa DenseBase::hypotNorm() */
+ EIGEN_DEVICE_FUNC
+ const HypotNormReturnType hypotNorm() const
+ { return HypotNormReturnType(_expression()); }
+
+ /** \returns a row (or column) vector expression of the sum
+ * of each column (or row) of the referenced expression.
+ *
+ * Example: \include PartialRedux_sum.cpp
+ * Output: \verbinclude PartialRedux_sum.out
+ *
+ * \sa DenseBase::sum() */
+ EIGEN_DEVICE_FUNC
+ const SumReturnType sum() const
+ { return SumReturnType(_expression()); }
+
+ /** \returns a row (or column) vector expression of the mean
+ * of each column (or row) of the referenced expression.
+ *
+ * \sa DenseBase::mean() */
+ EIGEN_DEVICE_FUNC
+ const MeanReturnType mean() const
+ { return sum() / Scalar(Direction==Vertical?m_matrix.rows():m_matrix.cols()); }
+
+ /** \returns a row (or column) vector expression representing
+ * whether \b all coefficients of each respective column (or row) are \c true.
+ * This expression can be assigned to a vector with entries of type \c bool.
+ *
+ * \sa DenseBase::all() */
+ EIGEN_DEVICE_FUNC
+ const AllReturnType all() const
+ { return AllReturnType(_expression()); }
+
+ /** \returns a row (or column) vector expression representing
+ * whether \b at \b least one coefficient of each respective column (or row) is \c true.
+ * This expression can be assigned to a vector with entries of type \c bool.
+ *
+ * \sa DenseBase::any() */
+ EIGEN_DEVICE_FUNC
+ const AnyReturnType any() const
+ { return AnyReturnType(_expression()); }
+
+ /** \returns a row (or column) vector expression representing
+ * the number of \c true coefficients of each respective column (or row).
+ * This expression can be assigned to a vector whose entries have the same type as is used to
+ * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t .
+ *
+ * Example: \include PartialRedux_count.cpp
+ * Output: \verbinclude PartialRedux_count.out
+ *
+ * \sa DenseBase::count() */
+ EIGEN_DEVICE_FUNC
+ const CountReturnType count() const
+ { return CountReturnType(_expression()); }
+
+ /** \returns a row (or column) vector expression of the product
+ * of each column (or row) of the referenced expression.
+ *
+ * Example: \include PartialRedux_prod.cpp
+ * Output: \verbinclude PartialRedux_prod.out
+ *
+ * \sa DenseBase::prod() */
+ EIGEN_DEVICE_FUNC
+ const ProdReturnType prod() const
+ { return ProdReturnType(_expression()); }
+
+
+ /** \returns a matrix expression
+ * where each column (or row) are reversed.
+ *
+ * Example: \include Vectorwise_reverse.cpp
+ * Output: \verbinclude Vectorwise_reverse.out
+ *
+ * \sa DenseBase::reverse() */
+ EIGEN_DEVICE_FUNC
+ const ConstReverseReturnType reverse() const
+ { return ConstReverseReturnType( _expression() ); }
+
+ /** \returns a writable matrix expression
+ * where each column (or row) are reversed.
+ *
+ * \sa reverse() const */
+ EIGEN_DEVICE_FUNC
+ ReverseReturnType reverse()
+ { return ReverseReturnType( _expression() ); }
+
+ typedef Replicate<ExpressionType,(isVertical?Dynamic:1),(isHorizontal?Dynamic:1)> ReplicateReturnType;
+ EIGEN_DEVICE_FUNC
+ const ReplicateReturnType replicate(Index factor) const;
+
+ /**
+ * \return an expression of the replication of each column (or row) of \c *this
+ *
+ * Example: \include DirectionWise_replicate.cpp
+ * Output: \verbinclude DirectionWise_replicate.out
+ *
+ * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
+ */
+ // NOTE implemented here because of sunstudio's compilation errors
+ // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator
+ template<int Factor> const Replicate<ExpressionType,isVertical*Factor+isHorizontal,isHorizontal*Factor+isVertical>
+ EIGEN_DEVICE_FUNC
+ replicate(Index factor = Factor) const
+ {
+ return Replicate<ExpressionType,(isVertical?Factor:1),(isHorizontal?Factor:1)>
+ (_expression(),isVertical?factor:1,isHorizontal?factor:1);
+ }
+
+/////////// Artithmetic operators ///////////
+
+ /** Copies the vector \a other to each subvector of \c *this */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ ExpressionType& operator=(const DenseBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
+ return m_matrix = extendedTo(other.derived());
+ }
+
+ /** Adds the vector \a other to each subvector of \c *this */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix += extendedTo(other.derived());
+ }
+
+ /** Substracts the vector \a other to each subvector of \c *this */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix -= extendedTo(other.derived());
+ }
+
+ /** Multiples each subvector of \c *this by the vector \a other */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ m_matrix *= extendedTo(other.derived());
+ return m_matrix;
+ }
+
+ /** Divides each subvector of \c *this by the vector \a other */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ ExpressionType& operator/=(const DenseBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ m_matrix /= extendedTo(other.derived());
+ return m_matrix;
+ }
+
+ /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
+ template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
+ CwiseBinaryOp<internal::scalar_sum_op<Scalar,typename OtherDerived::Scalar>,
+ const ExpressionTypeNestedCleaned,
+ const typename ExtendedType<OtherDerived>::Type>
+ operator+(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix + extendedTo(other.derived());
+ }
+
+ /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ CwiseBinaryOp<internal::scalar_difference_op<Scalar,typename OtherDerived::Scalar>,
+ const ExpressionTypeNestedCleaned,
+ const typename ExtendedType<OtherDerived>::Type>
+ operator-(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix - extendedTo(other.derived());
+ }
+
+ /** Returns the expression where each subvector is the product of the vector \a other
+ * by the corresponding subvector of \c *this */
+ template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
+ CwiseBinaryOp<internal::scalar_product_op<Scalar>,
+ const ExpressionTypeNestedCleaned,
+ const typename ExtendedType<OtherDerived>::Type>
+ EIGEN_DEVICE_FUNC
+ operator*(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix * extendedTo(other.derived());
+ }
+
+ /** Returns the expression where each subvector is the quotient of the corresponding
+ * subvector of \c *this by the vector \a other */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
+ const ExpressionTypeNestedCleaned,
+ const typename ExtendedType<OtherDerived>::Type>
+ operator/(const DenseBase<OtherDerived>& other) const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
+ EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
+ return m_matrix / extendedTo(other.derived());
+ }
+
+ /** \returns an expression where each column (or row) of the referenced matrix are normalized.
+ * The referenced matrix is \b not modified.
+ * \sa MatrixBase::normalized(), normalize()
+ */
+ EIGEN_DEVICE_FUNC
+ CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
+ const ExpressionTypeNestedCleaned,
+ const typename OppositeExtendedType<NormReturnType>::Type>
+ normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); }
+
+
+ /** Normalize in-place each row or columns of the referenced matrix.
+ * \sa MatrixBase::normalize(), normalized()
+ */
+ EIGEN_DEVICE_FUNC void normalize() {
+ m_matrix = this->normalized();
+ }
+
+ EIGEN_DEVICE_FUNC inline void reverseInPlace();
+
+/////////// Geometry module ///////////
+
+ typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType;
+ EIGEN_DEVICE_FUNC
+ HomogeneousReturnType homogeneous() const;
+
+ typedef typename ExpressionType::PlainObject CrossReturnType;
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
+
+ enum {
+ HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
+ : internal::traits<ExpressionType>::ColsAtCompileTime,
+ HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
+ };
+ typedef Block<const ExpressionType,
+ Direction==Vertical ? int(HNormalized_SizeMinusOne)
+ : int(internal::traits<ExpressionType>::RowsAtCompileTime),
+ Direction==Horizontal ? int(HNormalized_SizeMinusOne)
+ : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
+ HNormalized_Block;
+ typedef Block<const ExpressionType,
+ Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
+ Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
+ HNormalized_Factors;
+ typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
+ const HNormalized_Block,
+ const Replicate<HNormalized_Factors,
+ Direction==Vertical ? HNormalized_SizeMinusOne : 1,
+ Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
+ HNormalizedReturnType;
+
+ EIGEN_DEVICE_FUNC
+ const HNormalizedReturnType hnormalized() const;
+
+# ifdef EIGEN_VECTORWISEOP_PLUGIN
+# include EIGEN_VECTORWISEOP_PLUGIN
+# endif
+
+ protected:
+ Index redux_length() const
+ {
+ return Direction==Vertical ? m_matrix.rows() : m_matrix.cols();
+ }
+ ExpressionTypeNested m_matrix;
+};
+
+//const colwise moved to DenseBase.h due to CUDA compiler bug
+
+
+/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
+ *
+ * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
+ */
+template<typename Derived>
+EIGEN_DEVICE_FUNC inline typename DenseBase<Derived>::ColwiseReturnType
+DenseBase<Derived>::colwise()
+{
+ return ColwiseReturnType(derived());
+}
+
+//const rowwise moved to DenseBase.h due to CUDA compiler bug
+
+
+/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
+ *
+ * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
+ */
+template<typename Derived>
+EIGEN_DEVICE_FUNC inline typename DenseBase<Derived>::RowwiseReturnType
+DenseBase<Derived>::rowwise()
+{
+ return RowwiseReturnType(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_PARTIAL_REDUX_H