summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/partitioned_fft_filter_test.cc
blob: 230ec254484ce5e60957ec5c8fd9cb234a96607c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

// Prevent Visual Studio from complaining about std::copy_n.
#if defined(_WIN32)
#define _SCL_SECURE_NO_WARNINGS
#endif

#include "dsp/partitioned_fft_filter.h"

#include <cmath>
#include <iostream>
#include <vector>

#include "third_party/googletest/googletest/include/gtest/gtest.h"
#include "base/audio_buffer.h"
#include "base/constants_and_types.h"
#include "base/logging.h"
#include "dsp/fft_manager.h"

namespace vraudio {

namespace {

// Permitted error in the output relative to the expected output. This value is
// 1e-3 as expected output is rounded for readability.
const float kFftEpsilon = 1e-3f;

// Length of input buffer for use in LongerShorterKernelTest.
const size_t kLength = 32;

// Helper function for use in LongerShorterKernelTest. Passes a dirac of length
// kLength through a filter followed by |zeros_iteration| zero vectors of the
// same length.
void ProcessFilterWithImpulseSignal(PartitionedFftFilter* filter,
                                    FftManager* fft_manager,
                                    size_t zeros_iteration,
                                    std::vector<float>* output_signal) {
  AudioBuffer signal_buffer(kNumMonoChannels, kLength);
  signal_buffer.Clear();
  signal_buffer[0][0] = 1.0f;
  AudioBuffer output_buffer(kNumMonoChannels, kLength);

  // Begin filtering with the original (small) kernel.
  PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(kNumMonoChannels,
                                                            kLength * 2);
  fft_manager->FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
  filter->Filter(freq_domain_buffer[0]);
  filter->GetFilteredSignal(&output_buffer[0]);
  output_signal->insert(output_signal->end(), output_buffer[0].begin(),
                        output_buffer[0].end());
  // Filter zeros to flush out internal buffers.
  std::fill(signal_buffer[0].begin(), signal_buffer[0].end(), 0.0f);
  for (size_t i = 0; i < zeros_iteration; ++i) {
    fft_manager->FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
    filter->Filter(freq_domain_buffer[0]);
    filter->GetFilteredSignal(&output_buffer[0]);
    output_signal->insert(output_signal->end(), output_buffer[0].begin(),
                          output_buffer[0].end());
  }
}

// Tests that convolution will work correctly when the input buffer length is
// not a power of two.
TEST(PartitionedFftFilterTest, NonPow2Test) {
  // Non power of two input buffer length.
  const size_t kMinNonPowTwo = 13;
  const size_t kMaxNonPowTwo = 41;
  for (size_t buffer_length = kMinNonPowTwo; buffer_length <= kMaxNonPowTwo;
       buffer_length += 2) {
    for (size_t filter_length = kLength; filter_length <= 3 * kLength;
         filter_length += kLength) {
      // Use a filter length that is a power of two.
      AudioBuffer kernel_buffer(kNumMonoChannels, filter_length);
      // Place to collect all of the output.
      std::vector<float> output_signal;
      // First set the kernel to a linear ramp.
      for (size_t i = 0; i < filter_length; ++i) {
        kernel_buffer[0][i] = static_cast<float>(i) / 4.0f;
      }
      FftManager fft_manager(buffer_length);
      PartitionedFftFilter filter(filter_length, buffer_length, &fft_manager);
      filter.SetTimeDomainKernel(kernel_buffer[0]);

      // Kronecker delta signal.
      AudioBuffer signal_buffer(kNumMonoChannels, buffer_length);
      signal_buffer.Clear();
      signal_buffer[0][0] = 1.0f;
      AudioBuffer output_buffer(kNumMonoChannels, buffer_length);
      // Create a freq domain buffer which should be fft_size
      // (i.e. NextPowTwo(buffer_length) * 2).
      PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(
          kNumMonoChannels, NextPowTwo(buffer_length) * 2);
      freq_domain_buffer.Clear();
      fft_manager.FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
      // Perform convolution.
      filter.Filter(freq_domain_buffer[0]);
      filter.GetFilteredSignal(&output_buffer[0]);
      output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                           output_buffer[0].end());
      while (output_signal.size() < kernel_buffer.num_frames()) {
        // Flush with zeros.
        freq_domain_buffer.Clear();
        output_buffer.Clear();
        filter.Filter(freq_domain_buffer[0]);
        filter.GetFilteredSignal(&output_buffer[0]);
        output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                             output_buffer[0].end());
      }
      // Ensure the output is identical to the input buffer. (large epsilon
      // needed due to large values in filter).
      for (size_t i = 0; i < kernel_buffer.num_frames(); ++i) {
        EXPECT_NEAR(kernel_buffer[0][i], output_signal[i],
                    kEpsilonFloat * 4.0f);
      }
    }
  }
}

// Tests that the outputs from the convolution are correct based on a
// precomputed vector from MATLAB.
TEST(PartitionedFftFilterTest, CorrectNonPowTwoOutputTest) {
  const size_t kBufferSize = 15;

  // Create an arbirary vector of size 16 for filter and 15 for input signal.
  const std::vector<float> kernel = {1.0f, 3.0f, 0.0f, 2.0f, 5.0f, 1.0f,
                                     3.0f, 2.0f, 0.0f, 4.0f, 1.0f, 3.0f,
                                     0.0f, 2.0f, 1.0f, 2.0f};
  const std::vector<float> signal = {2.0f, 3.0f, 3.0f, 4.0f, 0.0f,
                                     0.0f, 2.0f, 1.0f, 2.0f, 1.0f,
                                     3.0f, 2.0f, 4.0f, 0.0f, 2.0f};
  // Ideal output vector verified with MATLAB.
  const std::vector<float> ideal_output = {
      2.0f,  9.0f,  12.0f, 17.0f, 28.0f, 23.0f, 34.0f, 43.0f, 24.0f,
      37.0f, 40.0f, 43.0f, 57.0f, 49.0f, 50.0f, 57.0f, 65.0f, 57.0f,
      60.0f, 61.0f, 47.0f, 74.0f, 59.0f, 55.0f, 48.0f, 62.0f, 51.0f,
      69.0f, 51.0f, 54.0f, 55.0f, 56.0f, 45.0f, 43.0f, 33.0f, 24.0f,
      40.0f, 16.0f, 31.0f, 11.0f, 22.0f, 8.0f,  12.0f, 2.0f,  4.0f};

  AudioBuffer kernel_buffer(kNumMonoChannels, kernel.size());
  kernel_buffer[0] = kernel;

  AudioBuffer signal_buffer(kNumMonoChannels, signal.size());
  signal_buffer[0] = signal;

  AudioBuffer output_buffer(kNumMonoChannels, signal.size());

  std::vector<float> output_signal;
  output_signal.reserve(kernel.size() + signal.size() * 3);

  FftManager fft_manager(kBufferSize);
  PartitionedFftFilter filter(kernel.size(), kBufferSize, &fft_manager);
  filter.SetTimeDomainKernel(kernel_buffer[0]);

  PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(
      1, NextPowTwo(kBufferSize) * 2);
  fft_manager.FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
  filter.Filter(freq_domain_buffer[0]);
  filter.GetFilteredSignal(&output_buffer[0]);
  output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                       output_buffer[0].end());

  // Filter again with the same input.
  filter.Filter(freq_domain_buffer[0]);
  filter.GetFilteredSignal(&output_buffer[0]);
  output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                       output_buffer[0].end());

  // Filter zeros to flush out internal buffers.
  signal_buffer.Clear();
  fft_manager.FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
  filter.Filter(freq_domain_buffer[0]);
  filter.GetFilteredSignal(&output_buffer[0]);
  output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                       output_buffer[0].end());

  for (size_t sample = 0; sample < ideal_output.size(); ++sample) {
    EXPECT_NEAR(output_signal[sample], ideal_output[sample], kFftEpsilon);
  }
}

// Tests that we can switch to a time domain filter kernel of greater
// length than the original kernal provided at instantiation. It then tests that
// we can switch to a time domain filter kernel of lesser length than the
// original kernel.
TEST(PartitionedFftFilterTest, LongerShorterTimeDomainKernelTest) {
  AudioBuffer small_kernel_buffer(kNumMonoChannels, kLength);
  AudioBuffer big_kernel_buffer(kNumMonoChannels, kLength * 2);

  // Place to collect all of the output.
  std::vector<float> total_output_signal;

  // First set the kernels to linear ramps of differing lengths.
  for (size_t i = 0; i < kLength * 2; ++i) {
    if (i < kLength) {
      small_kernel_buffer[0][i] = static_cast<float>(i) / 4.0f;
    }
    big_kernel_buffer[0][i] = static_cast<float>(i) / 4.0f;
  }

  FftManager fft_manager(kLength);
  PartitionedFftFilter filter(small_kernel_buffer.num_frames(), kLength,
                              big_kernel_buffer.num_frames(), &fft_manager);

  filter.SetTimeDomainKernel(small_kernel_buffer[0]);
  ProcessFilterWithImpulseSignal(&filter, &fft_manager, 2,
                                 &total_output_signal);

  filter.SetTimeDomainKernel(big_kernel_buffer[0]);
  ProcessFilterWithImpulseSignal(&filter, &fft_manager, 3,
                                 &total_output_signal);

  filter.SetTimeDomainKernel(small_kernel_buffer[0]);
  ProcessFilterWithImpulseSignal(&filter, &fft_manager, 2,
                                 &total_output_signal);

  // Test to see if output from both kernels is present kLength * 2 zeros in
  // between.
  for (size_t i = 0; i < kLength; ++i) {
    EXPECT_NEAR(static_cast<float>(i) / 4.0f, total_output_signal[i],
                kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + kLength], kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + 2 * kLength], kFftEpsilon);
    EXPECT_NEAR(static_cast<float>(i) / 4.0f,
                total_output_signal[i + 3 * kLength], kFftEpsilon);
    EXPECT_NEAR(static_cast<float>(i + kLength) / 4.0f,
                total_output_signal[i + 4 * kLength], kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + 5 * kLength], kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + 6 * kLength], kFftEpsilon);
    EXPECT_NEAR(static_cast<float>(i) / 4.0f,
                total_output_signal[i + 7 * kLength], kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + 8 * kLength], kFftEpsilon);
    EXPECT_NEAR(0.0f, total_output_signal[i + 9 * kLength], kFftEpsilon);
  }
}

// Tests that the outputs from the same convolution performed with different FFT
// sizes will all return equal results, including when the FFT size is equal to
// the kernel size.
TEST(PartitionedFftFilterTest, PartitionSizeInvarianceTest) {
  const std::vector<size_t> kFftSizes = {32, 64, 128};

  // Create an arbirary vector of size 128 for both filter and input signal.
  const size_t max_fft_size = kFftSizes[kFftSizes.size() - 1];
  AudioBuffer kernel_buffer(kNumMonoChannels, max_fft_size);
  AudioBuffer signal_buffer(kNumMonoChannels, max_fft_size);
  for (size_t i = 0; i < max_fft_size; ++i) {
    kernel_buffer[0][i] = static_cast<float>(static_cast<int>(i) % 13 - 7);
    signal_buffer[0][i] = static_cast<float>(static_cast<int>(i) % 17 - 9);
  }

  std::vector<std::vector<float>> output_signal(
      kFftSizes.size(), std::vector<float>(max_fft_size * 2));

  // Iterate over 3 fft sizes.
  for (size_t fft_idx = 0; fft_idx < kFftSizes.size(); ++fft_idx) {
    const size_t chunk_size = kFftSizes[fft_idx] / 2;
    FftManager fft_manager(chunk_size);
    PartitionedFftFilter filter(max_fft_size, chunk_size, &fft_manager);
    filter.SetTimeDomainKernel(kernel_buffer[0]);

    AudioBuffer input_chunk(kNumMonoChannels, chunk_size);
    AudioBuffer output_chunk(kNumMonoChannels, chunk_size);
    PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(
        1, kFftSizes[fft_idx]);

    // Break the input signal into chunks of fft size / 2.
    for (size_t chunk = 0; chunk < (max_fft_size / chunk_size); ++chunk) {
      AudioBuffer signal_block(kNumMonoChannels, chunk_size);
      std::copy_n(signal_buffer[0].begin() + (chunk * chunk_size), chunk_size,
                  signal_block[0].begin());

      fft_manager.FreqFromTimeDomain(signal_block[0], &freq_domain_buffer[0]);
      filter.Filter(freq_domain_buffer[0]);
      filter.GetFilteredSignal(&output_chunk[0]);
      output_signal[fft_idx].insert(output_signal[fft_idx].end(),
                                    output_chunk[0].begin(),
                                    output_chunk[0].end());
    }
  }
  // Now test the outputs are pretty much equal to one another (to the first).
  for (size_t i = 1; i < kFftSizes.size(); ++i) {
    for (size_t sample = 0; sample < output_signal[0].size(); ++sample) {
      EXPECT_NEAR(output_signal[0][sample], output_signal[i][sample],
                  kFftEpsilon);
    }
  }
}

// Tests that the outputs from the convolution are correct based on a
// precomputed vector from MATLAB.
TEST(PartitionedFftFilterTest, CorrectOutputTest) {
  const size_t kBufferSize = 32;

  // Create an arbirary vector of size 32 for both filter and input signal.
  const std::vector<float> kernel = {
      1.0f, 3.0f, 0.0f, 2.0f, 5.0f, 1.0f, 3.0f, 2.0f, 0.0f, 4.0f, 1.0f,
      3.0f, 0.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 0.0f, 3.0f, 5.0f, 2.0f,
      3.0f, 0.0f, 1.0f, 4.0f, 2.0f, 0.0f, 1.0f, 0.0f, 2.0f, 1.0f};
  const std::vector<float> signal = {
      2.0f, 1.0f, 3.0f, 3.0f, 2.0f, 4.0f, 2.0f, 1.0f, 3.0f, 4.0f, 5.0f,
      3.0f, 2.0f, 2.0f, 5.0f, 4.0f, 5.0f, 3.0f, 3.0f, 4.0f, 0.0f, 0.0f,
      2.0f, 1.0f, 2.0f, 1.0f, 3.0f, 2.0f, 4.0f, 0.0f, 2.0f, 1.0f};

  AudioBuffer kernel_buffer(kNumMonoChannels, kernel.size());
  kernel_buffer[0] = kernel;

  AudioBuffer signal_buffer(kNumMonoChannels, signal.size());
  signal_buffer[0] = signal;

  AudioBuffer output_buffer(kNumMonoChannels, kernel.size());

  std::vector<float> output_signal;
  output_signal.reserve(kernel.size() + signal.size());

  FftManager fft_manager(kBufferSize);
  PartitionedFftFilter filter(kernel.size(), kBufferSize, &fft_manager);
  filter.SetTimeDomainKernel(kernel_buffer[0]);

  PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(kNumMonoChannels,
                                                            kBufferSize * 2);
  fft_manager.FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
  filter.Filter(freq_domain_buffer[0]);
  filter.GetFilteredSignal(&output_buffer[0]);
  output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                       output_buffer[0].end());

  // Filter zeros to flush out internal buffers.
  signal_buffer.Clear();
  fft_manager.FreqFromTimeDomain(signal_buffer[0], &freq_domain_buffer[0]);
  filter.Filter(freq_domain_buffer[0]);
  filter.GetFilteredSignal(&output_buffer[0]);
  output_signal.insert(output_signal.end(), output_buffer[0].begin(),
                       output_buffer[0].end());

  // Ideal output vector verified with MATLAB.
  const std::vector<float> kIdeal = {
      2.0f,   7.0f,   6.0f,   16.0f,  23.0f,  23.0f,  42.0f,  36.0f,  38.0f,
      62.0f,  51.0f,  66.0f,  67.0f,  72.0f,  88.0f,  90.0f,  90.0f,  95.0f,
      104.0f, 118.0f, 127.0f, 113.0f, 123.0f, 131.0f, 116.0f, 144.0f, 119.0f,
      126.0f, 138.0f, 138.0f, 153.0f, 142.0f, 130.0f, 125.0f, 137.0f, 142.0f,
      121.0f, 113.0f, 99.0f,  112.0f, 84.0f,  89.0f,  68.0f,  66.0f,  74.0f,
      54.0f,  54.0f,  59.0f,  53.0f,  42.0f,  42.0f,  26.0f,  32.0f,  28.0f,
      18.0f,  15.0f,  19.0f,  9.0f,   12.0f,  5.0f,   4.0f,   4.0f,   1.0f};
  for (size_t sample = 0; sample < kIdeal.size(); ++sample) {
    EXPECT_NEAR(output_signal[sample], kIdeal[sample], kFftEpsilon);
  }
}

// Tests that the outputs from the convolution are equal to zero when the inputs
// are all zero.
TEST(PartitionedFftFilterTest, ZeroInputZeroOutputTest) {
  const size_t kChunkSize = 16;

  // Create an arbirary vector of size 16 for filter.
  const std::vector<float> kernel = {1.0f, 3.0f, 0.0f, 2.0f, 5.0f, 1.0f,
                                     3.0f, 2.0f, 0.0f, 4.0f, 1.0f, 3.0f,
                                     0.0f, 2.0f, 1.0f, 2.0f};

  AudioBuffer kernel_buffer(kNumMonoChannels, kernel.size());
  kernel_buffer[0] = kernel;

  std::vector<float> output_signal;
  output_signal.reserve(kernel.size() * 2);

  FftManager fft_manager(kChunkSize);
  PartitionedFftFilter filter(kernel_buffer[0].size(), kChunkSize,
                              &fft_manager);
  filter.SetTimeDomainKernel(kernel_buffer[0]);

  AudioBuffer output_chunk(kNumMonoChannels, kChunkSize);

  // Filter zeros to flush out internal buffers.
  AudioBuffer zero_signal(kNumMonoChannels, kChunkSize);
  zero_signal.Clear();

  PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(kNumMonoChannels,
                                                            kChunkSize * 2);
  for (size_t j = 0; j < 2 * kernel.size() / kChunkSize; ++j) {
    fft_manager.FreqFromTimeDomain(zero_signal[0], &freq_domain_buffer[0]);
    filter.Filter(freq_domain_buffer[0]);
    filter.GetFilteredSignal(&output_chunk[0]);
    output_signal.insert(output_signal.end(), output_chunk[0].begin(),
                         output_chunk[0].end());
  }

  // Check that all output samples are practically 0.0.
  for (size_t sample = 0; sample < output_signal.size(); ++sample) {
    EXPECT_EQ(output_signal[sample], 0.0f);
  }
}

// This test uses a simple shifted dirac impulse as kernel and checks the
// resulting signal delay.
TEST(PartitionedFftFilterTest, DiracImpulseTest) {
  const size_t kFilterSize = 32;
  const size_t kNumBlocks = 4;
  const size_t kSignalSize = kFilterSize * kNumBlocks;

  // Generate a saw tooth signal.
  AudioBuffer test_signal(kNumMonoChannels, kSignalSize);
  for (size_t i = 0; i < kSignalSize; ++i) {
    test_signal[0][i] = static_cast<float>(i % 5);
  }

  FftManager fft_manager(kFilterSize);
  PartitionedFftFilter fft_filter(kFilterSize, kFilterSize, &fft_manager);

  AudioBuffer kernel(kNumMonoChannels, kFilterSize);
  // Construct dirac impulse response. This kernel should result in a delay of
  // length "|kFilterSize| / 2".
  kernel.Clear();
  kernel[0][kFilterSize / 2] = 1.0f;
  fft_filter.SetTimeDomainKernel(kernel[0]);

  std::vector<float> filtered_signal;
  filtered_signal.reserve(kSignalSize);

  AudioBuffer filtered_block(kNumMonoChannels, kFilterSize);
  PartitionedFftFilter::FreqDomainBuffer freq_domain_buffer(kNumMonoChannels,
                                                            kFilterSize * 2);

  for (size_t b = 0; b < kNumBlocks; ++b) {
    AudioBuffer signal_block(kNumMonoChannels, kFilterSize);
    std::copy_n(test_signal[0].begin() + b * kFilterSize, kFilterSize,
                signal_block[0].begin());

    fft_manager.FreqFromTimeDomain(signal_block[0], &freq_domain_buffer[0]);
    fft_filter.Filter(freq_domain_buffer[0]);
    fft_filter.GetFilteredSignal(&filtered_block[0]);
    filtered_signal.insert(filtered_signal.end(), filtered_block[0].begin(),
                           filtered_block[0].end());
  }

  for (size_t i = 0; i < kFilterSize / 2; ++i) {
    // First "filter_size / 2" samples should be zero padded due to the applied
    // delay.
    EXPECT_NEAR(filtered_signal[i], 0.0f, 1e-5f);
  }
  for (size_t i = kFilterSize / 2; i < kSignalSize; ++i) {
    // Test if signal is delayed by exactly |kFilterSize| / 2 samples.
    EXPECT_NEAR(filtered_signal[i], test_signal[0][i - kFilterSize / 2], 1e-5f);
  }
}

}  // namespace

class PartitionedFftFilterFrequencyBufferTest : public ::testing::Test {
 protected:
  PartitionedFftFilterFrequencyBufferTest() {}
  // Virtual methods from ::testing::Test
  ~PartitionedFftFilterFrequencyBufferTest() override {}
  void SetUp() override {}
  void TearDown() override {}

  void SetFreqDomainBuffer(PartitionedFftFilter* filter,
                           FftManager* fft_manager) {
    std::vector<std::vector<float>> values_vectors(
        filter->num_partitions_,
        std::vector<float>(fft_manager->GetFftSize(), 0.0f));
    for (size_t i = 0; i < filter->num_partitions_; ++i) {
      values_vectors[i][0] = static_cast<float>(i + 1);
      filter->freq_domain_buffer_[i] = values_vectors[i];
    }
  }

  void SetFreqDomainKernel(PartitionedFftFilter* filter) {
    // Put a Kronecker delta in the first partition, a kronecker delta times 2
    // in the second, a kronecker delta times 3 in the third, etc...
    AudioBuffer kernel(kNumMonoChannels, filter->filter_size_);
    for (size_t i = 0; i < filter->num_partitions_; ++i) {
      for (size_t sample = 0; sample < filter->chunk_size_; ++sample) {
        kernel[0][i * filter->chunk_size_ + sample] = static_cast<float>(i + 1);
      }
    }
    filter->SetTimeDomainKernel(kernel[0]);
  }

  void TestFrequencyBufferReset(size_t initial_size, size_t bigger_size,
                                size_t smaller_size,
                                PartitionedFftFilter* filter,
                                FftManager* fft_manager) {
    const size_t initial_num_partitions = 2 * initial_size;
    const size_t bigger_num_partitions = 2 * bigger_size;
    const size_t smaller_num_partitions = 2 * smaller_size;
    // Set the |freq_domain_buffer_| inside |filter| such that it has known
    // values.
    SetFreqDomainBuffer(filter, fft_manager);
    AudioBuffer initial_freq_domain_buffer;
    initial_freq_domain_buffer = filter->freq_domain_buffer_;

    // Set the current front buffer to something other than zero and less than
    // the number of partitions. If |num_partitions_| is 1 it is set to 0.
    filter->curr_front_buffer_ = filter->num_partitions_ / 2;

    // Reset the |freq_domain_buffers_| for a new bigger kernel size.
    filter->ResetFreqDomainBuffers(bigger_size * fft_manager->GetFftSize());
    AudioBuffer bigger_freq_domain_buffer;
    bigger_freq_domain_buffer = filter->freq_domain_buffer_;
    // Verify that the input index has been reset.
    EXPECT_EQ(filter->curr_front_buffer_, 0U);

    // Set the current front buffer to something other than zero and less than
    // the number of partitions. If |num_partitions_| is 1 it is set to 0.
    filter->curr_front_buffer_ = filter->num_partitions_ / 2;

    // Reset the |freq_domain_buffers_| for a new smaller kernel size.
    filter->ResetFreqDomainBuffers(smaller_size * fft_manager->GetFftSize());
    AudioBuffer smaller_freq_domain_buffer;
    smaller_freq_domain_buffer = filter->freq_domain_buffer_;
    // Verify that the input index has been reset.
    EXPECT_EQ(filter->curr_front_buffer_, 0U);

    // Expect the following to have happened:
    // Initially there are 16 partitions with the first element in each channel
    // of the |freq_domain_buffers_| in |filter| being 1, 2, ..., 16.
    for (size_t i = 0; i < initial_num_partitions; ++i) {
      EXPECT_EQ(initial_freq_domain_buffer[i][0], static_cast<float>(i + 1));
    }

    // |curr_front_buffer_| is set to 8. After a reset with a larger kernel we
    // expect all of the buffers to have been copied into the new
    // |freq_domain_buffers_| starting from |curr_front_buffer_| and wrapping
    // round with the remaining channels set to zero.
    for (size_t i = 0; i < initial_num_partitions; ++i) {
      EXPECT_EQ(bigger_freq_domain_buffer[i][0],
                initial_freq_domain_buffer[(initial_size + i) %
                                           initial_num_partitions][0]);
    }
    for (size_t i = initial_num_partitions; i < bigger_num_partitions; ++i) {
      EXPECT_EQ(bigger_freq_domain_buffer[i][0], 0.0f);
    }

    // |curr_front_buffer_| is then set to 5. After a reset with a smaller
    // kernel ammounting to 10 partitions we expect just the first 10 buffers to
    // have been copied into the new |freq_domain_buffers_| starting from
    // |curr_front_buffer_| and wrapping round.
    for (size_t i = 0; i < smaller_num_partitions; ++i) {
      EXPECT_EQ(smaller_freq_domain_buffer[i][0],
                bigger_freq_domain_buffer[(bigger_size + i) %
                                          bigger_num_partitions][0]);
    }
  }

  void TestLongerShorterFrequencyDomainKernel(size_t buffer_size) {
    AudioBuffer small_kernel_buffer(kNumMonoChannels, buffer_size);
    AudioBuffer big_kernel_buffer(kNumMonoChannels, 2 * buffer_size);

    // Place to collect all of the output.
    std::vector<float> total_output_signal;

    // First set the kernels to linear ramps of differing lengths.
    for (size_t i = 0; i < 2 * buffer_size; ++i) {
      if (i < buffer_size) {
        small_kernel_buffer[0][i] = static_cast<float>(i) / 4.0f;
      }
      big_kernel_buffer[0][i] = static_cast<float>(i) / 4.0f;
    }

    FftManager fft_manager(buffer_size);
    PartitionedFftFilter filter(buffer_size, buffer_size, 2 * buffer_size,
                                &fft_manager);

    // Generate the small and large frequency domain buffers.
    filter.SetTimeDomainKernel(small_kernel_buffer[0]);
    const size_t small_num_partitions = filter.num_partitions_;
    PartitionedFftFilter::FreqDomainBuffer small_freq_domain_kernel =
        PartitionedFftFilter::FreqDomainBuffer(small_num_partitions,
                                               fft_manager.GetFftSize());
    for (size_t i = 0; i < small_num_partitions; ++i) {
      small_freq_domain_kernel[i] = filter.kernel_freq_domain_buffer_[i];
    }

    filter.SetTimeDomainKernel(big_kernel_buffer[0]);
    const size_t big_num_partitions = filter.num_partitions_;
    PartitionedFftFilter::FreqDomainBuffer big_freq_domain_kernel =
        PartitionedFftFilter::FreqDomainBuffer(big_num_partitions,
                                               fft_manager.GetFftSize());
    for (size_t i = 0; i < big_num_partitions; ++i) {
      big_freq_domain_kernel[i] = filter.kernel_freq_domain_buffer_[i];
    }

    filter.SetFreqDomainKernel(small_freq_domain_kernel);
    ProcessFilterWithImpulseSignal(&filter, &fft_manager, 2,
                                   &total_output_signal);

    filter.SetFreqDomainKernel(big_freq_domain_kernel);
    ProcessFilterWithImpulseSignal(&filter, &fft_manager, 3,
                                   &total_output_signal);

    filter.SetFreqDomainKernel(small_freq_domain_kernel);
    ProcessFilterWithImpulseSignal(&filter, &fft_manager, 2,
                                   &total_output_signal);

    // Test to see if output from both kernels is present |big_size| zeros in
    // between.
    for (size_t i = 0; i < buffer_size; ++i) {
      EXPECT_NEAR(static_cast<float>(i) / 4.0f, total_output_signal[i],
                  kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + buffer_size], kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + 2 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(static_cast<float>(i) / 4.0f,
                  total_output_signal[i + 3 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(static_cast<float>(i + buffer_size) / 4.0f,
                  total_output_signal[i + 4 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + 5 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + 6 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(static_cast<float>(i) / 4.0f,
                  total_output_signal[i + 7 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + 8 * buffer_size], kFftEpsilon);
      EXPECT_NEAR(0.0f, total_output_signal[i + 9 * buffer_size], kFftEpsilon);
    }
  }

  void TestPartitionReplacement(PartitionedFftFilter* filter,
                                FftManager* fft_manager) {
    // Fill the first partition with a kronecker delta in the first partition, a
    // kronecker delta times 2 in the second, a kronecker delta times 3 in the
    // third, etc...
    SetFreqDomainKernel(filter);
    // Get a copy of the kernel.
    AudioBuffer initial_kernel;
    initial_kernel = filter->kernel_freq_domain_buffer_;

    // Create a freq domain kernel chunk with the same values as the final
    // partition.
    AudioBuffer kernel_chunk(kNumMonoChannels, filter->chunk_size_);
    kernel_chunk.Clear();
    AudioBuffer::Channel& kernel_chunk_channel = kernel_chunk[0];
    for (size_t sample = 0; sample < filter->chunk_size_; ++sample) {
      kernel_chunk_channel[sample] =
          static_cast<float>(filter->num_partitions_);
    }
    // The partition we will replace.
    const size_t kReplacePartitionIndex = 2;
    // Replace a partition with a new time domain kernel chunk (all zeros).
    filter->ReplacePartition(kReplacePartitionIndex, kernel_chunk_channel);

    // Get a copy of the kernel after replacing the 3rd freq domain partition.
    AudioBuffer replaced_kernel;
    replaced_kernel = filter->kernel_freq_domain_buffer_;

    for (size_t i = 0; i < filter->num_partitions_; ++i) {
      for (size_t sample = 0; sample < fft_manager->GetFftSize(); ++sample) {
        // Expect that all of the other partitions are unchanged.
        if (i == kReplacePartitionIndex) {
          // Check if the chosen partition has been altered.
          EXPECT_EQ(initial_kernel[filter->num_partitions_ - 1][sample],
                    replaced_kernel[i][sample]);
        } else {
          // Check if all of the other partitions are unchanged.
          EXPECT_EQ(initial_kernel[i][sample], replaced_kernel[i][sample]);
        }
      }
    }
  }

  void TestFilterLengthSetter(PartitionedFftFilter* filter,
                              FftManager* fft_manager) {
    // Set the |freq_domain_buffer_| inside |filter| such that it has known
    // values (In the time domain, all value 1, then 2 etc.. per partition).
    SetFreqDomainKernel(filter);

    // Get a copy of the kernel and number of partitions before we set the
    // filter length.
    AudioBuffer initial_kernel;
    initial_kernel = filter->kernel_freq_domain_buffer_;
    const size_t initial_num_partitions = filter->num_partitions_;

    filter->SetFilterLength(filter->filter_size_ / 2);

    // Get a copy after we half the filter length.
    AudioBuffer half_kernel;
    half_kernel = filter->kernel_freq_domain_buffer_;
    const size_t half_num_partitions = filter->num_partitions_;
    EXPECT_EQ(initial_num_partitions, 2 * half_num_partitions);

    filter->SetFilterLength(filter->filter_size_ * 2);

    // Get a copy after we re-double the filter length.
    AudioBuffer redouble_kernel;
    redouble_kernel = filter->kernel_freq_domain_buffer_;
    EXPECT_EQ(initial_num_partitions, filter->num_partitions_);

    for (size_t i = 0; i < half_num_partitions; ++i) {
      for (size_t sample = 0; sample < fft_manager->GetFftSize(); ++sample) {
        // Check that the first two partitions in all 3 cases are the same.
        EXPECT_EQ(initial_kernel[i][sample], half_kernel[i][sample]);
        EXPECT_EQ(initial_kernel[i][sample], redouble_kernel[i][sample]);
        // Check that the final two partitions, after resizing the filters
        // frequency domain buffers, contain only zeros.
        EXPECT_EQ(redouble_kernel[i + half_num_partitions][sample], 0.0f);
      }
    }
  }
};

// Tests whether the reordering of the channels of |freq_domain_buffers_| is as
// expected after calling |ResetFreqDomainBuffers| with both longer and shorter
// filters.
TEST_F(PartitionedFftFilterFrequencyBufferTest, FrequencyBufferResetTest) {
  const size_t kBufferSize = 32;
  const size_t kInitialFilterSizeFactor = 8;
  const size_t kBiggerFilterSizeFactor = 10;
  const size_t kSmallerFilterSizeFactor = 5;
  // Initially there will be 16 partitions, then 20, then 10.
  FftManager fft_manager(kBufferSize);
  PartitionedFftFilter filter(
      kInitialFilterSizeFactor * kBufferSize * 2, kBufferSize,
      kBiggerFilterSizeFactor * kBufferSize * 2, &fft_manager);
  TestFrequencyBufferReset(kInitialFilterSizeFactor, kBiggerFilterSizeFactor,
                           kSmallerFilterSizeFactor, &filter, &fft_manager);
}

// Tests that we can switch to a frequency domain filter kernel with a greater
// number of partitions than the original kernel provided at instantiation.
// Ensures that we can switch to a frequency domain filter kernel with less
// partitions than the original kernel.
TEST_F(PartitionedFftFilterFrequencyBufferTest,
       LongerShorterFrequencyDomainKernelTest) {
  TestLongerShorterFrequencyDomainKernel(kLength);
}

// Tests whether replacing an individual partition works correctly.
TEST_F(PartitionedFftFilterFrequencyBufferTest, ReplacePartitionTest) {
  const size_t kBufferSize = 32;
  const size_t kFilterSizeFactor = 5;
  // A filter with 5 partitions.
  FftManager fft_manager(kBufferSize);
  PartitionedFftFilter filter(kFilterSizeFactor * kBufferSize * 2, kBufferSize,
                              &fft_manager);
  TestPartitionReplacement(&filter, &fft_manager);
}

// Tests whether setting the length of the filter kernel, and thus the number
// of partitions gives the expected results.
TEST_F(PartitionedFftFilterFrequencyBufferTest, SetFilterLengthTest) {
  const size_t kBufferSize = 32;
  const size_t kFilterSizeFactor = 5;
  // A filter with 5 partitions.
  FftManager fft_manager(kBufferSize);
  PartitionedFftFilter filter(kFilterSizeFactor * kBufferSize * 2, kBufferSize,
                              kFilterSizeFactor * kBufferSize * 4,
                              &fft_manager);
  TestFilterLengthSetter(&filter, &fft_manager);
}

}  // namespace vraudio