summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc')
-rw-r--r--src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc260
1 files changed, 260 insertions, 0 deletions
diff --git a/src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc b/src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc
new file mode 100644
index 000000000..e96ed231c
--- /dev/null
+++ b/src/3rdparty/resonance-audio/resonance_audio/dsp/fft_manager_test.cc
@@ -0,0 +1,260 @@
+/*
+Copyright 2018 Google Inc. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS-IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "dsp/fft_manager.h"
+
+#include <cstdlib>
+
+#include "third_party/googletest/googletest/include/gtest/gtest.h"
+#include "base/audio_buffer.h"
+#include "base/constants_and_types.h"
+#include "base/logging.h"
+#include "base/misc_math.h"
+
+namespace vraudio {
+
+namespace {
+
+const float kInverseFftEpsilon = 2e-5f;
+
+// This tests that the |FreqFromTimeDomain| and |TimeFromFreqDomain|
+// functions are the inverse of one another for a number of fft sizes and signal
+// types.
+TEST(FftManagerTest, FftIfftTest) {
+ // Generate a test signal.
+ const size_t kNumSignalTypes = 3;
+ const size_t kNumBufferLengths = 10;
+ const size_t kBufferLengths[kNumBufferLengths] = {31, 32, 63, 64, 127,
+ 128, 255, 256, 511, 512};
+
+ for (size_t length_idx = 0; length_idx < kNumBufferLengths; length_idx++) {
+ for (size_t type = 0; type < kNumSignalTypes; ++type) {
+ AudioBuffer time_signal(kNumMonoChannels, kBufferLengths[length_idx]);
+ for (size_t i = 0; i < kBufferLengths[length_idx]; ++i) {
+ switch (type) {
+ case 0:
+ time_signal[0][i] = static_cast<float>(i) /
+ static_cast<float>(kBufferLengths[length_idx]);
+ break;
+ case 1:
+ time_signal[0][i] = std::cos(static_cast<float>(i));
+ break;
+ case 2:
+ time_signal[0][i] = static_cast<float>(i % 2) * -0.5f;
+ break;
+ }
+ }
+ AudioBuffer freq_signal(kNumMonoChannels,
+ NextPowTwo(kBufferLengths[length_idx]) * 2);
+ AudioBuffer output(kNumMonoChannels, kBufferLengths[length_idx]);
+ output.Clear();
+
+ FftManager fft_manager(kBufferLengths[length_idx]);
+
+ fft_manager.FreqFromTimeDomain(time_signal[0], &freq_signal[0]);
+ fft_manager.TimeFromFreqDomain(freq_signal[0], &output[0]);
+ fft_manager.ApplyReverseFftScaling(&output[0]);
+
+ for (size_t i = 0; i < kBufferLengths[length_idx]; ++i) {
+ EXPECT_NEAR(output[0][i], time_signal[0][i], kEpsilonFloat);
+ }
+ }
+ }
+}
+
+// Tests that the result from an inverse FFT is the same whether it is written
+// into a buffer of |frames_per_buffer_| or |fft_size_| in length.
+TEST(FftManagerTest, ReverseFftOutputSizeTest) {
+ const size_t kFramesPerBuffer = 32;
+ AudioBuffer freq_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ freq_buffer.Clear();
+ AudioBuffer time_buffer_short(kNumMonoChannels, kFramesPerBuffer);
+ time_buffer_short.Clear();
+ AudioBuffer time_buffer_long(kNumMonoChannels, 2 * kFramesPerBuffer);
+ time_buffer_long.Clear();
+ AudioBuffer input_buffer(kNumMonoChannels, kFramesPerBuffer);
+
+ std::srand(0);
+ for (auto& sample : input_buffer[0]) {
+ sample = static_cast<float>(std::rand()) / static_cast<float>(RAND_MAX);
+ }
+
+ FftManager fft_manager(kFramesPerBuffer);
+ fft_manager.FreqFromTimeDomain(input_buffer[0], &freq_buffer[0]);
+ fft_manager.TimeFromFreqDomain(freq_buffer[0], &time_buffer_short[0]);
+ fft_manager.ApplyReverseFftScaling(&time_buffer_short[0]);
+ fft_manager.TimeFromFreqDomain(freq_buffer[0], &time_buffer_long[0]);
+ fft_manager.ApplyReverseFftScaling(&time_buffer_long[0]);
+
+ for (size_t i = 0; i < kFramesPerBuffer; ++i) {
+ EXPECT_NEAR(time_buffer_short[0][i], time_buffer_long[0][i], kEpsilonFloat);
+ EXPECT_NEAR(time_buffer_long[0][i + kFramesPerBuffer], 0.0f,
+ kInverseFftEpsilon);
+ }
+}
+
+// Tests that a frequency domain buffer can be transformed into a canonical
+// format and back.
+TEST(FftManagerTest, PffftFormatToCanonicalFormatTest) {
+ const size_t kFramesPerBuffer = 32;
+ AudioBuffer time_buffer(kNumMonoChannels, kFramesPerBuffer);
+ time_buffer.Clear();
+ time_buffer[0][0] = 1.0f;
+ time_buffer[0][1] = 1.0f;
+ AudioBuffer freq_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ freq_buffer.Clear();
+ AudioBuffer reordered_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ reordered_buffer.Clear();
+ AudioBuffer final_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ reordered_buffer.Clear();
+
+ FftManager fft_manager(kFramesPerBuffer);
+ fft_manager.FreqFromTimeDomain(time_buffer[0], &freq_buffer[0]);
+
+ fft_manager.GetCanonicalFormatFreqBuffer(freq_buffer[0],
+ &reordered_buffer[0]);
+ fft_manager.GetPffftFormatFreqBuffer(reordered_buffer[0], &final_buffer[0]);
+
+ for (size_t i = 0; i < kFramesPerBuffer * 2; ++i) {
+ EXPECT_NEAR(final_buffer[0][i], freq_buffer[0][i], kEpsilonFloat);
+ }
+}
+
+// Tests that for a scaled kronecker delta, the magnitude response will be flat
+// and equal to the absolute magnitude of the kronecker.
+TEST(FftManagerTest, MagnitudeTest) {
+ const size_t kFramesPerBuffer = 32;
+ const size_t kMagnitudeLength = kFramesPerBuffer + 1;
+ FftManager fft_manager(kFramesPerBuffer);
+ AudioBuffer time_buffer(kNumMonoChannels, kFramesPerBuffer);
+ time_buffer.Clear();
+ AudioBuffer freq_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer reordered_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer magnitude_buffer(kNumMonoChannels, kMagnitudeLength);
+ const std::vector<float> magnitudes = {1.0f, 2.0f, 3.0f, -1.0f, -2.0f, -3.0f};
+
+ for (auto& magnitude : magnitudes) {
+ time_buffer[0][0] = magnitude;
+ fft_manager.FreqFromTimeDomain(time_buffer[0], &freq_buffer[0]);
+ fft_manager.GetCanonicalFormatFreqBuffer(freq_buffer[0],
+ &reordered_buffer[0]);
+ fft_manager.MagnitudeFromCanonicalFreqBuffer(reordered_buffer[0],
+ &magnitude_buffer[0]);
+ for (size_t sample = 0; sample < kMagnitudeLength; ++sample) {
+ // Check its correct to within 0.5%.
+ const float kErrEpsilon = 5e-3f;
+ const float expected = std::abs(magnitude);
+ EXPECT_NEAR(magnitude_buffer[0][sample], expected,
+ kErrEpsilon * expected);
+ }
+ }
+}
+
+// Tests that conversion from Canonical frequency domain data to phase and
+// magnitude spectra and back results in an output equal to the input.
+TEST(FftManagerTest, FreqFromMagnitudePhase) {
+ const size_t kFramesPerBuffer = 16;
+ const size_t kMagnitudePhaseLength = kFramesPerBuffer + 1;
+ FftManager fft_manager(kFramesPerBuffer);
+ AudioBuffer time_buffer(kNumMonoChannels, kFramesPerBuffer);
+ time_buffer.Clear();
+ time_buffer[0][0] = 0.5f;
+ time_buffer[0][1] = 1.0f;
+ AudioBuffer freq_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer reordered_buffer(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer phase_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+ AudioBuffer magnitude_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+ fft_manager.FreqFromTimeDomain(time_buffer[0], &freq_buffer[0]);
+ fft_manager.GetCanonicalFormatFreqBuffer(freq_buffer[0],
+ &reordered_buffer[0]);
+ fft_manager.MagnitudeFromCanonicalFreqBuffer(reordered_buffer[0],
+ &magnitude_buffer[0]);
+
+ // Calculate the phase.
+ phase_buffer[0][0] = 0.0f;
+ for (size_t i = 1, j = 2; i < kFramesPerBuffer; ++i, j += 2) {
+ phase_buffer[0][i] = std::atan2(reordered_buffer[0][j + 1] /*imag*/,
+ reordered_buffer[0][j] /*real*/);
+ }
+ phase_buffer[0][kFramesPerBuffer] = kPi;
+
+ fft_manager.CanonicalFreqBufferFromMagnitudeAndPhase(
+ magnitude_buffer[0], phase_buffer[0], &freq_buffer[0]);
+
+ for (size_t sample = 0; sample < kFramesPerBuffer * 2; ++sample) {
+ // Check its correct to within 0.5%.
+ const float kErrEpsilon = 5e-3f;
+ EXPECT_NEAR(freq_buffer[0][sample], reordered_buffer[0][sample],
+ kErrEpsilon * std::abs(reordered_buffer[0][sample]));
+ }
+}
+
+// Tests that conversion from phase and magnitude spectra and back results in
+// an output equal to that from sine and cosine phase, using SIMD on arm.
+TEST(FftManagerTest, FMagnitudePhaseAndSineCosinePhase) {
+ const size_t kFramesPerBuffer = 16;
+ const size_t kMagnitudePhaseLength = kFramesPerBuffer + 1;
+ FftManager fft_manager(kFramesPerBuffer);
+ AudioBuffer freq_buffer_one(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer freq_buffer_two(kNumMonoChannels, 2 * kFramesPerBuffer);
+ AudioBuffer phase_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+ AudioBuffer sin_phase_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+ AudioBuffer cos_phase_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+ AudioBuffer magnitude_buffer(kNumMonoChannels, kMagnitudePhaseLength);
+
+ std::fill(magnitude_buffer[0].begin(), magnitude_buffer[0].end(), 2.0f);
+ phase_buffer[0] = std::vector<float>(
+ {0.4720f, 1.6100f, -1.9831f, 0.7569f, 0.2799f, -1.1481f, -0.3807f,
+ 0.3008f, 3.1416f, 2.4314f, -1.1851f, 2.6645f, 0.6369f, -0.0554f, 0.6275f,
+ -0.1799f, 1.2345f});
+ for (size_t i = 0; i < phase_buffer.num_frames(); ++i) {
+ sin_phase_buffer[0][i] = std::sin(phase_buffer[0][i]);
+ cos_phase_buffer[0][i] = std::cos(phase_buffer[0][i]);
+ }
+
+ fft_manager.CanonicalFreqBufferFromMagnitudeAndPhase(
+ magnitude_buffer[0], phase_buffer[0], &freq_buffer_one[0]);
+ fft_manager.CanonicalFreqBufferFromMagnitudeAndSinCosPhase(
+ 0, /* phase_offset */
+ magnitude_buffer[0], sin_phase_buffer[0], cos_phase_buffer[0],
+ &freq_buffer_two[0]);
+
+ for (size_t i = 0; i < kFramesPerBuffer * 2; ++i) {
+ EXPECT_NEAR(freq_buffer_one[0][i], freq_buffer_two[0][i], kEpsilonFloat);
+ }
+}
+
+// Tests that the correct scaling factor is applied consistently across a time
+// domain buffer.
+TEST(FftManagerTest, ReverseScalingTest) {
+ const size_t kFramesPerBuffer = 128;
+ const float kExpectedScale = 1.0f / static_cast<float>(2 * kFramesPerBuffer);
+
+ AudioBuffer buffer(kNumMonoChannels, kFramesPerBuffer);
+ for (auto& sample : buffer[0]) {
+ sample = 1.0f;
+ }
+ FftManager fft_manager(kFramesPerBuffer);
+
+ fft_manager.ApplyReverseFftScaling(&buffer[0]);
+ for (auto& sample : buffer[0]) {
+ EXPECT_NEAR(sample, kExpectedScale, kEpsilonFloat);
+ }
+}
+
+} // namespace
+
+} // namespace vraudio