summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/base/misc_math_test.cc
blob: e75c100c619333ca4baa6f94374b23813fe94ce7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "base/misc_math.h"

#include "third_party/googletest/googletest/include/gtest/gtest.h"

#include "base/constants_and_types.h"

namespace vraudio {

namespace {

TEST(MiscMath, WorldPositionEqualityTest) {
  const WorldPosition kOriginalWorldPosition(0.33f, 0.44f, 0.55f);
  const WorldPosition kSameWorldPosition = kOriginalWorldPosition;
  EXPECT_FALSE(kOriginalWorldPosition != kSameWorldPosition);
}

TEST(MiscMath, WorldPositionInequalityTest) {
  const WorldPosition kOriginalWorldPosition(0.11f, 0.22f, 0.33f);
  const std::vector<WorldPosition> kDifferentWorldPositions{
      {-0.22f, 0.22f, 0.33f}, {0.11f, -0.33f, 0.33f}, {0.11f, 0.22f, -0.22f},
      {0.11f, 0.33f, -0.44f}, {0.22f, 0.22f, -0.44f}, {0.22f, 0.33f, -0.55f}};

  for (auto& position : kDifferentWorldPositions) {
    EXPECT_TRUE(kOriginalWorldPosition != position);
  }
}

TEST(MiscMath, ConvertAudioFromWorldPositionTest) {
  static const WorldPosition kWorldPosition(0.5f, -1.2f, 10.f);
  static const AudioPosition kExpectedAudioPosition(
      -kWorldPosition[2], -kWorldPosition[0], kWorldPosition[1]);
  AudioPosition test_position;
  ConvertAudioFromWorldPosition(kWorldPosition, &test_position);

  EXPECT_TRUE(kExpectedAudioPosition.isApprox(test_position, kEpsilonFloat));
}

TEST(MiscMath, ConvertWorldFromAudioPositionTest) {
  static const AudioPosition kAudioPosition(1.0f, 2.0f, -0.2f);
  static const WorldPosition kExpectedWorldPosition(
      -kAudioPosition[1], kAudioPosition[2], -kAudioPosition[0]);

  WorldPosition test_position;
  ConvertWorldFromAudioPosition(kAudioPosition, &test_position);

  EXPECT_TRUE(kExpectedWorldPosition.isApprox(test_position, kEpsilonFloat));
}

TEST(MiscMath, ConvertAudioFromWorldRotationTest) {
  static const WorldRotation kWorldRotation(1.0f, 0.5f, -1.2f, 10.f);
  static const AudioRotation kExpectedAudioRotation(
      kWorldRotation.w(), -kWorldRotation.x(), kWorldRotation.y(),
      -kWorldRotation.z());
  AudioRotation test_rotation;
  ConvertAudioFromWorldRotation(kWorldRotation, &test_rotation);

  EXPECT_TRUE(kExpectedAudioRotation.isApprox(test_rotation, kEpsilonFloat));
}

TEST(MiscMath, GetRelativeDirectionTest) {
  static const WorldPosition kFromPosition(0.0f, 0.0f, 0.0f);
  static const WorldPosition kFromRotationAxis(0.0f, 0.0f, 1.0f);
  static const float kFromRotationAngle = static_cast<float>(M_PI / 2.0);
  WorldRotation kFromRotation =
      WorldRotation(AngleAxisf(kFromRotationAngle, kFromRotationAxis));

  static const WorldPosition kToPosition(1.0f, 2.0f, 3.0f);

  static const WorldPosition kExpectedRelativeDirection(2.0f, -1.0f, 3.0f);
  WorldPosition test_relative_direction;
  GetRelativeDirection(kFromPosition, kFromRotation, kToPosition,
                       &test_relative_direction);

  EXPECT_TRUE(kExpectedRelativeDirection.isApprox(test_relative_direction,
                                                  kEpsilonFloat));
}

TEST(MiscMath, GetClosestPositionInAabbInsideTest) {
  static const WorldPosition kRelativeSourcePosition(0.0f, -0.2f, 0.0f);
  static const WorldPosition kRoomDimensions(1.0f, 1.0f, 1.0f);
  static const WorldPosition kExpectedAabbPosition = kRelativeSourcePosition;
  WorldPosition test_position;
  GetClosestPositionInAabb(kRelativeSourcePosition, kRoomDimensions,
                           &test_position);

  EXPECT_TRUE(kExpectedAabbPosition.isApprox(test_position, kEpsilonFloat));
}

TEST(MiscMath, GetClosestPositionInAabbOutsideTest) {
  static const WorldPosition kRelativeSourcePosition(0.2f, 0.7f, -0.5f);
  static const WorldPosition kRoomDimensions(1.0f, 1.0f, 1.0f);
  static const WorldPosition kExpectedAabbPosition(0.2f, 0.5f, -0.5f);
  WorldPosition test_position;
  GetClosestPositionInAabb(kRelativeSourcePosition, kRoomDimensions,
                           &test_position);

  EXPECT_TRUE(kExpectedAabbPosition.isApprox(test_position, kEpsilonFloat));
}

TEST(MiscMath, IsPositionInAabbInsideTest) {
  static const WorldPosition kSourcePosition(0.5f, 0.3f, 0.2f);
  static const WorldPosition kRoomPosition(0.5f, 0.5f, 0.5f);
  static const WorldPosition kRoomDimensions(1.0f, 1.0f, 1.0f);

  EXPECT_TRUE(
      IsPositionInAabb(kSourcePosition, kRoomPosition, kRoomDimensions));
}

TEST(MiscMath, IsPositionInAabbOutsideTest) {
  static const WorldPosition kSourcePosition(0.7f, 1.2f, 0.0f);
  static const WorldPosition kRoomPosition(0.5f, 0.5f, 0.5f);
  static const WorldPosition kRoomDimensions(1.0f, 1.0f, 1.0f);

  EXPECT_FALSE(
      IsPositionInAabb(kSourcePosition, kRoomPosition, kRoomDimensions));
}

TEST(MiscMath, IntegerMultiplicationOverflowDetection) {
  static const size_t kMaxValue = std::numeric_limits<size_t>::max();
  static const size_t kHalfMaxValue = kMaxValue / 2;

  // 2 * 3 == 6 should not lead to an integer overflow.
  EXPECT_FALSE(DoesIntegerMultiplicationOverflow<size_t>(2, 3, 6));

  EXPECT_FALSE(DoesIntegerMultiplicationOverflow<size_t>(kHalfMaxValue, 2,
                                                         kHalfMaxValue * 2));
  EXPECT_TRUE(
      DoesIntegerMultiplicationOverflow<size_t>(kMaxValue, 2, kMaxValue << 1));
  EXPECT_FALSE(
      DoesIntegerMultiplicationOverflow<size_t>(0, kMaxValue, 0 * kMaxValue));
  EXPECT_FALSE(
      DoesIntegerMultiplicationOverflow<size_t>(kMaxValue, 0, kMaxValue * 0));
}

TEST(MiscMath, DoesIntegerAdditionOverflow) {
  static const size_t kMaxValue = std::numeric_limits<size_t>::max();
  static const size_t kHalfMaxValue = kMaxValue / 2;

  EXPECT_FALSE(
      DoesIntegerAdditionOverflow<size_t>(kHalfMaxValue, kHalfMaxValue));
  EXPECT_TRUE(DoesIntegerAdditionOverflow<size_t>(kMaxValue, kHalfMaxValue));
  EXPECT_TRUE(DoesIntegerAdditionOverflow<size_t>(1, kMaxValue));
  EXPECT_FALSE(DoesIntegerAdditionOverflow<size_t>(kMaxValue, 0));
  EXPECT_FALSE(DoesIntegerAdditionOverflow<size_t>(0, kMaxValue));
}

TEST(MiscMath, DoesIntSafelyConvertToSizeT) {
  static const int kMaxIntValue = std::numeric_limits<int>::max();
  size_t test_size_t;
  EXPECT_TRUE(DoesIntSafelyConvertToSizeT(kMaxIntValue, &test_size_t));
  EXPECT_EQ(static_cast<size_t>(kMaxIntValue), test_size_t);
  EXPECT_TRUE(DoesIntSafelyConvertToSizeT(0, &test_size_t));
  EXPECT_EQ(0U, test_size_t);
  EXPECT_FALSE(DoesIntSafelyConvertToSizeT(-1, &test_size_t));
}

TEST(MiscMath, DoesSizeTSafelyConvertToInt) {
  static const size_t kMaxIntValue = std::numeric_limits<size_t>::max();
  int test_int;

  EXPECT_FALSE(DoesSizeTSafelyConvertToInt(kMaxIntValue, &test_int));
  EXPECT_TRUE(
      DoesSizeTSafelyConvertToInt(std::numeric_limits<int>::max(), &test_int));
  EXPECT_EQ(std::numeric_limits<int>::max(), test_int);
  EXPECT_TRUE(DoesSizeTSafelyConvertToInt(0, &test_int));
  EXPECT_EQ(0, test_int);
}

TEST(MiscMath, GreatestCommonDivisorTest) {
  const std::vector<int> a_values = {2, 10, 3, 5, 48000, 7, -2, 2, -3};
  const std::vector<int> b_values = {8, 4, 1, 10, 24000, 13, 6, -6, -9};
  const std::vector<int> expected = {2, 2, 1, 5, 24000, 1, 2, 2, 3};

  for (size_t i = 0; i < expected.size(); ++i) {
    EXPECT_EQ(expected[i], FindGcd(a_values[i], b_values[i]));
  }
}

TEST(MiscMath, NextPowTwoTest) {
  const std::vector<size_t> inputs = {2, 10, 3, 5, 48000, 7, 23, 32};
  const std::vector<size_t> expected = {2, 16, 4, 8, 65536, 8, 32, 32};

  for (size_t i = 0; i < inputs.size(); ++i) {
    EXPECT_EQ(expected[i], NextPowTwo(inputs[i]));
  }
}

TEST(MiscMath, EqualSafeEqualArraysTest) {
  const float kOriginalArray[3] = {0.11f, 0.22f, 0.33f};
  const float kSameArray[3] = {0.11f, 0.22f, 0.33f};

  EXPECT_TRUE(EqualSafe(std::begin(kOriginalArray), std::end(kOriginalArray),
                        std::begin(kSameArray), std::end(kSameArray)));
}

TEST(MiscMath, EqualSafeUnequalArraysTest) {
  const std::vector<float> kOriginalArray{0.11f, 0.22f, 0.33f};
  const std::vector<std::vector<float>> kDifferentArrays{
      {-0.22f, 0.22f, 0.33f}, {0.11f, -0.33f, 0.33f}, {0.11f, 0.22f, -0.22f},
      {0.11f, 0.33f, -0.44f}, {0.22f, 0.22f, -0.44f}, {0.22f, 0.33f, -0.55f}};

  for (auto& array : kDifferentArrays) {
    EXPECT_FALSE(EqualSafe(std::begin(kOriginalArray), std::end(kOriginalArray),
                           std::begin(array), std::end(array)));
  }
}

TEST(MiscMath, FastReciprocalSqrtTest) {
  const std::vector<float> kNumbers{130.0f, 13.0f,  1.3f,
                                    0.13f,  0.013f, 0.0013f};
  const float kSqrtEpsilon = 2e-3f;
  for (auto& number : kNumbers) {
    const float actual = std::sqrt(number);
    const float approximate = 1.0f / FastReciprocalSqrt(number);
    EXPECT_LT(std::abs(actual - approximate) / actual, kSqrtEpsilon);
  }
}

TEST(MiscMath, LinearFittingArrayDifferentSizesFails) {
  const std::vector<float> x_array{1.0f, 2.0f};
  const std::vector<float> y_array{3.0f, 4.0f, 5.0f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_FALSE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                        &r_squared));
}

TEST(MiscMath, LinearFittingFewerThanTwoPointsFails) {
  const std::vector<float> x_array{1.0f};
  const std::vector<float> y_array{2.0f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_FALSE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                        &r_squared));
}

TEST(MiscMath, LinearFittingVerticalLineFails) {
  // All points line up on the y-axis.
  const std::vector<float> x_array{0.0f, 0.0f, 0.0f};
  const std::vector<float> y_array{1.0f, 2.0f, 3.0f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_FALSE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                        &r_squared));
}

TEST(MiscMath, LinearFittingHorizontalLine) {
  // All points line up on the x-axis.
  const std::vector<float> x_array{1.0f, 2.0f, 3.0f};
  const std::vector<float> y_array{0.0f, 0.0f, 0.0f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_TRUE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                       &r_squared));
  EXPECT_FLOAT_EQ(slope, 0.0f);
  EXPECT_FLOAT_EQ(intercept, 0.0f);
  EXPECT_FLOAT_EQ(r_squared, 1.0f);
}

TEST(MiscMath, LinearFittingSlopedLine) {
  // All points line up on the line y = 2.0 x + 1.0.
  const std::vector<float> x_array{1.0f, 2.0f, 3.0f, 4.0f};
  const std::vector<float> y_array{3.0f, 5.0f, 7.0f, 9.0f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_TRUE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                       &r_squared));
  EXPECT_FLOAT_EQ(slope, 2.0f);
  EXPECT_FLOAT_EQ(intercept, 1.0f);
  EXPECT_FLOAT_EQ(r_squared, 1.0f);
}

TEST(MiscMath, LinearFittingSlopedLineWithError) {
  // All points lie close to the line y = 2.0 x + 1.0 with some offsets.
  const std::vector<float> x_array{1.002f, 2.001f, 2.998f, 4.003f};
  const std::vector<float> y_array{3.001f, 4.998f, 7.005f, 8.996f};
  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_TRUE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                       &r_squared));

  // Expect that the fitting is close to the line with some error.
  const float error_tolerance = 1e-3f;
  EXPECT_NEAR(slope, 2.0f, error_tolerance);
  EXPECT_NEAR(intercept, 1.0f, error_tolerance);
  EXPECT_NEAR(r_squared, 1.0f, error_tolerance);
}

TEST(MiscMath, LinearFittingUncorrelatedPoints) {
  // All points evenly distributed on a circle y^2 + x^2 = 1.0, which gives
  // the worst coefficient of determination (almost zero).
  const size_t num_points = 20;
  std::vector<float> x_array(num_points, 0.0f);
  std::vector<float> y_array(num_points, 0.0f);
  for (size_t i = 0; i < num_points; ++i) {
    const float theta =
        kTwoPi * static_cast<float>(i) / static_cast<float>(num_points);
    x_array[i] = std::cos(theta);
    y_array[i] = std::sin(theta);
  }

  float slope = 0.0f;
  float intercept = 0.0f;
  float r_squared = 0.0f;
  EXPECT_TRUE(LinearLeastSquareFitting(x_array, y_array, &slope, &intercept,
                                       &r_squared));
  EXPECT_FLOAT_EQ(r_squared, 0.0f);
}

TEST(MiscMath, WorldRotation) {
  // Test rotation around single quaternion axis.
  const float kAngularRandomOffsetRad = 0.5f;
  const float kAngularDifferenceRad = 0.3f;
  Eigen::AngleAxisf rotation_a(kAngularRandomOffsetRad,
                               Eigen::Vector3f::UnitY());
  Eigen::AngleAxisf rotation_b(kAngularRandomOffsetRad + kAngularDifferenceRad,
                               Eigen::Vector3f::UnitY());
  EXPECT_FLOAT_EQ(WorldRotation(rotation_a).AngularDifferenceRad(rotation_b),
                  kAngularDifferenceRad);

  // Test rotation between axis.
  Eigen::AngleAxisf rotation_c(0.0f, Eigen::Vector3f::UnitY());
  Eigen::AngleAxisf rotation_d(kPi, Eigen::Vector3f::UnitZ());
  EXPECT_FLOAT_EQ(WorldRotation(rotation_c).AngularDifferenceRad(rotation_d),
                  kPi);
}

TEST(MiscMath, IntegerPow) {
  const float kFloatValue = 1.5f;
  const float kNegativeFloatValue = -3.3f;
  const size_t kSizeTValue = 11U;
  const int kIntValue = 5;
  const int kNegativeIntValue = -13;

  for (int exponent = 0; exponent < 5; ++exponent) {
    EXPECT_FLOAT_EQ(IntegerPow(kFloatValue, exponent),
                    std::pow(kFloatValue, static_cast<float>(exponent)));
    EXPECT_FLOAT_EQ(
        IntegerPow(kNegativeFloatValue, exponent),
        std::pow(kNegativeFloatValue, static_cast<float>(exponent)));
    EXPECT_EQ(IntegerPow(kSizeTValue, exponent),
              std::pow(kSizeTValue, exponent));
    EXPECT_EQ(IntegerPow(kIntValue, exponent), std::pow(kIntValue, exponent));
    EXPECT_EQ(IntegerPow(kNegativeIntValue, exponent),
              std::pow(kNegativeIntValue, exponent));
  }
}

}  // namespace

}  // namespace vraudio