summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/partitioned_fft_filter.cc
blob: 4a2f071f85174da061a619dfc2ac1185e00eef20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

// Prevent Visual Studio from complaining about std::copy_n.
#if defined(_WIN32)
#define _SCL_SECURE_NO_WARNINGS
#endif

#include "dsp/partitioned_fft_filter.h"

#include <algorithm>

#include "pffft.h"
#include "base/constants_and_types.h"
#include "base/logging.h"
#include "base/misc_math.h"
#include "base/simd_utils.h"

#include "dsp/utils.h"

namespace vraudio {

PartitionedFftFilter::PartitionedFftFilter(size_t filter_size,
                                           size_t frames_per_buffer,
                                           FftManager* fft_manager)
    : PartitionedFftFilter(filter_size, frames_per_buffer, filter_size,
                           fft_manager) {}

PartitionedFftFilter::PartitionedFftFilter(size_t filter_size,
                                           size_t frames_per_buffer,
                                           size_t max_filter_size,
                                           FftManager* fft_manager)
    : fft_manager_(fft_manager),
      fft_size_(fft_manager_->GetFftSize()),
      chunk_size_(fft_size_ / 2),
      frames_per_buffer_(frames_per_buffer),
      max_filter_size_(
          CeilToMultipleOfFramesPerBuffer(max_filter_size, frames_per_buffer_)),
      max_num_partitions_(max_filter_size_ / frames_per_buffer_),
      filter_size_(
          CeilToMultipleOfFramesPerBuffer(filter_size, frames_per_buffer_)),
      num_partitions_(filter_size_ / frames_per_buffer_),
      kernel_freq_domain_buffer_(max_num_partitions_, fft_size_),
      buffer_selector_(0),
      curr_front_buffer_(0),
      freq_domain_buffer_(max_num_partitions_, fft_size_),
      filtered_time_domain_buffers_(kNumStereoChannels, fft_size_),
      freq_domain_accumulator_(kNumMonoChannels, fft_size_),
      temp_zeropad_buffer_(kNumMonoChannels, chunk_size_),
      temp_kernel_chunk_buffer_(kNumMonoChannels, frames_per_buffer_) {
  // Ensure that |frames_per_buffer_| is less than or equal to the final
  // partition |chunk_size_|.
  CHECK(fft_manager_);
  CHECK_LE(frames_per_buffer_, chunk_size_);
  CHECK_GE(filter_size_, filter_size);
  CHECK_GE(max_filter_size_, max_filter_size);
  // Ensure that |filter_size_| does not exceed |max_filter_size_|.
  CHECK_LE(filter_size, max_filter_size_);
  // Make sure all partitions have the same size.
  CHECK_EQ(num_partitions_ * frames_per_buffer_, filter_size_);
  CHECK_EQ(max_num_partitions_ * frames_per_buffer_, max_filter_size_);

  Clear();
}

void PartitionedFftFilter::Clear() {
  // Reset valid part of the filter |FreqDomainBuffer|s to zero.
  for (size_t i = 0; i < num_partitions_; ++i) {
    kernel_freq_domain_buffer_[i].Clear();
    freq_domain_buffer_[i].Clear();
  }
  // Reset filter state to zero.
  filtered_time_domain_buffers_.Clear();
}

void PartitionedFftFilter::ResetFreqDomainBuffers(size_t new_filter_size) {

  // Update the filter size.
  DCHECK_GT(new_filter_size, 0U);
  filter_size_ =
      CeilToMultipleOfFramesPerBuffer(new_filter_size, frames_per_buffer_);
  DCHECK_LE(filter_size_, max_filter_size_);

  const size_t old_num_partitions = num_partitions_;
  num_partitions_ = filter_size_ / frames_per_buffer_;
  const size_t min_num_partitions =
      std::min(old_num_partitions, num_partitions_);

  if (curr_front_buffer_ > 0) {

    FreqDomainBuffer temp_freq_domain_buffer(min_num_partitions, fft_size_);
    // Copy in |min_num_partitions| to |temp_freq_domain_buffer|, starting with
    // the partition at |curr_front_buffer_| to be moved back to the beginning
    // of |freq_domain_buffer| .
    for (size_t i = 0; i < min_num_partitions; ++i) {
      temp_freq_domain_buffer[i] =
          freq_domain_buffer_[(curr_front_buffer_ + i) % old_num_partitions];
    }
    // Replace the partitions.
    for (size_t i = 0; i < min_num_partitions; ++i) {
      freq_domain_buffer_[i] = temp_freq_domain_buffer[i];
    }
    curr_front_buffer_ = 0;
  }
  // Clear out the remaining partitions in case the filter size grew.
  for (size_t i = old_num_partitions; i < num_partitions_; ++i) {
    freq_domain_buffer_[i].Clear();
  }
}

void PartitionedFftFilter::ReplacePartition(
    size_t partition_index, const AudioBuffer::Channel& kernel_chunk) {
  DCHECK_GE(partition_index, 0U);
  DCHECK_LT(partition_index, num_partitions_);
  DCHECK_EQ(kernel_chunk.size(), frames_per_buffer_);

  fft_manager_->FreqFromTimeDomain(
      kernel_chunk, &kernel_freq_domain_buffer_[partition_index]);
}

void PartitionedFftFilter::SetFilterLength(size_t new_filter_size) {
  DCHECK_GT(new_filter_size, 0U);
  new_filter_size =
      CeilToMultipleOfFramesPerBuffer(new_filter_size, frames_per_buffer_);
  DCHECK_LE(new_filter_size, max_filter_size_);

  const size_t new_num_partitions = new_filter_size / frames_per_buffer_;
  DCHECK_LE(new_num_partitions, max_num_partitions_);

  // Clear out the remaining partitions in case the filter size grew.
  for (size_t i = num_partitions_; i < new_num_partitions; ++i) {
    kernel_freq_domain_buffer_[i].Clear();
  }
  // Call |ResetFreqDomainBuffers| to make sure that the input buffers are also
  // correctly resized.
  ResetFreqDomainBuffers(new_filter_size);
}

void PartitionedFftFilter::SetTimeDomainKernel(
    const AudioBuffer::Channel& kernel) {


  // Precomputes a set of floor(|filter_size_|/(|fft_size|/2)) frequency domain
  // kernels, one for each partition of the |kernel|. This allows to reduce
  // computational complexity if a fixed set of filter kernels is needed. The
  // size of the |kernel| can be arbitrarily long but must not be less than
  // |fft_size_|/2. Filter lengths which are multiples of |fft_size_|/2 are most
  // efficient.

  // Calculate the new number of partitions as filter length may have changed.
  // This number is set to 1 if the filter length is smaller than
  // |frames_per_buffer_|.
  const size_t new_num_partitions =
      CeilToMultipleOfFramesPerBuffer(kernel.size(), frames_per_buffer_) /
      frames_per_buffer_;

  auto& padded_channel = temp_kernel_chunk_buffer_[0];
  // Break up time domain filter into chunks and FFT each of these separately.
  for (size_t partition = 0; partition < new_num_partitions; ++partition) {
    DCHECK_LE(partition * frames_per_buffer_, kernel.size());
    const float* chunk_begin_itr =
        kernel.begin() + partition * frames_per_buffer_;
    const size_t num_frames_to_copy =
        std::min<size_t>(frames_per_buffer_, kernel.end() - chunk_begin_itr);

    std::copy_n(chunk_begin_itr, num_frames_to_copy, padded_channel.begin());
    // This fill only occurs on the very last partition.
    std::fill(padded_channel.begin() + num_frames_to_copy, padded_channel.end(),
              0.0f);
    fft_manager_->FreqFromTimeDomain(padded_channel,
                                     &kernel_freq_domain_buffer_[partition]);
  }

  if (new_num_partitions != num_partitions_) {
    const size_t new_filter_size = new_num_partitions * frames_per_buffer_;
    ResetFreqDomainBuffers(new_filter_size);
  }
}

void PartitionedFftFilter::SetFreqDomainKernel(const FreqDomainBuffer& kernel) {
  DCHECK_LE(kernel.num_channels(), max_num_partitions_);
  DCHECK_EQ(kernel.num_frames(), fft_size_);

  const size_t new_num_partitions = kernel.num_channels();
  for (size_t i = 0; i < new_num_partitions; ++i) {
    kernel_freq_domain_buffer_[i] = kernel[i];
  }
  if (new_num_partitions != num_partitions_) {
    const size_t new_filter_size = new_num_partitions * frames_per_buffer_;
    ResetFreqDomainBuffers(new_filter_size);
  }
}

void PartitionedFftFilter::Filter(const FreqDomainBuffer::Channel& input) {


  DCHECK_EQ(input.size(), fft_size_);
  std::copy_n(input.begin(), fft_size_,
              freq_domain_buffer_[curr_front_buffer_].begin());
  buffer_selector_ = !buffer_selector_;
  freq_domain_accumulator_.Clear();
  auto* accumulator_channel = &freq_domain_accumulator_[0];

  for (size_t i = 0; i < num_partitions_; ++i) {
    // Complex vector product in frequency domain with filter kernel.
    const size_t modulo_index = (curr_front_buffer_ + i) % num_partitions_;

    // Perform inverse scaling along with accumulation of last fft buffer.
    fft_manager_->FreqDomainConvolution(freq_domain_buffer_[modulo_index],
                                        kernel_freq_domain_buffer_[i],
                                        accumulator_channel);
  }
  // Our modulo based index.
  curr_front_buffer_ =
      (curr_front_buffer_ + num_partitions_ - 1) % num_partitions_;
  // Perform inverse FFT transform of |freq_domain_buffer_| and store the
  // result back in |filtered_time_domain_buffers_|.
  fft_manager_->TimeFromFreqDomain(
      *accumulator_channel, &filtered_time_domain_buffers_[buffer_selector_]);
}

void PartitionedFftFilter::GetFilteredSignal(AudioBuffer::Channel* output) {

  DCHECK(output);
  DCHECK_EQ(output->size(), frames_per_buffer_);

  const size_t curr_buffer = buffer_selector_;
  const size_t prev_buffer = !buffer_selector_;

  // Overlap add.
  if (frames_per_buffer_ == chunk_size_) {
    AddPointwise(chunk_size_, &(filtered_time_domain_buffers_[curr_buffer][0]),
                 &filtered_time_domain_buffers_[prev_buffer][chunk_size_],
                 &((*output)[0]));
  } else {
    // If we have a non power of two |frames_per_buffer| we will have to perform
    // the overlap add and then a copy, as buffer lengths are not a multiple of
    // |chunk_size_|. NOTE: Indexing into |filtered_time_domain_buffers_| for a
    // non power of two |frames_per_buffer_| means that the |input_b| parameter
    // of |AddPointwiseOutOfPlace| may not be aligned in memory and thus we will
    // not be able to use SIMD for the overlap add operation.
    const auto& first_channel = filtered_time_domain_buffers_[curr_buffer];
    const auto& second_channel = filtered_time_domain_buffers_[prev_buffer];
    auto& output_channel = temp_zeropad_buffer_[0];
    for (size_t i = 0; i < frames_per_buffer_; ++i) {
      output_channel[i] =
          first_channel[i] + second_channel[i + frames_per_buffer_];
    }
    std::copy_n(temp_zeropad_buffer_[0].begin(), frames_per_buffer_,
                output->begin());
  }
}

}  // namespace vraudio