summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h584
1 files changed, 584 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h b/src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h
new file mode 100644
index 000000000..f40af7f87
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Core/arch/NEON/Complex.h
@@ -0,0 +1,584 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_NEON_H
+#define EIGEN_COMPLEX_NEON_H
+
+namespace Eigen {
+
+namespace internal {
+
+inline uint32x4_t p4ui_CONJ_XOR()
+{
+// See bug 1325, clang fails to call vld1q_u64.
+#if EIGEN_COMP_CLANG || EIGEN_COMP_CASTXML
+ uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
+ return ret;
+#else
+ static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
+ return vld1q_u32( conj_XOR_DATA );
+#endif
+}
+
+inline uint32x2_t p2ui_CONJ_XOR()
+{
+ static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 };
+ return vld1_u32( conj_XOR_DATA );
+}
+
+//---------- float ----------
+
+struct Packet1cf
+{
+ EIGEN_STRONG_INLINE Packet1cf() {}
+ EIGEN_STRONG_INLINE explicit Packet1cf(const Packet2f& a) : v(a) {}
+ Packet2f v;
+};
+struct Packet2cf
+{
+ EIGEN_STRONG_INLINE Packet2cf() {}
+ EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
+ Packet4f v;
+};
+
+template<> struct packet_traits<std::complex<float> > : default_packet_traits
+{
+ typedef Packet2cf type;
+ typedef Packet1cf half;
+ enum
+ {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 2,
+ HasHalfPacket = 1,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet1cf>
+{
+ typedef std::complex<float> type;
+ typedef Packet1cf half;
+ typedef Packet2f as_real;
+ enum
+ {
+ size = 1,
+ alignment = Aligned16,
+ vectorizable = true,
+ masked_load_available = false,
+ masked_store_available = false
+ };
+};
+template<> struct unpacket_traits<Packet2cf>
+{
+ typedef std::complex<float> type;
+ typedef Packet1cf half;
+ typedef Packet4f as_real;
+ enum
+ {
+ size = 2,
+ alignment = Aligned16,
+ vectorizable = true,
+ masked_load_available = false,
+ masked_store_available = false
+ };
+};
+
+template<> EIGEN_STRONG_INLINE Packet1cf pcast<float,Packet1cf>(const float& a)
+{ return Packet1cf(vset_lane_f32(a, vdup_n_f32(0.f), 0)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pcast<Packet2f,Packet2cf>(const Packet2f& a)
+{ return Packet2cf(vreinterpretq_f32_u64(vmovl_u32(vreinterpret_u32_f32(a)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pset1<Packet1cf>(const std::complex<float>& from)
+{ return Packet1cf(vld1_f32(reinterpret_cast<const float*>(&from))); }
+template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
+{
+ const float32x2_t r64 = vld1_f32(reinterpret_cast<const float*>(&from));
+ return Packet2cf(vcombine_f32(r64, r64));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf padd<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(padd<Packet2f>(a.v, b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(padd<Packet4f>(a.v, b.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf psub<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(psub<Packet2f>(a.v, b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(psub<Packet4f>(a.v, b.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pnegate(const Packet1cf& a) { return Packet1cf(pnegate<Packet2f>(a.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pconj(const Packet1cf& a)
+{
+ const Packet2ui b = vreinterpret_u32_f32(a.v);
+ return Packet1cf(vreinterpret_f32_u32(veor_u32(b, p2ui_CONJ_XOR())));
+}
+template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
+{
+ const Packet4ui b = vreinterpretq_u32_f32(a.v);
+ return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR())));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf pmul<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{
+ Packet2f v1, v2;
+
+ // Get the real values of a | a1_re | a1_re |
+ v1 = vdup_lane_f32(a.v, 0);
+ // Get the imag values of a | a1_im | a1_im |
+ v2 = vdup_lane_f32(a.v, 1);
+ // Multiply the real a with b
+ v1 = vmul_f32(v1, b.v);
+ // Multiply the imag a with b
+ v2 = vmul_f32(v2, b.v);
+ // Conjugate v2
+ v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR()));
+ // Swap real/imag elements in v2.
+ v2 = vrev64_f32(v2);
+ // Add and return the result
+ return Packet1cf(vadd_f32(v1, v2));
+}
+template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{
+ Packet4f v1, v2;
+
+ // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
+ v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
+ // Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
+ v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
+ // Multiply the real a with b
+ v1 = vmulq_f32(v1, b.v);
+ // Multiply the imag a with b
+ v2 = vmulq_f32(v2, b.v);
+ // Conjugate v2
+ v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR()));
+ // Swap real/imag elements in v2.
+ v2 = vrev64q_f32(v2);
+ // Add and return the result
+ return Packet2cf(vaddq_f32(v1, v2));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf pcmp_eq(const Packet1cf& a, const Packet1cf& b)
+{
+ // Compare real and imaginary parts of a and b to get the mask vector:
+ // [re(a[0])==re(b[0]), im(a[0])==im(b[0])]
+ Packet2f eq = pcmp_eq<Packet2f>(a.v, b.v);
+ // Swap real/imag elements in the mask in to get:
+ // [im(a[0])==im(b[0]), re(a[0])==re(b[0])]
+ Packet2f eq_swapped = vrev64_f32(eq);
+ // Return re(a)==re(b) && im(a)==im(b) by computing bitwise AND of eq and eq_swapped
+ return Packet1cf(pand<Packet2f>(eq, eq_swapped));
+}
+template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b)
+{
+ // Compare real and imaginary parts of a and b to get the mask vector:
+ // [re(a[0])==re(b[0]), im(a[0])==im(b[0]), re(a[1])==re(b[1]), im(a[1])==im(b[1])]
+ Packet4f eq = pcmp_eq<Packet4f>(a.v, b.v);
+ // Swap real/imag elements in the mask in to get:
+ // [im(a[0])==im(b[0]), re(a[0])==re(b[0]), im(a[1])==im(b[1]), re(a[1])==re(b[1])]
+ Packet4f eq_swapped = vrev64q_f32(eq);
+ // Return re(a)==re(b) && im(a)==im(b) by computing bitwise AND of eq and eq_swapped
+ return Packet2cf(pand<Packet4f>(eq, eq_swapped));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf pand<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(vreinterpret_f32_u32(vand_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); }
+template<> EIGEN_STRONG_INLINE Packet2cf pand<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf por<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(vreinterpret_f32_u32(vorr_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); }
+template<> EIGEN_STRONG_INLINE Packet2cf por<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pxor<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); }
+template<> EIGEN_STRONG_INLINE Packet2cf pxor<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pandnot<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{ return Packet1cf(vreinterpret_f32_u32(vbic_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); }
+template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{ return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pload<Packet1cf>(const std::complex<float>* from)
+{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cf(pload<Packet2f>((const float*)from)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from)
+{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>(reinterpret_cast<const float*>(from))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf ploadu<Packet1cf>(const std::complex<float>* from)
+{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cf(ploadu<Packet2f>((const float*)from)); }
+template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from)
+{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>(reinterpret_cast<const float*>(from))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf ploaddup<Packet1cf>(const std::complex<float>* from)
+{ return pset1<Packet1cf>(*from); }
+template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from)
+{ return pset1<Packet2cf>(*from); }
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *to, const Packet1cf& from)
+{ EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *to, const Packet2cf& from)
+{ EIGEN_DEBUG_ALIGNED_STORE pstore(reinterpret_cast<float*>(to), from.v); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *to, const Packet1cf& from)
+{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *to, const Packet2cf& from)
+{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<float*>(to), from.v); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet1cf pgather<std::complex<float>, Packet1cf>(
+ const std::complex<float>* from, Index stride)
+{
+ const Packet2f tmp = vdup_n_f32(std::real(from[0*stride]));
+ return Packet1cf(vset_lane_f32(std::imag(from[0*stride]), tmp, 1));
+}
+template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(
+ const std::complex<float>* from, Index stride)
+{
+ Packet4f res = vdupq_n_f32(std::real(from[0*stride]));
+ res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1);
+ res = vsetq_lane_f32(std::real(from[1*stride]), res, 2);
+ res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3);
+ return Packet2cf(res);
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet1cf>(
+ std::complex<float>* to, const Packet1cf& from, Index stride)
+{ to[stride*0] = std::complex<float>(vget_lane_f32(from.v, 0), vget_lane_f32(from.v, 1)); }
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(
+ std::complex<float>* to, const Packet2cf& from, Index stride)
+{
+ to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
+ to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
+}
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *addr)
+{ EIGEN_ARM_PREFETCH(reinterpret_cast<const float*>(addr)); }
+
+template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet1cf>(const Packet1cf& a)
+{
+ EIGEN_ALIGN16 std::complex<float> x;
+ vst1_f32(reinterpret_cast<float*>(&x), a.v);
+ return x;
+}
+template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
+{
+ EIGEN_ALIGN16 std::complex<float> x[2];
+ vst1q_f32(reinterpret_cast<float*>(x), a.v);
+ return x[0];
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf preverse(const Packet1cf& a) { return a; }
+template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
+{ return Packet2cf(vcombine_f32(vget_high_f32(a.v), vget_low_f32(a.v))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cf pcplxflip<Packet1cf>(const Packet1cf& a)
+{ return Packet1cf(vrev64_f32(a.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
+{ return Packet2cf(vrev64q_f32(a.v)); }
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet1cf>(const Packet1cf& a)
+{
+ std::complex<float> s;
+ vst1_f32((float *)&s, a.v);
+ return s;
+}
+template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
+{
+ std::complex<float> s;
+ vst1_f32(reinterpret_cast<float*>(&s), vadd_f32(vget_low_f32(a.v), vget_high_f32(a.v)));
+ return s;
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet1cf>(const Packet1cf& a)
+{
+ std::complex<float> s;
+ vst1_f32((float *)&s, a.v);
+ return s;
+}
+template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
+{
+ float32x2_t a1, a2, v1, v2, prod;
+ std::complex<float> s;
+
+ a1 = vget_low_f32(a.v);
+ a2 = vget_high_f32(a.v);
+ // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
+ v1 = vdup_lane_f32(a1, 0);
+ // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
+ v2 = vdup_lane_f32(a1, 1);
+ // Multiply the real a with b
+ v1 = vmul_f32(v1, a2);
+ // Multiply the imag a with b
+ v2 = vmul_f32(v2, a2);
+ // Conjugate v2
+ v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR()));
+ // Swap real/imag elements in v2.
+ v2 = vrev64_f32(v2);
+ // Add v1, v2
+ prod = vadd_f32(v1, v2);
+
+ vst1_f32(reinterpret_cast<float*>(&s), prod);
+
+ return s;
+}
+
+EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cf,Packet2f)
+EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
+
+template<> EIGEN_STRONG_INLINE Packet1cf pdiv<Packet1cf>(const Packet1cf& a, const Packet1cf& b)
+{
+ // TODO optimize it for NEON
+ Packet1cf res = pmul(a, pconj(b));
+ Packet2f s, rev_s;
+
+ // this computes the norm
+ s = vmul_f32(b.v, b.v);
+ rev_s = vrev64_f32(s);
+
+ return Packet1cf(pdiv<Packet2f>(res.v, vadd_f32(s, rev_s)));
+}
+template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{
+ // TODO optimize it for NEON
+ Packet2cf res = pmul(a,pconj(b));
+ Packet4f s, rev_s;
+
+ // this computes the norm
+ s = vmulq_f32(b.v, b.v);
+ rev_s = vrev64q_f32(s);
+
+ return Packet2cf(pdiv<Packet4f>(res.v, vaddq_f32(s, rev_s)));
+}
+
+EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet1cf, 1>& /*kernel*/) {}
+EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet2cf, 2>& kernel)
+{
+ Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
+ kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v));
+ kernel.packet[1].v = tmp;
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cf psqrt<Packet1cf>(const Packet1cf& a) {
+ return psqrt_complex<Packet1cf>(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf psqrt<Packet2cf>(const Packet2cf& a) {
+ return psqrt_complex<Packet2cf>(a);
+}
+
+//---------- double ----------
+#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
+
+// See bug 1325, clang fails to call vld1q_u64.
+#if EIGEN_COMP_CLANG || EIGEN_COMP_CASTXML
+ static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000};
+#else
+ const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 };
+ static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA );
+#endif
+
+struct Packet1cd
+{
+ EIGEN_STRONG_INLINE Packet1cd() {}
+ EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
+ Packet2d v;
+};
+
+template<> struct packet_traits<std::complex<double> > : default_packet_traits
+{
+ typedef Packet1cd type;
+ typedef Packet1cd half;
+ enum
+ {
+ Vectorizable = 1,
+ AlignedOnScalar = 0,
+ size = 1,
+ HasHalfPacket = 0,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet1cd>
+{
+ typedef std::complex<double> type;
+ typedef Packet1cd half;
+ typedef Packet2d as_real;
+ enum
+ {
+ size=1,
+ alignment=Aligned16,
+ vectorizable=true,
+ masked_load_available=false,
+ masked_store_available=false
+ };
+};
+
+template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>(reinterpret_cast<const double*>(from))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>(reinterpret_cast<const double*>(from))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
+{
+ /* here we really have to use unaligned loads :( */
+ return ploadu<Packet1cd>(&from);
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(padd<Packet2d>(a.v, b.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(psub<Packet2d>(a.v, b.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a)
+{ return Packet1cd(pnegate<Packet2d>(a.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
+{ return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ Packet2d v1, v2;
+
+ // Get the real values of a
+ v1 = vdupq_lane_f64(vget_low_f64(a.v), 0);
+ // Get the imag values of a
+ v2 = vdupq_lane_f64(vget_high_f64(a.v), 0);
+ // Multiply the real a with b
+ v1 = vmulq_f64(v1, b.v);
+ // Multiply the imag a with b
+ v2 = vmulq_f64(v2, b.v);
+ // Conjugate v2
+ v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR));
+ // Swap real/imag elements in v2.
+ v2 = preverse<Packet2d>(v2);
+ // Add and return the result
+ return Packet1cd(vaddq_f64(v1, v2));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b)
+{
+ // Compare real and imaginary parts of a and b to get the mask vector:
+ // [re(a)==re(b), im(a)==im(b)]
+ Packet2d eq = pcmp_eq<Packet2d>(a.v, b.v);
+ // Swap real/imag elements in the mask in to get:
+ // [im(a)==im(b), re(a)==re(b)]
+ Packet2d eq_swapped = vreinterpretq_f64_u32(vrev64q_u32(vreinterpretq_u32_f64(eq)));
+ // Return re(a)==re(b) & im(a)==im(b) by computing bitwise AND of eq and eq_swapped
+ return Packet1cd(pand<Packet2d>(eq, eq_swapped));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pand<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd por<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pxor<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{ return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from)
+{ return pset1<Packet1cd>(*from); }
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> *to, const Packet1cd& from)
+{ EIGEN_DEBUG_ALIGNED_STORE pstore(reinterpret_cast<double*>(to), from.v); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> *to, const Packet1cd& from)
+{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), from.v); }
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> *addr)
+{ EIGEN_ARM_PREFETCH(reinterpret_cast<const double*>(addr)); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(
+ const std::complex<double>* from, Index stride)
+{
+ Packet2d res = pset1<Packet2d>(0.0);
+ res = vsetq_lane_f64(std::real(from[0*stride]), res, 0);
+ res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1);
+ return Packet1cd(res);
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(
+ std::complex<double>* to, const Packet1cd& from, Index stride)
+{ to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1)); }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
+{
+ EIGEN_ALIGN16 std::complex<double> res;
+ pstore<std::complex<double> >(&res, a);
+ return res;
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
+
+EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
+
+template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ // TODO optimize it for NEON
+ Packet1cd res = pmul(a,pconj(b));
+ Packet2d s = pmul<Packet2d>(b.v, b.v);
+ Packet2d rev_s = preverse<Packet2d>(s);
+
+ return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s)));
+}
+
+EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
+{ return Packet1cd(preverse(Packet2d(x.v))); }
+
+EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
+{
+ Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v));
+ kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v));
+ kernel.packet[1].v = tmp;
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd psqrt<Packet1cd>(const Packet1cd& a) {
+ return psqrt_complex<Packet1cd>(a);
+}
+
+#endif // EIGEN_ARCH_ARM64
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_NEON_H