summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/QR
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/QR')
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR.h674
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h97
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h635
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/FullPivHouseholderQR.h713
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/HouseholderQR.h434
-rw-r--r--src/3rdparty/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h68
6 files changed, 2621 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR.h b/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR.h
new file mode 100644
index 000000000..9b677e9bf
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR.h
@@ -0,0 +1,674 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
+#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
+
+namespace Eigen {
+
+namespace internal {
+template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ * \class ColPivHouseholderQR
+ *
+ * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
+ * such that
+ * \f[
+ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
+ * \f]
+ * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
+ * upper triangular matrix.
+ *
+ * This decomposition performs column pivoting in order to be rank-revealing and improve
+ * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
+ *
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
+ * \sa MatrixBase::colPivHouseholderQr()
+ */
+template<typename _MatrixType> class ColPivHouseholderQR
+ : public SolverBase<ColPivHouseholderQR<_MatrixType> >
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef SolverBase<ColPivHouseholderQR> Base;
+ friend class SolverBase<ColPivHouseholderQR>;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(ColPivHouseholderQR)
+ enum {
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
+ typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
+ typedef typename MatrixType::PlainObject PlainObject;
+
+ private:
+
+ typedef typename PermutationType::StorageIndex PermIndexType;
+
+ public:
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
+ */
+ ColPivHouseholderQR()
+ : m_qr(),
+ m_hCoeffs(),
+ m_colsPermutation(),
+ m_colsTranspositions(),
+ m_temp(),
+ m_colNormsUpdated(),
+ m_colNormsDirect(),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa ColPivHouseholderQR()
+ */
+ ColPivHouseholderQR(Index rows, Index cols)
+ : m_qr(rows, cols),
+ m_hCoeffs((std::min)(rows,cols)),
+ m_colsPermutation(PermIndexType(cols)),
+ m_colsTranspositions(cols),
+ m_temp(cols),
+ m_colNormsUpdated(cols),
+ m_colNormsDirect(cols),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This constructor computes the QR factorization of the matrix \a matrix by calling
+ * the method compute(). It is a short cut for:
+ *
+ * \code
+ * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
+ * qr.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template<typename InputType>
+ explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
+ m_colsPermutation(PermIndexType(matrix.cols())),
+ m_colsTranspositions(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_colNormsUpdated(matrix.cols()),
+ m_colNormsDirect(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ compute(matrix.derived());
+ }
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
+ *
+ * \sa ColPivHouseholderQR(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
+ : m_qr(matrix.derived()),
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
+ m_colsPermutation(PermIndexType(matrix.cols())),
+ m_colsTranspositions(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_colNormsUpdated(matrix.cols()),
+ m_colNormsDirect(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ computeInPlace();
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the QR decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \returns a solution.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ *
+ * Example: \include ColPivHouseholderQR_solve.cpp
+ * Output: \verbinclude ColPivHouseholderQR_solve.out
+ */
+ template<typename Rhs>
+ inline const Solve<ColPivHouseholderQR, Rhs>
+ solve(const MatrixBase<Rhs>& b) const;
+ #endif
+
+ HouseholderSequenceType householderQ() const;
+ HouseholderSequenceType matrixQ() const
+ {
+ return householderQ();
+ }
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ */
+ const MatrixType& matrixQR() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ /** \returns a reference to the matrix where the result Householder QR is stored
+ * \warning The strict lower part of this matrix contains internal values.
+ * Only the upper triangular part should be referenced. To get it, use
+ * \code matrixR().template triangularView<Upper>() \endcode
+ * For rank-deficient matrices, use
+ * \code
+ * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
+ * \endcode
+ */
+ const MatrixType& matrixR() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ template<typename InputType>
+ ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
+
+ /** \returns a const reference to the column permutation matrix */
+ const PermutationType& colsPermutation() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return m_colsPermutation;
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
+ * to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ using std::abs;
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
+ Index result = 0;
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
+ result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return rank() == cols();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return rank() == rows();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return isInjective() && isSurjective();
+ }
+
+ /** \returns the inverse of the matrix of which *this is the QR decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ */
+ inline const Inverse<ColPivHouseholderQR> inverse() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return Inverse<ColPivHouseholderQR>(*this);
+ }
+
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return m_qr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * QR decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
+ * uses a formula to automatically determine a reasonable threshold.
+ * Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ ColPivHouseholderQR& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
+ }
+
+ /** \returns the number of nonzero pivots in the QR decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const
+ {
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of R.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ /** \brief Reports whether the QR factorization was successful.
+ *
+ * \note This function always returns \c Success. It is provided for compatibility
+ * with other factorization routines.
+ * \returns \c Success
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return Success;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+ #endif
+
+ protected:
+
+ friend class CompleteOrthogonalDecomposition<MatrixType>;
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ void computeInPlace();
+
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ PermutationType m_colsPermutation;
+ IntRowVectorType m_colsTranspositions;
+ RowVectorType m_temp;
+ RealRowVectorType m_colNormsUpdated;
+ RealRowVectorType m_colNormsDirect;
+ bool m_isInitialized, m_usePrescribedThreshold;
+ RealScalar m_prescribedThreshold, m_maxpivot;
+ Index m_nonzero_pivots;
+ Index m_det_pq;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
+{
+ using std::abs;
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+/** Performs the QR factorization of the given matrix \a matrix. The result of
+ * the factorization is stored into \c *this, and a reference to \c *this
+ * is returned.
+ *
+ * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
+ */
+template<typename MatrixType>
+template<typename InputType>
+ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
+{
+ m_qr = matrix.derived();
+ computeInPlace();
+ return *this;
+}
+
+template<typename MatrixType>
+void ColPivHouseholderQR<MatrixType>::computeInPlace()
+{
+ check_template_parameters();
+
+ // the column permutation is stored as int indices, so just to be sure:
+ eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
+
+ using std::abs;
+
+ Index rows = m_qr.rows();
+ Index cols = m_qr.cols();
+ Index size = m_qr.diagonalSize();
+
+ m_hCoeffs.resize(size);
+
+ m_temp.resize(cols);
+
+ m_colsTranspositions.resize(m_qr.cols());
+ Index number_of_transpositions = 0;
+
+ m_colNormsUpdated.resize(cols);
+ m_colNormsDirect.resize(cols);
+ for (Index k = 0; k < cols; ++k) {
+ // colNormsDirect(k) caches the most recent directly computed norm of
+ // column k.
+ m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
+ m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
+ }
+
+ RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
+ RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+
+ for(Index k = 0; k < size; ++k)
+ {
+ // first, we look up in our table m_colNormsUpdated which column has the biggest norm
+ Index biggest_col_index;
+ RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
+ biggest_col_index += k;
+
+ // Track the number of meaningful pivots but do not stop the decomposition to make
+ // sure that the initial matrix is properly reproduced. See bug 941.
+ if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
+ m_nonzero_pivots = k;
+
+ // apply the transposition to the columns
+ m_colsTranspositions.coeffRef(k) = biggest_col_index;
+ if(k != biggest_col_index) {
+ m_qr.col(k).swap(m_qr.col(biggest_col_index));
+ std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
+ std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
+ ++number_of_transpositions;
+ }
+
+ // generate the householder vector, store it below the diagonal
+ RealScalar beta;
+ m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
+
+ // apply the householder transformation to the diagonal coefficient
+ m_qr.coeffRef(k,k) = beta;
+
+ // remember the maximum absolute value of diagonal coefficients
+ if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
+
+ // apply the householder transformation
+ m_qr.bottomRightCorner(rows-k, cols-k-1)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
+
+ // update our table of norms of the columns
+ for (Index j = k + 1; j < cols; ++j) {
+ // The following implements the stable norm downgrade step discussed in
+ // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
+ // and used in LAPACK routines xGEQPF and xGEQP3.
+ // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
+ if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
+ RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
+ temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
+ temp = temp < RealScalar(0) ? RealScalar(0) : temp;
+ RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
+ m_colNormsDirect.coeffRef(j));
+ if (temp2 <= norm_downdate_threshold) {
+ // The updated norm has become too inaccurate so re-compute the column
+ // norm directly.
+ m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
+ m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
+ } else {
+ m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
+ }
+ }
+ }
+ }
+
+ m_colsPermutation.setIdentity(PermIndexType(cols));
+ for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
+ m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ m_isInitialized = true;
+}
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ const Index nonzero_pivots = nonzeroPivots();
+
+ if(nonzero_pivots == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(rhs);
+
+ c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).adjoint() );
+
+ m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(nonzero_pivots));
+
+ for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
+ for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void ColPivHouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ const Index nonzero_pivots = nonzeroPivots();
+
+ if(nonzero_pivots == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(m_colsPermutation.transpose()*rhs);
+
+ m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .transpose().template conjugateIf<Conjugate>()
+ .solveInPlace(c.topRows(nonzero_pivots));
+
+ dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots);
+ dst.bottomRows(rows()-nonzero_pivots).setZero();
+
+ dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).template conjugateIf<!Conjugate>() );
+}
+#endif
+
+namespace internal {
+
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
+{
+ typedef ColPivHouseholderQR<MatrixType> QrType;
+ typedef Inverse<QrType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
+ }
+};
+
+} // end namespace internal
+
+/** \returns the matrix Q as a sequence of householder transformations.
+ * You can extract the meaningful part only by using:
+ * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
+template<typename MatrixType>
+typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
+ ::householderQ() const
+{
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
+ return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
+}
+
+/** \return the column-pivoting Householder QR decomposition of \c *this.
+ *
+ * \sa class ColPivHouseholderQR
+ */
+template<typename Derived>
+const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::colPivHouseholderQr() const
+{
+ return ColPivHouseholderQR<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
diff --git a/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h b/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h
new file mode 100644
index 000000000..4e9651f83
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h
@@ -0,0 +1,97 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+ be used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ * Content : Eigen bindings to LAPACKe
+ * Householder QR decomposition of a matrix with column pivoting based on
+ * LAPACKE_?geqp3 function.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
+#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
+
+namespace Eigen {
+
+/** \internal Specialization for the data types supported by LAPACKe */
+
+#define EIGEN_LAPACKE_QR_COLPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
+template<> template<typename InputType> inline \
+ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >& \
+ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >::compute( \
+ const EigenBase<InputType>& matrix) \
+\
+{ \
+ using std::abs; \
+ typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
+ typedef MatrixType::RealScalar RealScalar; \
+ Index rows = matrix.rows();\
+ Index cols = matrix.cols();\
+\
+ m_qr = matrix;\
+ Index size = m_qr.diagonalSize();\
+ m_hCoeffs.resize(size);\
+\
+ m_colsTranspositions.resize(cols);\
+ /*Index number_of_transpositions = 0;*/ \
+\
+ m_nonzero_pivots = 0; \
+ m_maxpivot = RealScalar(0);\
+ m_colsPermutation.resize(cols); \
+ m_colsPermutation.indices().setZero(); \
+\
+ lapack_int lda = internal::convert_index<lapack_int,Index>(m_qr.outerStride()); \
+ lapack_int matrix_order = LAPACKE_COLROW; \
+ LAPACKE_##LAPACKE_PREFIX##geqp3( matrix_order, internal::convert_index<lapack_int,Index>(rows), internal::convert_index<lapack_int,Index>(cols), \
+ (LAPACKE_TYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (LAPACKE_TYPE*)m_hCoeffs.data()); \
+ m_isInitialized = true; \
+ m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
+ m_hCoeffs.adjointInPlace(); \
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \
+ lapack_int *perm = m_colsPermutation.indices().data(); \
+ for(Index i=0;i<size;i++) { \
+ m_nonzero_pivots += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);\
+ } \
+ for(Index i=0;i<cols;i++) perm[i]--;\
+\
+ /*m_det_pq = (number_of_transpositions%2) ? -1 : 1; // TODO: It's not needed now; fix upon availability in Eigen */ \
+\
+ return *this; \
+}
+
+EIGEN_LAPACKE_QR_COLPIV(double, double, d, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(float, float, s, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, ColMajor, LAPACK_COL_MAJOR)
+
+EIGEN_LAPACKE_QR_COLPIV(double, double, d, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(float, float, s, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
diff --git a/src/3rdparty/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h b/src/3rdparty/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h
new file mode 100644
index 000000000..486d3373a
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h
@@ -0,0 +1,635 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
+#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
+
+namespace Eigen {
+
+namespace internal {
+template <typename _MatrixType>
+struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
+ : traits<_MatrixType> {
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ * \class CompleteOrthogonalDecomposition
+ *
+ * \brief Complete orthogonal decomposition (COD) of a matrix.
+ *
+ * \param MatrixType the type of the matrix of which we are computing the COD.
+ *
+ * This class performs a rank-revealing complete orthogonal decomposition of a
+ * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
+ * \f[
+ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
+ * \begin{bmatrix} \mathbf{T} & \mathbf{0} \\
+ * \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
+ * \f]
+ * by using Householder transformations. Here, \b P is a permutation matrix,
+ * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
+ * size rank-by-rank. \b A may be rank deficient.
+ *
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
+ * \sa MatrixBase::completeOrthogonalDecomposition()
+ */
+template <typename _MatrixType> class CompleteOrthogonalDecomposition
+ : public SolverBase<CompleteOrthogonalDecomposition<_MatrixType> >
+{
+ public:
+ typedef _MatrixType MatrixType;
+ typedef SolverBase<CompleteOrthogonalDecomposition> Base;
+
+ template<typename Derived>
+ friend struct internal::solve_assertion;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(CompleteOrthogonalDecomposition)
+ enum {
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
+ PermutationType;
+ typedef typename internal::plain_row_type<MatrixType, Index>::type
+ IntRowVectorType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
+ RealRowVectorType;
+ typedef HouseholderSequence<
+ MatrixType, typename internal::remove_all<
+ typename HCoeffsType::ConjugateReturnType>::type>
+ HouseholderSequenceType;
+ typedef typename MatrixType::PlainObject PlainObject;
+
+ private:
+ typedef typename PermutationType::Index PermIndexType;
+
+ public:
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via
+ * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
+ */
+ CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa CompleteOrthogonalDecomposition()
+ */
+ CompleteOrthogonalDecomposition(Index rows, Index cols)
+ : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}
+
+ /** \brief Constructs a complete orthogonal decomposition from a given
+ * matrix.
+ *
+ * This constructor computes the complete orthogonal decomposition of the
+ * matrix \a matrix by calling the method compute(). The default
+ * threshold for rank determination will be used. It is a short cut for:
+ *
+ * \code
+ * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
+ * matrix.cols());
+ * cod.setThreshold(Default);
+ * cod.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template <typename InputType>
+ explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
+ : m_cpqr(matrix.rows(), matrix.cols()),
+ m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_temp(matrix.cols())
+ {
+ compute(matrix.derived());
+ }
+
+ /** \brief Constructs a complete orthogonal decomposition from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
+ *
+ * \sa CompleteOrthogonalDecomposition(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
+ : m_cpqr(matrix.derived()),
+ m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_temp(matrix.cols())
+ {
+ computeInPlace();
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** This method computes the minimum-norm solution X to a least squares
+ * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
+ * which \c *this is the complete orthogonal decomposition.
+ *
+ * \param b the right-hand sides of the problem to solve.
+ *
+ * \returns a solution.
+ *
+ */
+ template <typename Rhs>
+ inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
+ const MatrixBase<Rhs>& b) const;
+ #endif
+
+ HouseholderSequenceType householderQ(void) const;
+ HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }
+
+ /** \returns the matrix \b Z.
+ */
+ MatrixType matrixZ() const {
+ MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
+ applyZOnTheLeftInPlace<false>(Z);
+ return Z;
+ }
+
+ /** \returns a reference to the matrix where the complete orthogonal
+ * decomposition is stored
+ */
+ const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }
+
+ /** \returns a reference to the matrix where the complete orthogonal
+ * decomposition is stored.
+ * \warning The strict lower part and \code cols() - rank() \endcode right
+ * columns of this matrix contains internal values.
+ * Only the upper triangular part should be referenced. To get it, use
+ * \code matrixT().template triangularView<Upper>() \endcode
+ * For rank-deficient matrices, use
+ * \code
+ * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
+ * \endcode
+ */
+ const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
+
+ template <typename InputType>
+ CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
+ // Compute the column pivoted QR factorization A P = Q R.
+ m_cpqr.compute(matrix);
+ computeInPlace();
+ return *this;
+ }
+
+ /** \returns a const reference to the column permutation matrix */
+ const PermutationType& colsPermutation() const {
+ return m_cpqr.colsPermutation();
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the complete orthogonal decomposition. It has only linear
+ * complexity (that is, O(n) where n is the dimension of the square matrix)
+ * as the complete orthogonal decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the
+ * matrix of which *this is the complete orthogonal decomposition. It has
+ * only linear complexity (that is, O(n) where n is the dimension of the
+ * square matrix) as the complete orthogonal decomposition has already been
+ * computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow
+ * that's inherent to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the complete orthogonal
+ * decomposition.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline Index rank() const { return m_cpqr.rank(); }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the
+ * complete orthogonal decomposition.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }
+
+ /** \returns true if the matrix of which *this is the decomposition represents
+ * an injective linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const { return m_cpqr.isInjective(); }
+
+ /** \returns true if the matrix of which *this is the decomposition represents
+ * a surjective linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const { return m_cpqr.isSurjective(); }
+
+ /** \returns true if the matrix of which *this is the complete orthogonal
+ * decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const { return m_cpqr.isInvertible(); }
+
+ /** \returns the pseudo-inverse of the matrix of which *this is the complete
+ * orthogonal decomposition.
+ * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems.
+ * It is more efficient and numerically stable to call \c this->solve(rhs).
+ */
+ inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const
+ {
+ eigen_assert(m_cpqr.m_isInitialized && "CompleteOrthogonalDecomposition is not initialized.");
+ return Inverse<CompleteOrthogonalDecomposition>(*this);
+ }
+
+ inline Index rows() const { return m_cpqr.rows(); }
+ inline Index cols() const { return m_cpqr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used
+ * to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }
+
+ /** \returns a const reference to the vector of Householder coefficients
+ * used to represent the factor \c Z.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& zCoeffs() const { return m_zCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as
+ * rank(), who need to determine when pivots are to be considered nonzero.
+ * Most be called before calling compute().
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By
+ * default, this uses a formula to automatically determine a reasonable
+ * threshold. Once you have called the present method
+ * setThreshold(const RealScalar&), your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly
+ * greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call
+ * setThreshold(Default_t)
+ */
+ CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
+ m_cpqr.setThreshold(threshold);
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default
+ * formula for determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ CompleteOrthogonalDecomposition& setThreshold(Default_t) {
+ m_cpqr.setThreshold(Default);
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const { return m_cpqr.threshold(); }
+
+ /** \returns the number of nonzero pivots in the complete orthogonal
+ * decomposition. Here nonzero is meant in the exact sense, not in a
+ * fuzzy sense. So that notion isn't really intrinsically interesting,
+ * but it is still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of R.
+ */
+ inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }
+
+ /** \brief Reports whether the complete orthogonal decomposition was
+ * successful.
+ *
+ * \note This function always returns \c Success. It is provided for
+ * compatibility
+ * with other factorization routines.
+ * \returns \c Success
+ */
+ ComputationInfo info() const {
+ eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
+ return Success;
+ }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ template <typename RhsType, typename DstType>
+ void _solve_impl(const RhsType& rhs, DstType& dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+#endif
+
+ protected:
+ static void check_template_parameters() {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ template<bool Transpose_, typename Rhs>
+ void _check_solve_assertion(const Rhs& b) const {
+ EIGEN_ONLY_USED_FOR_DEBUG(b);
+ eigen_assert(m_cpqr.m_isInitialized && "CompleteOrthogonalDecomposition is not initialized.");
+ eigen_assert((Transpose_?derived().cols():derived().rows())==b.rows() && "CompleteOrthogonalDecomposition::solve(): invalid number of rows of the right hand side matrix b");
+ }
+
+ void computeInPlace();
+
+ /** Overwrites \b rhs with \f$ \mathbf{Z} * \mathbf{rhs} \f$ or
+ * \f$ \mathbf{\overline Z} * \mathbf{rhs} \f$ if \c Conjugate
+ * is set to \c true.
+ */
+ template <bool Conjugate, typename Rhs>
+ void applyZOnTheLeftInPlace(Rhs& rhs) const;
+
+ /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
+ */
+ template <typename Rhs>
+ void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;
+
+ ColPivHouseholderQR<MatrixType> m_cpqr;
+ HCoeffsType m_zCoeffs;
+ RowVectorType m_temp;
+};
+
+template <typename MatrixType>
+typename MatrixType::RealScalar
+CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
+ return m_cpqr.absDeterminant();
+}
+
+template <typename MatrixType>
+typename MatrixType::RealScalar
+CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
+ return m_cpqr.logAbsDeterminant();
+}
+
+/** Performs the complete orthogonal decomposition of the given matrix \a
+ * matrix. The result of the factorization is stored into \c *this, and a
+ * reference to \c *this is returned.
+ *
+ * \sa class CompleteOrthogonalDecomposition,
+ * CompleteOrthogonalDecomposition(const MatrixType&)
+ */
+template <typename MatrixType>
+void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
+{
+ check_template_parameters();
+
+ // the column permutation is stored as int indices, so just to be sure:
+ eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());
+
+ const Index rank = m_cpqr.rank();
+ const Index cols = m_cpqr.cols();
+ const Index rows = m_cpqr.rows();
+ m_zCoeffs.resize((std::min)(rows, cols));
+ m_temp.resize(cols);
+
+ if (rank < cols) {
+ // We have reduced the (permuted) matrix to the form
+ // [R11 R12]
+ // [ 0 R22]
+ // where R11 is r-by-r (r = rank) upper triangular, R12 is
+ // r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
+ // We now compute the complete orthogonal decomposition by applying
+ // Householder transformations from the right to the upper trapezoidal
+ // matrix X = [R11 R12] to zero out R12 and obtain the factorization
+ // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
+ // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
+ // We store the data representing Z in R12 and m_zCoeffs.
+ for (Index k = rank - 1; k >= 0; --k) {
+ if (k != rank - 1) {
+ // Given the API for Householder reflectors, it is more convenient if
+ // we swap the leading parts of columns k and r-1 (zero-based) to form
+ // the matrix X_k = [X(0:k, k), X(0:k, r:n)]
+ m_cpqr.m_qr.col(k).head(k + 1).swap(
+ m_cpqr.m_qr.col(rank - 1).head(k + 1));
+ }
+ // Construct Householder reflector Z(k) to zero out the last row of X_k,
+ // i.e. choose Z(k) such that
+ // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
+ RealScalar beta;
+ m_cpqr.m_qr.row(k)
+ .tail(cols - rank + 1)
+ .makeHouseholderInPlace(m_zCoeffs(k), beta);
+ m_cpqr.m_qr(k, rank - 1) = beta;
+ if (k > 0) {
+ // Apply Z(k) to the first k rows of X_k
+ m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
+ .applyHouseholderOnTheRight(
+ m_cpqr.m_qr.row(k).tail(cols - rank).adjoint(), m_zCoeffs(k),
+ &m_temp(0));
+ }
+ if (k != rank - 1) {
+ // Swap X(0:k,k) back to its proper location.
+ m_cpqr.m_qr.col(k).head(k + 1).swap(
+ m_cpqr.m_qr.col(rank - 1).head(k + 1));
+ }
+ }
+ }
+}
+
+template <typename MatrixType>
+template <bool Conjugate, typename Rhs>
+void CompleteOrthogonalDecomposition<MatrixType>::applyZOnTheLeftInPlace(
+ Rhs& rhs) const {
+ const Index cols = this->cols();
+ const Index nrhs = rhs.cols();
+ const Index rank = this->rank();
+ Matrix<typename Rhs::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
+ for (Index k = rank-1; k >= 0; --k) {
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ rhs.middleRows(rank - 1, cols - rank + 1)
+ .applyHouseholderOnTheLeft(
+ matrixQTZ().row(k).tail(cols - rank).transpose().template conjugateIf<!Conjugate>(), zCoeffs().template conjugateIf<Conjugate>()(k),
+ &temp(0));
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ }
+}
+
+template <typename MatrixType>
+template <typename Rhs>
+void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
+ Rhs& rhs) const {
+ const Index cols = this->cols();
+ const Index nrhs = rhs.cols();
+ const Index rank = this->rank();
+ Matrix<typename Rhs::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
+ for (Index k = 0; k < rank; ++k) {
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ rhs.middleRows(rank - 1, cols - rank + 1)
+ .applyHouseholderOnTheLeft(
+ matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
+ &temp(0));
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ }
+}
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template <typename _MatrixType>
+template <typename RhsType, typename DstType>
+void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
+ const RhsType& rhs, DstType& dst) const {
+ const Index rank = this->rank();
+ if (rank == 0) {
+ dst.setZero();
+ return;
+ }
+
+ // Compute c = Q^* * rhs
+ typename RhsType::PlainObject c(rhs);
+ c.applyOnTheLeft(matrixQ().setLength(rank).adjoint());
+
+ // Solve T z = c(1:rank, :)
+ dst.topRows(rank) = matrixT()
+ .topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .solve(c.topRows(rank));
+
+ const Index cols = this->cols();
+ if (rank < cols) {
+ // Compute y = Z^* * [ z ]
+ // [ 0 ]
+ dst.bottomRows(cols - rank).setZero();
+ applyZAdjointOnTheLeftInPlace(dst);
+ }
+
+ // Undo permutation to get x = P^{-1} * y.
+ dst = colsPermutation() * dst;
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ const Index rank = this->rank();
+
+ if (rank == 0) {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(colsPermutation().transpose()*rhs);
+
+ if (rank < cols()) {
+ applyZOnTheLeftInPlace<!Conjugate>(c);
+ }
+
+ matrixT().topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .transpose().template conjugateIf<Conjugate>()
+ .solveInPlace(c.topRows(rank));
+
+ dst.topRows(rank) = c.topRows(rank);
+ dst.bottomRows(rows()-rank).setZero();
+
+ dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf<!Conjugate>() );
+}
+#endif
+
+namespace internal {
+
+template<typename MatrixType>
+struct traits<Inverse<CompleteOrthogonalDecomposition<MatrixType> > >
+ : traits<typename Transpose<typename MatrixType::PlainObject>::PlainObject>
+{
+ enum { Flags = 0 };
+};
+
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense>
+{
+ typedef CompleteOrthogonalDecomposition<MatrixType> CodType;
+ typedef Inverse<CodType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &)
+ {
+ typedef Matrix<typename CodType::Scalar, CodType::RowsAtCompileTime, CodType::RowsAtCompileTime, 0, CodType::MaxRowsAtCompileTime, CodType::MaxRowsAtCompileTime> IdentityMatrixType;
+ dst = src.nestedExpression().solve(IdentityMatrixType::Identity(src.cols(), src.cols()));
+ }
+};
+
+} // end namespace internal
+
+/** \returns the matrix Q as a sequence of householder transformations */
+template <typename MatrixType>
+typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
+CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
+ return m_cpqr.householderQ();
+}
+
+/** \return the complete orthogonal decomposition of \c *this.
+ *
+ * \sa class CompleteOrthogonalDecomposition
+ */
+template <typename Derived>
+const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::completeOrthogonalDecomposition() const {
+ return CompleteOrthogonalDecomposition<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
diff --git a/src/3rdparty/eigen/Eigen/src/QR/FullPivHouseholderQR.h b/src/3rdparty/eigen/Eigen/src/QR/FullPivHouseholderQR.h
new file mode 100644
index 000000000..d0664a1d8
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/FullPivHouseholderQR.h
@@ -0,0 +1,713 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+
+template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
+
+template<typename MatrixType>
+struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+{
+ typedef typename MatrixType::PlainObject ReturnType;
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ * \class FullPivHouseholderQR
+ *
+ * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
+ * such that
+ * \f[
+ * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
+ * \f]
+ * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
+ * and \b R an upper triangular matrix.
+ *
+ * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
+ * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
+ *
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
+ * \sa MatrixBase::fullPivHouseholderQr()
+ */
+template<typename _MatrixType> class FullPivHouseholderQR
+ : public SolverBase<FullPivHouseholderQR<_MatrixType> >
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef SolverBase<FullPivHouseholderQR> Base;
+ friend class SolverBase<FullPivHouseholderQR>;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivHouseholderQR)
+ enum {
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef Matrix<StorageIndex, 1,
+ EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
+ EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
+ typedef typename MatrixType::PlainObject PlainObject;
+
+ /** \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
+ */
+ FullPivHouseholderQR()
+ : m_qr(),
+ m_hCoeffs(),
+ m_rows_transpositions(),
+ m_cols_transpositions(),
+ m_cols_permutation(),
+ m_temp(),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa FullPivHouseholderQR()
+ */
+ FullPivHouseholderQR(Index rows, Index cols)
+ : m_qr(rows, cols),
+ m_hCoeffs((std::min)(rows,cols)),
+ m_rows_transpositions((std::min)(rows,cols)),
+ m_cols_transpositions((std::min)(rows,cols)),
+ m_cols_permutation(cols),
+ m_temp(cols),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This constructor computes the QR factorization of the matrix \a matrix by calling
+ * the method compute(). It is a short cut for:
+ *
+ * \code
+ * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
+ * qr.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template<typename InputType>
+ explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_permutation(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ compute(matrix.derived());
+ }
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
+ *
+ * \sa FullPivHouseholderQR(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
+ : m_qr(matrix.derived()),
+ m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_permutation(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ computeInPlace();
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * \c *this is the QR decomposition.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
+ * and an arbitrary solution otherwise.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ *
+ * Example: \include FullPivHouseholderQR_solve.cpp
+ * Output: \verbinclude FullPivHouseholderQR_solve.out
+ */
+ template<typename Rhs>
+ inline const Solve<FullPivHouseholderQR, Rhs>
+ solve(const MatrixBase<Rhs>& b) const;
+ #endif
+
+ /** \returns Expression object representing the matrix Q
+ */
+ MatrixQReturnType matrixQ(void) const;
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ */
+ const MatrixType& matrixQR() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ template<typename InputType>
+ FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
+
+ /** \returns a const reference to the column permutation matrix */
+ const PermutationType& colsPermutation() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_cols_permutation;
+ }
+
+ /** \returns a const reference to the vector of indices representing the rows transpositions */
+ const IntDiagSizeVectorType& rowsTranspositions() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_rows_transpositions;
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
+ * to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ using std::abs;
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
+ Index result = 0;
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
+ result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == cols();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == rows();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return isInjective() && isSurjective();
+ }
+
+ /** \returns the inverse of the matrix of which *this is the QR decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ */
+ inline const Inverse<FullPivHouseholderQR> inverse() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return Inverse<FullPivHouseholderQR>(*this);
+ }
+
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return m_qr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * QR decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
+ * uses a formula to automatically determine a reasonable threshold.
+ * Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ FullPivHouseholderQR& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
+ }
+
+ /** \returns the number of nonzero pivots in the QR decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of U.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+ #endif
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ void computeInPlace();
+
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ IntDiagSizeVectorType m_rows_transpositions;
+ IntDiagSizeVectorType m_cols_transpositions;
+ PermutationType m_cols_permutation;
+ RowVectorType m_temp;
+ bool m_isInitialized, m_usePrescribedThreshold;
+ RealScalar m_prescribedThreshold, m_maxpivot;
+ Index m_nonzero_pivots;
+ RealScalar m_precision;
+ Index m_det_pq;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
+{
+ using std::abs;
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+/** Performs the QR factorization of the given matrix \a matrix. The result of
+ * the factorization is stored into \c *this, and a reference to \c *this
+ * is returned.
+ *
+ * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
+ */
+template<typename MatrixType>
+template<typename InputType>
+FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
+{
+ m_qr = matrix.derived();
+ computeInPlace();
+ return *this;
+}
+
+template<typename MatrixType>
+void FullPivHouseholderQR<MatrixType>::computeInPlace()
+{
+ check_template_parameters();
+
+ using std::abs;
+ Index rows = m_qr.rows();
+ Index cols = m_qr.cols();
+ Index size = (std::min)(rows,cols);
+
+
+ m_hCoeffs.resize(size);
+
+ m_temp.resize(cols);
+
+ m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
+
+ m_rows_transpositions.resize(size);
+ m_cols_transpositions.resize(size);
+ Index number_of_transpositions = 0;
+
+ RealScalar biggest(0);
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+
+ for (Index k = 0; k < size; ++k)
+ {
+ Index row_of_biggest_in_corner, col_of_biggest_in_corner;
+ typedef internal::scalar_score_coeff_op<Scalar> Scoring;
+ typedef typename Scoring::result_type Score;
+
+ Score score = m_qr.bottomRightCorner(rows-k, cols-k)
+ .unaryExpr(Scoring())
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k;
+ col_of_biggest_in_corner += k;
+ RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score);
+ if(k==0) biggest = biggest_in_corner;
+
+ // if the corner is negligible, then we have less than full rank, and we can finish early
+ if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
+ {
+ m_nonzero_pivots = k;
+ for(Index i = k; i < size; i++)
+ {
+ m_rows_transpositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
+ m_cols_transpositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
+ m_hCoeffs.coeffRef(i) = Scalar(0);
+ }
+ break;
+ }
+
+ m_rows_transpositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
+ m_cols_transpositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
+ if(k != row_of_biggest_in_corner) {
+ m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+
+ RealScalar beta;
+ m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
+ m_qr.coeffRef(k,k) = beta;
+
+ // remember the maximum absolute value of diagonal coefficients
+ if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
+
+ m_qr.bottomRightCorner(rows-k, cols-k-1)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
+ }
+
+ m_cols_permutation.setIdentity(cols);
+ for(Index k = 0; k < size; ++k)
+ m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ m_isInitialized = true;
+}
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ const Index l_rank = rank();
+
+ // FIXME introduce nonzeroPivots() and use it here. and more generally,
+ // make the same improvements in this dec as in FullPivLU.
+ if(l_rank==0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(rhs);
+
+ Matrix<typename RhsType::Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
+ for (Index k = 0; k < l_rank; ++k)
+ {
+ Index remainingSize = rows()-k;
+ c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
+ c.bottomRightCorner(remainingSize, rhs.cols())
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
+ m_hCoeffs.coeff(k), &temp.coeffRef(0));
+ }
+
+ m_qr.topLeftCorner(l_rank, l_rank)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(l_rank));
+
+ for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
+ for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void FullPivHouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ const Index l_rank = rank();
+
+ if(l_rank == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(m_cols_permutation.transpose()*rhs);
+
+ m_qr.topLeftCorner(l_rank, l_rank)
+ .template triangularView<Upper>()
+ .transpose().template conjugateIf<Conjugate>()
+ .solveInPlace(c.topRows(l_rank));
+
+ dst.topRows(l_rank) = c.topRows(l_rank);
+ dst.bottomRows(rows()-l_rank).setZero();
+
+ Matrix<Scalar, 1, DstType::ColsAtCompileTime> temp(dst.cols());
+ const Index size = (std::min)(rows(), cols());
+ for (Index k = size-1; k >= 0; --k)
+ {
+ Index remainingSize = rows()-k;
+
+ dst.bottomRightCorner(remainingSize, dst.cols())
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1).template conjugateIf<!Conjugate>(),
+ m_hCoeffs.template conjugateIf<Conjugate>().coeff(k), &temp.coeffRef(0));
+
+ dst.row(k).swap(dst.row(m_rows_transpositions.coeff(k)));
+ }
+}
+#endif
+
+namespace internal {
+
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
+{
+ typedef FullPivHouseholderQR<MatrixType> QrType;
+ typedef Inverse<QrType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
+ }
+};
+
+/** \ingroup QR_Module
+ *
+ * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
+ *
+ * \tparam MatrixType type of underlying dense matrix
+ */
+template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
+ : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+{
+public:
+ typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
+ MatrixType::MaxRowsAtCompileTime> WorkVectorType;
+
+ FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
+ const HCoeffsType& hCoeffs,
+ const IntDiagSizeVectorType& rowsTranspositions)
+ : m_qr(qr),
+ m_hCoeffs(hCoeffs),
+ m_rowsTranspositions(rowsTranspositions)
+ {}
+
+ template <typename ResultType>
+ void evalTo(ResultType& result) const
+ {
+ const Index rows = m_qr.rows();
+ WorkVectorType workspace(rows);
+ evalTo(result, workspace);
+ }
+
+ template <typename ResultType>
+ void evalTo(ResultType& result, WorkVectorType& workspace) const
+ {
+ using numext::conj;
+ // compute the product H'_0 H'_1 ... H'_n-1,
+ // where H_k is the k-th Householder transformation I - h_k v_k v_k'
+ // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ const Index rows = m_qr.rows();
+ const Index cols = m_qr.cols();
+ const Index size = (std::min)(rows, cols);
+ workspace.resize(rows);
+ result.setIdentity(rows, rows);
+ for (Index k = size-1; k >= 0; k--)
+ {
+ result.block(k, k, rows-k, rows-k)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
+ result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
+ }
+ }
+
+ Index rows() const { return m_qr.rows(); }
+ Index cols() const { return m_qr.rows(); }
+
+protected:
+ typename MatrixType::Nested m_qr;
+ typename HCoeffsType::Nested m_hCoeffs;
+ typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
+};
+
+// template<typename MatrixType>
+// struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+// : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
+// {};
+
+} // end namespace internal
+
+template<typename MatrixType>
+inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
+}
+
+/** \return the full-pivoting Householder QR decomposition of \c *this.
+ *
+ * \sa class FullPivHouseholderQR
+ */
+template<typename Derived>
+const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::fullPivHouseholderQr() const
+{
+ return FullPivHouseholderQR<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
diff --git a/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR.h b/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR.h
new file mode 100644
index 000000000..801739fbd
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR.h
@@ -0,0 +1,434 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2010 Vincent Lejeune
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_QR_H
+#define EIGEN_QR_H
+
+namespace Eigen {
+
+namespace internal {
+template<typename _MatrixType> struct traits<HouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ *
+ * \class HouseholderQR
+ *
+ * \brief Householder QR decomposition of a matrix
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
+ * such that
+ * \f[
+ * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
+ * \f]
+ * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
+ * The result is stored in a compact way compatible with LAPACK.
+ *
+ * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
+ * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
+ *
+ * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
+ * FullPivHouseholderQR or ColPivHouseholderQR.
+ *
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
+ * \sa MatrixBase::householderQr()
+ */
+template<typename _MatrixType> class HouseholderQR
+ : public SolverBase<HouseholderQR<_MatrixType> >
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef SolverBase<HouseholderQR> Base;
+ friend class SolverBase<HouseholderQR>;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(HouseholderQR)
+ enum {
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via HouseholderQR::compute(const MatrixType&).
+ */
+ HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa HouseholderQR()
+ */
+ HouseholderQR(Index rows, Index cols)
+ : m_qr(rows, cols),
+ m_hCoeffs((std::min)(rows,cols)),
+ m_temp(cols),
+ m_isInitialized(false) {}
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This constructor computes the QR factorization of the matrix \a matrix by calling
+ * the method compute(). It is a short cut for:
+ *
+ * \code
+ * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
+ * qr.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template<typename InputType>
+ explicit HouseholderQR(const EigenBase<InputType>& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
+ m_temp(matrix.cols()),
+ m_isInitialized(false)
+ {
+ compute(matrix.derived());
+ }
+
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
+ * \c MatrixType is a Eigen::Ref.
+ *
+ * \sa HouseholderQR(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit HouseholderQR(EigenBase<InputType>& matrix)
+ : m_qr(matrix.derived()),
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
+ m_temp(matrix.cols()),
+ m_isInitialized(false)
+ {
+ computeInPlace();
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the QR decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \returns a solution.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ *
+ * Example: \include HouseholderQR_solve.cpp
+ * Output: \verbinclude HouseholderQR_solve.out
+ */
+ template<typename Rhs>
+ inline const Solve<HouseholderQR, Rhs>
+ solve(const MatrixBase<Rhs>& b) const;
+ #endif
+
+ /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
+ *
+ * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
+ * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
+ *
+ * Example: \include HouseholderQR_householderQ.cpp
+ * Output: \verbinclude HouseholderQR_householderQ.out
+ */
+ HouseholderSequenceType householderQ() const
+ {
+ eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+ return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
+ }
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ * in a LAPACK-compatible way.
+ */
+ const MatrixType& matrixQR() const
+ {
+ eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ template<typename InputType>
+ HouseholderQR& compute(const EigenBase<InputType>& matrix) {
+ m_qr = matrix.derived();
+ computeInPlace();
+ return *this;
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
+ * to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return m_qr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+ #endif
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ void computeInPlace();
+
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ RowVectorType m_temp;
+ bool m_isInitialized;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
+{
+ using std::abs;
+ eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+ eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+namespace internal {
+
+/** \internal */
+template<typename MatrixQR, typename HCoeffs>
+void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
+{
+ typedef typename MatrixQR::Scalar Scalar;
+ typedef typename MatrixQR::RealScalar RealScalar;
+ Index rows = mat.rows();
+ Index cols = mat.cols();
+ Index size = (std::min)(rows,cols);
+
+ eigen_assert(hCoeffs.size() == size);
+
+ typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
+ TempType tempVector;
+ if(tempData==0)
+ {
+ tempVector.resize(cols);
+ tempData = tempVector.data();
+ }
+
+ for(Index k = 0; k < size; ++k)
+ {
+ Index remainingRows = rows - k;
+ Index remainingCols = cols - k - 1;
+
+ RealScalar beta;
+ mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
+ mat.coeffRef(k,k) = beta;
+
+ // apply H to remaining part of m_qr from the left
+ mat.bottomRightCorner(remainingRows, remainingCols)
+ .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
+ }
+}
+
+/** \internal */
+template<typename MatrixQR, typename HCoeffs,
+ typename MatrixQRScalar = typename MatrixQR::Scalar,
+ bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
+struct householder_qr_inplace_blocked
+{
+ // This is specialized for LAPACK-supported Scalar types in HouseholderQR_LAPACKE.h
+ static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
+ typename MatrixQR::Scalar* tempData = 0)
+ {
+ typedef typename MatrixQR::Scalar Scalar;
+ typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
+
+ Index rows = mat.rows();
+ Index cols = mat.cols();
+ Index size = (std::min)(rows, cols);
+
+ typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
+ TempType tempVector;
+ if(tempData==0)
+ {
+ tempVector.resize(cols);
+ tempData = tempVector.data();
+ }
+
+ Index blockSize = (std::min)(maxBlockSize,size);
+
+ Index k = 0;
+ for (k = 0; k < size; k += blockSize)
+ {
+ Index bs = (std::min)(size-k,blockSize); // actual size of the block
+ Index tcols = cols - k - bs; // trailing columns
+ Index brows = rows-k; // rows of the block
+
+ // partition the matrix:
+ // A00 | A01 | A02
+ // mat = A10 | A11 | A12
+ // A20 | A21 | A22
+ // and performs the qr dec of [A11^T A12^T]^T
+ // and update [A21^T A22^T]^T using level 3 operations.
+ // Finally, the algorithm continue on A22
+
+ BlockType A11_21 = mat.block(k,k,brows,bs);
+ Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
+
+ householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
+
+ if(tcols)
+ {
+ BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
+ apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
+ }
+ }
+ }
+};
+
+} // end namespace internal
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ const Index rank = (std::min)(rows(), cols());
+
+ typename RhsType::PlainObject c(rhs);
+
+ c.applyOnTheLeft(householderQ().setLength(rank).adjoint() );
+
+ m_qr.topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(rank));
+
+ dst.topRows(rank) = c.topRows(rank);
+ dst.bottomRows(cols()-rank).setZero();
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void HouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ const Index rank = (std::min)(rows(), cols());
+
+ typename RhsType::PlainObject c(rhs);
+
+ m_qr.topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .transpose().template conjugateIf<Conjugate>()
+ .solveInPlace(c.topRows(rank));
+
+ dst.topRows(rank) = c.topRows(rank);
+ dst.bottomRows(rows()-rank).setZero();
+
+ dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf<!Conjugate>() );
+}
+#endif
+
+/** Performs the QR factorization of the given matrix \a matrix. The result of
+ * the factorization is stored into \c *this, and a reference to \c *this
+ * is returned.
+ *
+ * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
+ */
+template<typename MatrixType>
+void HouseholderQR<MatrixType>::computeInPlace()
+{
+ check_template_parameters();
+
+ Index rows = m_qr.rows();
+ Index cols = m_qr.cols();
+ Index size = (std::min)(rows,cols);
+
+ m_hCoeffs.resize(size);
+
+ m_temp.resize(cols);
+
+ internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
+
+ m_isInitialized = true;
+}
+
+/** \return the Householder QR decomposition of \c *this.
+ *
+ * \sa class HouseholderQR
+ */
+template<typename Derived>
+const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::householderQr() const
+{
+ return HouseholderQR<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_QR_H
diff --git a/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h b/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h
new file mode 100644
index 000000000..1dc7d5363
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h
@@ -0,0 +1,68 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+ be used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ * Content : Eigen bindings to LAPACKe
+ * Householder QR decomposition of a matrix w/o pivoting based on
+ * LAPACKE_?geqrf function.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_QR_LAPACKE_H
+#define EIGEN_QR_LAPACKE_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal Specialization for the data types supported by LAPACKe */
+
+#define EIGEN_LAPACKE_QR_NOPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \
+template<typename MatrixQR, typename HCoeffs> \
+struct householder_qr_inplace_blocked<MatrixQR, HCoeffs, EIGTYPE, true> \
+{ \
+ static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index = 32, \
+ typename MatrixQR::Scalar* = 0) \
+ { \
+ lapack_int m = (lapack_int) mat.rows(); \
+ lapack_int n = (lapack_int) mat.cols(); \
+ lapack_int lda = (lapack_int) mat.outerStride(); \
+ lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
+ LAPACKE_##LAPACKE_PREFIX##geqrf( matrix_order, m, n, (LAPACKE_TYPE*)mat.data(), lda, (LAPACKE_TYPE*)hCoeffs.data()); \
+ hCoeffs.adjointInPlace(); \
+ } \
+};
+
+EIGEN_LAPACKE_QR_NOPIV(double, double, d)
+EIGEN_LAPACKE_QR_NOPIV(float, float, s)
+EIGEN_LAPACKE_QR_NOPIV(dcomplex, lapack_complex_double, z)
+EIGEN_LAPACKE_QR_NOPIV(scomplex, lapack_complex_float, c)
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_QR_LAPACKE_H