summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h870
1 files changed, 870 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h b/src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h
new file mode 100644
index 000000000..3259e592d
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Geometry/Quaternion.h
@@ -0,0 +1,870 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_QUATERNION_H
+#define EIGEN_QUATERNION_H
+namespace Eigen {
+
+
+/***************************************************************************
+* Definition of QuaternionBase<Derived>
+* The implementation is at the end of the file
+***************************************************************************/
+
+namespace internal {
+template<typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+struct quaternionbase_assign_impl;
+}
+
+/** \geometry_module \ingroup Geometry_Module
+ * \class QuaternionBase
+ * \brief Base class for quaternion expressions
+ * \tparam Derived derived type (CRTP)
+ * \sa class Quaternion
+ */
+template<class Derived>
+class QuaternionBase : public RotationBase<Derived, 3>
+{
+ public:
+ typedef RotationBase<Derived, 3> Base;
+
+ using Base::operator*;
+ using Base::derived;
+
+ typedef typename internal::traits<Derived>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::traits<Derived>::Coefficients Coefficients;
+ typedef typename Coefficients::CoeffReturnType CoeffReturnType;
+ typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
+ Scalar&, CoeffReturnType>::type NonConstCoeffReturnType;
+
+
+ enum {
+ Flags = Eigen::internal::traits<Derived>::Flags
+ };
+
+ // typedef typename Matrix<Scalar,4,1> Coefficients;
+ /** the type of a 3D vector */
+ typedef Matrix<Scalar,3,1> Vector3;
+ /** the equivalent rotation matrix type */
+ typedef Matrix<Scalar,3,3> Matrix3;
+ /** the equivalent angle-axis type */
+ typedef AngleAxis<Scalar> AngleAxisType;
+
+
+
+ /** \returns the \c x coefficient */
+ EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
+ /** \returns the \c y coefficient */
+ EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
+ /** \returns the \c z coefficient */
+ EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
+ /** \returns the \c w coefficient */
+ EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
+
+ /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
+ EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
+ /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
+ EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
+ /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
+ EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
+ /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
+ EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
+
+ /** \returns a read-only vector expression of the imaginary part (x,y,z) */
+ EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
+
+ /** \returns a vector expression of the imaginary part (x,y,z) */
+ EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
+
+ /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
+ EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
+
+ /** \returns a vector expression of the coefficients (x,y,z,w) */
+ EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
+
+// disabled this copy operator as it is giving very strange compilation errors when compiling
+// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
+// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
+// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
+// Derived& operator=(const QuaternionBase& other)
+// { return operator=<Derived>(other); }
+
+ EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
+
+ /** \returns a quaternion representing an identity rotation
+ * \sa MatrixBase::Identity()
+ */
+ EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
+
+ /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
+ */
+ EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
+
+ /** \returns the squared norm of the quaternion's coefficients
+ * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
+ */
+ EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
+
+ /** \returns the norm of the quaternion's coefficients
+ * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
+ */
+ EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
+
+ /** Normalizes the quaternion \c *this
+ * \sa normalized(), MatrixBase::normalize() */
+ EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
+ /** \returns a normalized copy of \c *this
+ * \sa normalize(), MatrixBase::normalized() */
+ EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
+
+ /** \returns the dot product of \c *this and \a other
+ * Geometrically speaking, the dot product of two unit quaternions
+ * corresponds to the cosine of half the angle between the two rotations.
+ * \sa angularDistance()
+ */
+ template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
+
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
+
+ /** \returns an equivalent 3x3 rotation matrix */
+ EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const;
+
+ /** \returns the quaternion which transform \a a into \a b through a rotation */
+ template<typename Derived1, typename Derived2>
+ EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
+
+ /** \returns the quaternion describing the inverse rotation */
+ EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
+
+ /** \returns the conjugated quaternion */
+ EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
+
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
+
+ /** \returns true if each coefficients of \c *this and \a other are all exactly equal.
+ * \warning When using floating point scalar values you probably should rather use a
+ * fuzzy comparison such as isApprox()
+ * \sa isApprox(), operator!= */
+ template<class OtherDerived>
+ EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const
+ { return coeffs() == other.coeffs(); }
+
+ /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
+ * \warning When using floating point scalar values you probably should rather use a
+ * fuzzy comparison such as isApprox()
+ * \sa isApprox(), operator== */
+ template<class OtherDerived>
+ EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const
+ { return coeffs() != other.coeffs(); }
+
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ template<class OtherDerived>
+ EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+ { return coeffs().isApprox(other.coeffs(), prec); }
+
+ /** return the result vector of \a v through the rotation*/
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const;
+
+ #else
+
+ template<typename NewScalarType>
+ EIGEN_DEVICE_FUNC inline
+ typename internal::enable_if<internal::is_same<Scalar,NewScalarType>::value,const Derived&>::type cast() const
+ {
+ return derived();
+ }
+
+ template<typename NewScalarType>
+ EIGEN_DEVICE_FUNC inline
+ typename internal::enable_if<!internal::is_same<Scalar,NewScalarType>::value,Quaternion<NewScalarType> >::type cast() const
+ {
+ return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>());
+ }
+ #endif
+
+#ifndef EIGEN_NO_IO
+ friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) {
+ s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w();
+ return s;
+ }
+#endif
+
+#ifdef EIGEN_QUATERNIONBASE_PLUGIN
+# include EIGEN_QUATERNIONBASE_PLUGIN
+#endif
+protected:
+ EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase)
+ EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase)
+};
+
+/***************************************************************************
+* Definition/implementation of Quaternion<Scalar>
+***************************************************************************/
+
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \class Quaternion
+ *
+ * \brief The quaternion class used to represent 3D orientations and rotations
+ *
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
+ *
+ * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
+ * orientations and rotations of objects in three dimensions. Compared to other representations
+ * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
+ * \li \b compact storage (4 scalars)
+ * \li \b efficient to compose (28 flops),
+ * \li \b stable spherical interpolation
+ *
+ * The following two typedefs are provided for convenience:
+ * \li \c Quaternionf for \c float
+ * \li \c Quaterniond for \c double
+ *
+ * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
+ *
+ * \sa class AngleAxis, class Transform
+ */
+
+namespace internal {
+template<typename _Scalar,int _Options>
+struct traits<Quaternion<_Scalar,_Options> >
+{
+ typedef Quaternion<_Scalar,_Options> PlainObject;
+ typedef _Scalar Scalar;
+ typedef Matrix<_Scalar,4,1,_Options> Coefficients;
+ enum{
+ Alignment = internal::traits<Coefficients>::Alignment,
+ Flags = LvalueBit
+ };
+};
+}
+
+template<typename _Scalar, int _Options>
+class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
+{
+public:
+ typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
+ enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
+
+ typedef _Scalar Scalar;
+
+ EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
+ using Base::operator*=;
+
+ typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
+ typedef typename Base::AngleAxisType AngleAxisType;
+
+ /** Default constructor leaving the quaternion uninitialized. */
+ EIGEN_DEVICE_FUNC inline Quaternion() {}
+
+ /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
+ * its four coefficients \a w, \a x, \a y and \a z.
+ *
+ * \warning Note the order of the arguments: the real \a w coefficient first,
+ * while internally the coefficients are stored in the following order:
+ * [\c x, \c y, \c z, \c w]
+ */
+ EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
+
+ /** Constructs and initialize a quaternion from the array data */
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
+
+ /** Copy constructor */
+ template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
+
+ /** Constructs and initializes a quaternion from the angle-axis \a aa */
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
+
+ /** Constructs and initializes a quaternion from either:
+ * - a rotation matrix expression,
+ * - a 4D vector expression representing quaternion coefficients.
+ */
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
+
+ /** Explicit copy constructor with scalar conversion */
+ template<typename OtherScalar, int OtherOptions>
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
+ { m_coeffs = other.coeffs().template cast<Scalar>(); }
+
+#if EIGEN_HAS_RVALUE_REFERENCES
+ // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator.
+ /** Default move constructor */
+ EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
+ : m_coeffs(std::move(other.coeffs()))
+ {}
+
+ /** Default move assignment operator */
+ EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
+ {
+ m_coeffs = std::move(other.coeffs());
+ return *this;
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
+
+ template<typename Derived1, typename Derived2>
+ EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
+
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
+
+#ifdef EIGEN_QUATERNION_PLUGIN
+# include EIGEN_QUATERNION_PLUGIN
+#endif
+
+protected:
+ Coefficients m_coeffs;
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ static EIGEN_STRONG_INLINE void _check_template_params()
+ {
+ EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
+ INVALID_MATRIX_TEMPLATE_PARAMETERS)
+ }
+#endif
+};
+
+/** \ingroup Geometry_Module
+ * single precision quaternion type */
+typedef Quaternion<float> Quaternionf;
+/** \ingroup Geometry_Module
+ * double precision quaternion type */
+typedef Quaternion<double> Quaterniond;
+
+/***************************************************************************
+* Specialization of Map<Quaternion<Scalar>>
+***************************************************************************/
+
+namespace internal {
+ template<typename _Scalar, int _Options>
+ struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
+ {
+ typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
+ };
+}
+
+namespace internal {
+ template<typename _Scalar, int _Options>
+ struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
+ {
+ typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
+ typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
+ enum {
+ Flags = TraitsBase::Flags & ~LvalueBit
+ };
+ };
+}
+
+/** \ingroup Geometry_Module
+ * \brief Quaternion expression mapping a constant memory buffer
+ *
+ * \tparam _Scalar the type of the Quaternion coefficients
+ * \tparam _Options see class Map
+ *
+ * This is a specialization of class Map for Quaternion. This class allows to view
+ * a 4 scalar memory buffer as an Eigen's Quaternion object.
+ *
+ * \sa class Map, class Quaternion, class QuaternionBase
+ */
+template<typename _Scalar, int _Options>
+class Map<const Quaternion<_Scalar>, _Options >
+ : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
+{
+ public:
+ typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
+
+ typedef _Scalar Scalar;
+ typedef typename internal::traits<Map>::Coefficients Coefficients;
+ EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
+ using Base::operator*=;
+
+ /** Constructs a Mapped Quaternion object from the pointer \a coeffs
+ *
+ * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
+ * \code *coeffs == {x, y, z, w} \endcode
+ *
+ * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
+ EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
+
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
+
+ protected:
+ const Coefficients m_coeffs;
+};
+
+/** \ingroup Geometry_Module
+ * \brief Expression of a quaternion from a memory buffer
+ *
+ * \tparam _Scalar the type of the Quaternion coefficients
+ * \tparam _Options see class Map
+ *
+ * This is a specialization of class Map for Quaternion. This class allows to view
+ * a 4 scalar memory buffer as an Eigen's Quaternion object.
+ *
+ * \sa class Map, class Quaternion, class QuaternionBase
+ */
+template<typename _Scalar, int _Options>
+class Map<Quaternion<_Scalar>, _Options >
+ : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
+{
+ public:
+ typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
+
+ typedef _Scalar Scalar;
+ typedef typename internal::traits<Map>::Coefficients Coefficients;
+ EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
+ using Base::operator*=;
+
+ /** Constructs a Mapped Quaternion object from the pointer \a coeffs
+ *
+ * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
+ * \code *coeffs == {x, y, z, w} \endcode
+ *
+ * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
+ EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
+
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
+
+ protected:
+ Coefficients m_coeffs;
+};
+
+/** \ingroup Geometry_Module
+ * Map an unaligned array of single precision scalars as a quaternion */
+typedef Map<Quaternion<float>, 0> QuaternionMapf;
+/** \ingroup Geometry_Module
+ * Map an unaligned array of double precision scalars as a quaternion */
+typedef Map<Quaternion<double>, 0> QuaternionMapd;
+/** \ingroup Geometry_Module
+ * Map a 16-byte aligned array of single precision scalars as a quaternion */
+typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
+/** \ingroup Geometry_Module
+ * Map a 16-byte aligned array of double precision scalars as a quaternion */
+typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
+
+/***************************************************************************
+* Implementation of QuaternionBase methods
+***************************************************************************/
+
+// Generic Quaternion * Quaternion product
+// This product can be specialized for a given architecture via the Arch template argument.
+namespace internal {
+template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
+{
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
+ return Quaternion<Scalar>
+ (
+ a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
+ a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
+ a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
+ a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
+ );
+ }
+};
+}
+
+/** \returns the concatenation of two rotations as a quaternion-quaternion product */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ return internal::quat_product<Architecture::Target, Derived, OtherDerived,
+ typename internal::traits<Derived>::Scalar>::run(*this, other);
+}
+
+/** \sa operator*(Quaternion) */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
+{
+ derived() = derived() * other.derived();
+ return derived();
+}
+
+/** Rotation of a vector by a quaternion.
+ * \remarks If the quaternion is used to rotate several points (>1)
+ * then it is much more efficient to first convert it to a 3x3 Matrix.
+ * Comparison of the operation cost for n transformations:
+ * - Quaternion2: 30n
+ * - Via a Matrix3: 24 + 15n
+ */
+template <class Derived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
+QuaternionBase<Derived>::_transformVector(const Vector3& v) const
+{
+ // Note that this algorithm comes from the optimization by hand
+ // of the conversion to a Matrix followed by a Matrix/Vector product.
+ // It appears to be much faster than the common algorithm found
+ // in the literature (30 versus 39 flops). It also requires two
+ // Vector3 as temporaries.
+ Vector3 uv = this->vec().cross(v);
+ uv += uv;
+ return v + this->w() * uv + this->vec().cross(uv);
+}
+
+template<class Derived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
+{
+ coeffs() = other.coeffs();
+ return derived();
+}
+
+template<class Derived>
+template<class OtherDerived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
+{
+ coeffs() = other.coeffs();
+ return derived();
+}
+
+/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
+ */
+template<class Derived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
+{
+ EIGEN_USING_STD(cos)
+ EIGEN_USING_STD(sin)
+ Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
+ this->w() = cos(ha);
+ this->vec() = sin(ha) * aa.axis();
+ return derived();
+}
+
+/** Set \c *this from the expression \a xpr:
+ * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
+ * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
+ * and \a xpr is converted to a quaternion
+ */
+
+template<class Derived>
+template<class MatrixDerived>
+EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
+ return derived();
+}
+
+/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
+ * be normalized, otherwise the result is undefined.
+ */
+template<class Derived>
+EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
+QuaternionBase<Derived>::toRotationMatrix(void) const
+{
+ // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
+ // if not inlined then the cost of the return by value is huge ~ +35%,
+ // however, not inlining this function is an order of magnitude slower, so
+ // it has to be inlined, and so the return by value is not an issue
+ Matrix3 res;
+
+ const Scalar tx = Scalar(2)*this->x();
+ const Scalar ty = Scalar(2)*this->y();
+ const Scalar tz = Scalar(2)*this->z();
+ const Scalar twx = tx*this->w();
+ const Scalar twy = ty*this->w();
+ const Scalar twz = tz*this->w();
+ const Scalar txx = tx*this->x();
+ const Scalar txy = ty*this->x();
+ const Scalar txz = tz*this->x();
+ const Scalar tyy = ty*this->y();
+ const Scalar tyz = tz*this->y();
+ const Scalar tzz = tz*this->z();
+
+ res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
+ res.coeffRef(0,1) = txy-twz;
+ res.coeffRef(0,2) = txz+twy;
+ res.coeffRef(1,0) = txy+twz;
+ res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
+ res.coeffRef(1,2) = tyz-twx;
+ res.coeffRef(2,0) = txz-twy;
+ res.coeffRef(2,1) = tyz+twx;
+ res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
+
+ return res;
+}
+
+/** Sets \c *this to be a quaternion representing a rotation between
+ * the two arbitrary vectors \a a and \a b. In other words, the built
+ * rotation represent a rotation sending the line of direction \a a
+ * to the line of direction \a b, both lines passing through the origin.
+ *
+ * \returns a reference to \c *this.
+ *
+ * Note that the two input vectors do \b not have to be normalized, and
+ * do not need to have the same norm.
+ */
+template<class Derived>
+template<typename Derived1, typename Derived2>
+EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+{
+ EIGEN_USING_STD(sqrt)
+ Vector3 v0 = a.normalized();
+ Vector3 v1 = b.normalized();
+ Scalar c = v1.dot(v0);
+
+ // if dot == -1, vectors are nearly opposites
+ // => accurately compute the rotation axis by computing the
+ // intersection of the two planes. This is done by solving:
+ // x^T v0 = 0
+ // x^T v1 = 0
+ // under the constraint:
+ // ||x|| = 1
+ // which yields a singular value problem
+ if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
+ {
+ c = numext::maxi(c,Scalar(-1));
+ Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
+ JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
+ Vector3 axis = svd.matrixV().col(2);
+
+ Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
+ this->w() = sqrt(w2);
+ this->vec() = axis * sqrt(Scalar(1) - w2);
+ return derived();
+ }
+ Vector3 axis = v0.cross(v1);
+ Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
+ Scalar invs = Scalar(1)/s;
+ this->vec() = axis * invs;
+ this->w() = s * Scalar(0.5);
+
+ return derived();
+}
+
+/** \returns a random unit quaternion following a uniform distribution law on SO(3)
+ *
+ * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
+ */
+template<typename Scalar, int Options>
+EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
+{
+ EIGEN_USING_STD(sqrt)
+ EIGEN_USING_STD(sin)
+ EIGEN_USING_STD(cos)
+ const Scalar u1 = internal::random<Scalar>(0, 1),
+ u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
+ u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
+ const Scalar a = sqrt(Scalar(1) - u1),
+ b = sqrt(u1);
+ return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
+}
+
+
+/** Returns a quaternion representing a rotation between
+ * the two arbitrary vectors \a a and \a b. In other words, the built
+ * rotation represent a rotation sending the line of direction \a a
+ * to the line of direction \a b, both lines passing through the origin.
+ *
+ * \returns resulting quaternion
+ *
+ * Note that the two input vectors do \b not have to be normalized, and
+ * do not need to have the same norm.
+ */
+template<typename Scalar, int Options>
+template<typename Derived1, typename Derived2>
+EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+{
+ Quaternion quat;
+ quat.setFromTwoVectors(a, b);
+ return quat;
+}
+
+
+/** \returns the multiplicative inverse of \c *this
+ * Note that in most cases, i.e., if you simply want the opposite rotation,
+ * and/or the quaternion is normalized, then it is enough to use the conjugate.
+ *
+ * \sa QuaternionBase::conjugate()
+ */
+template <class Derived>
+EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
+{
+ // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
+ Scalar n2 = this->squaredNorm();
+ if (n2 > Scalar(0))
+ return Quaternion<Scalar>(conjugate().coeffs() / n2);
+ else
+ {
+ // return an invalid result to flag the error
+ return Quaternion<Scalar>(Coefficients::Zero());
+ }
+}
+
+// Generic conjugate of a Quaternion
+namespace internal {
+template<int Arch, class Derived, typename Scalar> struct quat_conj
+{
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
+ return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
+ }
+};
+}
+
+/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
+ * if the quaternion is normalized.
+ * The conjugate of a quaternion represents the opposite rotation.
+ *
+ * \sa Quaternion2::inverse()
+ */
+template <class Derived>
+EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::conjugate() const
+{
+ return internal::quat_conj<Architecture::Target, Derived,
+ typename internal::traits<Derived>::Scalar>::run(*this);
+
+}
+
+/** \returns the angle (in radian) between two rotations
+ * \sa dot()
+ */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
+QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
+{
+ EIGEN_USING_STD(atan2)
+ Quaternion<Scalar> d = (*this) * other.conjugate();
+ return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
+}
+
+
+
+/** \returns the spherical linear interpolation between the two quaternions
+ * \c *this and \a other at the parameter \a t in [0;1].
+ *
+ * This represents an interpolation for a constant motion between \c *this and \a other,
+ * see also http://en.wikipedia.org/wiki/Slerp.
+ */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
+{
+ EIGEN_USING_STD(acos)
+ EIGEN_USING_STD(sin)
+ const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
+ Scalar d = this->dot(other);
+ Scalar absD = numext::abs(d);
+
+ Scalar scale0;
+ Scalar scale1;
+
+ if(absD>=one)
+ {
+ scale0 = Scalar(1) - t;
+ scale1 = t;
+ }
+ else
+ {
+ // theta is the angle between the 2 quaternions
+ Scalar theta = acos(absD);
+ Scalar sinTheta = sin(theta);
+
+ scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
+ scale1 = sin( ( t * theta) ) / sinTheta;
+ }
+ if(d<Scalar(0)) scale1 = -scale1;
+
+ return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
+}
+
+namespace internal {
+
+// set from a rotation matrix
+template<typename Other>
+struct quaternionbase_assign_impl<Other,3,3>
+{
+ typedef typename Other::Scalar Scalar;
+ template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
+ {
+ const typename internal::nested_eval<Other,2>::type mat(a_mat);
+ EIGEN_USING_STD(sqrt)
+ // This algorithm comes from "Quaternion Calculus and Fast Animation",
+ // Ken Shoemake, 1987 SIGGRAPH course notes
+ Scalar t = mat.trace();
+ if (t > Scalar(0))
+ {
+ t = sqrt(t + Scalar(1.0));
+ q.w() = Scalar(0.5)*t;
+ t = Scalar(0.5)/t;
+ q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
+ q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
+ q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
+ }
+ else
+ {
+ Index i = 0;
+ if (mat.coeff(1,1) > mat.coeff(0,0))
+ i = 1;
+ if (mat.coeff(2,2) > mat.coeff(i,i))
+ i = 2;
+ Index j = (i+1)%3;
+ Index k = (j+1)%3;
+
+ t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
+ q.coeffs().coeffRef(i) = Scalar(0.5) * t;
+ t = Scalar(0.5)/t;
+ q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
+ q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
+ q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
+ }
+ }
+};
+
+// set from a vector of coefficients assumed to be a quaternion
+template<typename Other>
+struct quaternionbase_assign_impl<Other,4,1>
+{
+ typedef typename Other::Scalar Scalar;
+ template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
+ {
+ q.coeffs() = vec;
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_QUATERNION_H