summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h228
1 files changed, 228 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h b/src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h
new file mode 100644
index 000000000..67041c812
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h
@@ -0,0 +1,228 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
+#define EIGEN_MATH_FUNCTIONS_AVX_H
+
+/* The sin and cos functions of this file are loosely derived from
+ * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
+ */
+
+namespace Eigen {
+
+namespace internal {
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+psin<Packet8f>(const Packet8f& _x) {
+ return psin_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+pcos<Packet8f>(const Packet8f& _x) {
+ return pcos_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+plog<Packet8f>(const Packet8f& _x) {
+ return plog_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+plog<Packet4d>(const Packet4d& _x) {
+ return plog_double(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+plog2<Packet8f>(const Packet8f& _x) {
+ return plog2_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+plog2<Packet4d>(const Packet4d& _x) {
+ return plog2_double(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f plog1p<Packet8f>(const Packet8f& _x) {
+ return generic_plog1p(_x);
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
+ return generic_expm1(_x);
+}
+
+// Exponential function. Works by writing "x = m*log(2) + r" where
+// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
+// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+pexp<Packet8f>(const Packet8f& _x) {
+ return pexp_float(_x);
+}
+
+// Hyperbolic Tangent function.
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
+ptanh<Packet8f>(const Packet8f& _x) {
+ return internal::generic_fast_tanh_float(_x);
+}
+
+// Exponential function for doubles.
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
+pexp<Packet4d>(const Packet4d& _x) {
+ return pexp_double(_x);
+}
+
+// Functions for sqrt.
+// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
+// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
+// exact solution. It does not handle +inf, or denormalized numbers correctly.
+// The main advantage of this approach is not just speed, but also the fact that
+// it can be inlined and pipelined with other computations, further reducing its
+// effective latency. This is similar to Quake3's fast inverse square root.
+// For detail see here: http://www.beyond3d.com/content/articles/8/
+#if EIGEN_FAST_MATH
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f psqrt<Packet8f>(const Packet8f& _x) {
+ Packet8f minus_half_x = pmul(_x, pset1<Packet8f>(-0.5f));
+ Packet8f denormal_mask = pandnot(
+ pcmp_lt(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())),
+ pcmp_lt(_x, pzero(_x)));
+
+ // Compute approximate reciprocal sqrt.
+ Packet8f x = _mm256_rsqrt_ps(_x);
+ // Do a single step of Newton's iteration.
+ x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet8f>(1.5f)));
+ // Flush results for denormals to zero.
+ return pandnot(pmul(_x,x), denormal_mask);
+}
+
+#else
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f psqrt<Packet8f>(const Packet8f& _x) {
+ return _mm256_sqrt_ps(_x);
+}
+
+#endif
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4d psqrt<Packet4d>(const Packet4d& _x) {
+ return _mm256_sqrt_pd(_x);
+}
+
+#if EIGEN_FAST_MATH
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
+ _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
+ _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
+ _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
+ _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
+
+ Packet8f neg_half = pmul(_x, p8f_minus_half);
+
+ // select only the inverse sqrt of positive normal inputs (denormals are
+ // flushed to zero and cause infs as well).
+ Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
+ Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
+ Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
+
+ // Compute an approximate result using the rsqrt intrinsic.
+ Packet8f y_approx = _mm256_rsqrt_ps(_x);
+
+ // Do a single step of Newton-Raphson iteration to improve the approximation.
+ // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
+ // It is essential to evaluate the inner term like this because forming
+ // y_n^2 may over- or underflow.
+ Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
+
+ // Select the result of the Newton-Raphson step for positive normal arguments.
+ // For other arguments, choose the output of the intrinsic. This will
+ // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
+ // x is zero or a positive denormalized float (equivalent to flushing positive
+ // denormalized inputs to zero).
+ return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
+}
+
+#else
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
+ _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
+ return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x));
+}
+#endif
+
+template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4d prsqrt<Packet4d>(const Packet4d& _x) {
+ _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
+ return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x));
+}
+
+F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
+F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) {
+ Packet8f fexponent;
+ const Packet8h out = float2half(pfrexp<Packet8f>(half2float(a), fexponent));
+ exponent = float2half(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) {
+ return float2half(pldexp<Packet8f>(half2float(a), half2float(exponent)));
+}
+
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
+BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) {
+ Packet8f fexponent;
+ const Packet8bf out = F32ToBf16(pfrexp<Packet8f>(Bf16ToF32(a), fexponent));
+ exponent = F32ToBf16(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) {
+ return F32ToBf16(pldexp<Packet8f>(Bf16ToF32(a), Bf16ToF32(exponent)));
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATH_FUNCTIONS_AVX_H