summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/resampler.cc
blob: e135afcdfbf8d5067782d686a2bf900489c3c621 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

// Prevent Visual Studio from complaining about std::copy_n.
#if defined(_WIN32)
#define _SCL_SECURE_NO_WARNINGS
#endif

#include "dsp/resampler.h"

#include <functional>
#include <numeric>

#include "base/constants_and_types.h"
#include "base/logging.h"
#include "base/misc_math.h"
#include "base/simd_utils.h"

#include "dsp/utils.h"

namespace vraudio {

namespace {

// (kTransitionBandwidthRatio / 2) * (sample_rate / cutoff_frequency)
// = filter_length.
// The value below was chosen empirically as a tradeoff between execution time
// and filter rolloff wrt. cutoff frequency.
const size_t kTransitionBandwidthRatio = 13;

// Maximum number of channels internally based upon the maximum supported
// ambisonic order.
const size_t kMaxNumChannels =
    (kMaxSupportedAmbisonicOrder + 1) * (kMaxSupportedAmbisonicOrder + 1);

}  // namespace

Resampler::Resampler()
    : up_rate_(0),
      down_rate_(0),
      time_modulo_up_rate_(0),
      last_processed_sample_(0),
      num_channels_(0),
      coeffs_per_phase_(0),
      transposed_filter_coeffs_(kNumMonoChannels, kMaxSupportedNumFrames),
      temporary_filter_coeffs_(kNumMonoChannels, kMaxSupportedNumFrames),
      state_(kMaxNumChannels, kMaxSupportedNumFrames) {
  state_.Clear();
}

void Resampler::Process(const AudioBuffer& input, AudioBuffer* output) {

  // See "Digital Signal Processing, 4th Edition, Prolakis and Manolakis,
  // Pearson, Chapter 11 (specificaly Figures 11.5.10 and 11.5.13).
  DCHECK_EQ(input.num_channels(), num_channels_);
  const size_t input_length = input.num_frames();
  DCHECK_GE(output->num_frames(), GetNextOutputLength(input_length));
  DCHECK_LE(output->num_frames(), GetMaxOutputLength(input_length));
  DCHECK_EQ(output->num_channels(), num_channels_);
  output->Clear();

  if (up_rate_ == down_rate_) {
    *output = input;
    return;
  }

  // |input_sample| is the last processed sample.
  size_t input_sample = last_processed_sample_;
  // |output_sample| is the output.
  size_t output_sample = 0;

  const auto& filter_coefficients = transposed_filter_coeffs_[0];

  while (input_sample < input_length) {
    size_t filter_index = time_modulo_up_rate_ * coeffs_per_phase_;
    size_t offset_input_index = input_sample - coeffs_per_phase_ + 1;
    const int offset = -static_cast<int>(offset_input_index);

    if (offset > 0) {
      // We will need to draw data from the |state_| buffer.
      const int state_num_frames = static_cast<int>(coeffs_per_phase_ - 1);
      int state_index = state_num_frames - offset;
      while (state_index < state_num_frames) {
        for (size_t channel = 0; channel < num_channels_; ++channel) {
          (*output)[channel][output_sample] +=
              state_[channel][state_index] * filter_coefficients[filter_index];
        }
        state_index++;
        filter_index++;
      }
      // Move along by |offset| samples up as far as |input|.
      offset_input_index += offset;
    }

    // We now move back to where |input_sample| "points".
    while (offset_input_index <= input_sample) {
      for (size_t channel = 0; channel < num_channels_; ++channel) {
        (*output)[channel][output_sample] +=
            input[channel][offset_input_index] *
            filter_coefficients[filter_index];
      }
      offset_input_index++;
      filter_index++;
    }
    output_sample++;

    time_modulo_up_rate_ += down_rate_;
    // Advance the input pointer.
    input_sample += time_modulo_up_rate_ / up_rate_;
    // Decide which phase of the polyphase filter to use next.
    time_modulo_up_rate_ %= up_rate_;
  }
  DCHECK_GE(input_sample, input_length);
  last_processed_sample_ = input_sample - input_length;

  // Take care of the |state_| buffer.
  const int samples_left_in_input =
      static_cast<int>(coeffs_per_phase_) - 1 - static_cast<int>(input_length);
  if (samples_left_in_input > 0) {
    for (size_t channel = 0; channel < num_channels_; ++channel) {
      // Copy end of the |state_| buffer to the beginning.
      auto& state_channel = state_[channel];
      DCHECK_GE(static_cast<int>(state_channel.size()), samples_left_in_input);
      std::copy_n(state_channel.end() - samples_left_in_input,
                  samples_left_in_input, state_channel.begin());
      // Then copy input to the end of the buffer.
      std::copy_n(input[channel].begin(), input_length,
                  state_channel.end() - input_length);
    }
  } else {
    for (size_t channel = 0; channel < num_channels_; ++channel) {
      // Copy the last of the |input| samples into the |state_| buffer.
      DCHECK_GT(coeffs_per_phase_, 0U);
      DCHECK_GT(input[channel].size(), coeffs_per_phase_ - 1);
      std::copy_n(input[channel].end() - (coeffs_per_phase_ - 1),
                  coeffs_per_phase_ - 1, state_[channel].begin());
    }
  }
}

size_t Resampler::GetMaxOutputLength(size_t input_length) const {
  if (up_rate_ == down_rate_) {
    return input_length;
  }
  DCHECK_GT(down_rate_, 0U);
  // The + 1 takes care of the case where:
  // (time_modulo_up_rate_ + up_rate_ * last_processed_sample_) <
  // ((input_length * up_rate_) % down_rate_)
  // The output length will be equal to the return value or the return value -1.
  return (input_length * up_rate_) / down_rate_ + 1;
}

size_t Resampler::GetNextOutputLength(size_t input_length) const {
  if (up_rate_ == down_rate_) {
    return input_length;
  }
  const size_t max_length = GetMaxOutputLength(input_length);
  if ((time_modulo_up_rate_ + up_rate_ * last_processed_sample_) >=
      ((input_length * up_rate_) % down_rate_)) {
    return max_length - 1;
  }
  return max_length;
}

void Resampler::SetRateAndNumChannels(int source_frequency,
                                      int destination_frequency,
                                      size_t num_channels) {

  // Convert sampling rates to be relatively prime.
  DCHECK_GT(source_frequency, 0);
  DCHECK_GT(destination_frequency, 0);
  DCHECK_GT(num_channels, 0U);
  const int greatest_common_divisor =
      FindGcd(destination_frequency, source_frequency);
  const size_t destination =
      static_cast<size_t>(destination_frequency / greatest_common_divisor);
  const size_t source =
      static_cast<size_t>(source_frequency / greatest_common_divisor);

  // Obtain the size of the |state_| before |coeffs_per_phase_| is updated in
  // |GenerateInterpolatingFilter()|.
  const size_t old_state_size =
      coeffs_per_phase_ > 0 ? coeffs_per_phase_ - 1 : 0;
  if ((destination != up_rate_) || (source != down_rate_)) {
    up_rate_ = destination;
    down_rate_ = source;
    if (up_rate_ == down_rate_) {
      return;
    }
    // Create transposed multirate filters from sincs.
    GenerateInterpolatingFilter(source_frequency);
    // Reset the time variable as it may be longer than the new filter length if
    // we switched from upsampling to downsampling via a call to SetRate().
    time_modulo_up_rate_ = 0;
  }

  // Update the |state_| buffer.
  if (num_channels_ != num_channels) {
    num_channels_ = num_channels;
    InitializeStateBuffer(old_state_size);
  }
}

bool Resampler::AreSampleRatesSupported(int source, int destination) {
  DCHECK_GT(source, 0);
  DCHECK_GT(destination, 0);
  // Determines whether sample rates are supported based upon whether our
  // maximul filter lenhgth is big enough to hold the corresponding
  // interpolation filter.
  const int max_rate =
      std::max(source, destination) / FindGcd(source, destination);
  size_t filter_length = max_rate * kTransitionBandwidthRatio;
  filter_length += filter_length % 2;
  return filter_length <= kMaxSupportedNumFrames;
}

void Resampler::ResetState() {

  time_modulo_up_rate_ = 0;
  last_processed_sample_ = 0;
  state_.Clear();
}

void Resampler::InitializeStateBuffer(size_t old_state_num_frames) {
  // Update the |state_| buffer if it is null or if the number of coefficients
  // per phase in the polyphase filter has changed.
  if (up_rate_ == down_rate_ || num_channels_ == 0) {
    return;
  }
  // If the |state_| buffer is to be kept. For example in the case of a change
  // in either source or destination sampling rate, maintaining the old |state_|
  // buffers contents allows a glitch free transition.
  const size_t new_state_num_frames =
      coeffs_per_phase_ > 0 ? coeffs_per_phase_ - 1 : 0;
  if (old_state_num_frames != new_state_num_frames) {
    const size_t min_size =
        std::min(new_state_num_frames, old_state_num_frames);
    const size_t max_size =
        std::max(new_state_num_frames, old_state_num_frames);
    for (size_t channel = 0; channel < num_channels_; ++channel) {
      auto& state_channel = state_[channel];
      DCHECK_LT(state_channel.begin() + max_size, state_channel.end());
      std::fill(state_channel.begin() + min_size,
                state_channel.begin() + max_size, 0.0f);
    }
  }
}

void Resampler::GenerateInterpolatingFilter(int sample_rate) {
  // See "Digital Signal Processing, 4th Edition, Prolakis and Manolakis,
  // Pearson, Chapter 11 (specificaly Figures 11.5.10 and 11.5.13).
  const size_t max_rate = std::max(up_rate_, down_rate_);
  const float cutoff_frequency =
      static_cast<float>(sample_rate) / static_cast<float>(2 * max_rate);
  size_t filter_length = max_rate * kTransitionBandwidthRatio;
  filter_length += filter_length % 2;
  auto* filter_channel = &temporary_filter_coeffs_[0];
  filter_channel->Clear();
  GenerateSincFilter(cutoff_frequency, static_cast<float>(sample_rate),
                     filter_length, filter_channel);

  // Pad out the filter length so that it can be arranged in polyphase fashion.
  const size_t transposed_length =
      filter_length + max_rate - (filter_length % max_rate);
  coeffs_per_phase_ = transposed_length / max_rate;
  ArrangeFilterAsPolyphase(filter_length, *filter_channel);
}

void Resampler::ArrangeFilterAsPolyphase(size_t filter_length,
                                         const AudioBuffer::Channel& filter) {
  // Coefficients are transposed and flipped.
  // Suppose |up_rate_| is 3, and the input number of coefficients is 10,
  // h[0], ..., h[9].
  // Then the |transposed_filter_coeffs_| buffer will look like this:
  // h[9], h[6], h[3], h[0],   flipped phase 0 coefs.
  //  0,   h[7], h[4], h[1],   flipped phase 1 coefs (zero-padded).
  //  0,   h[8], h[5], h[2],   flipped phase 2 coefs (zero-padded).
  transposed_filter_coeffs_.Clear();
  auto& transposed_coefficients_channel = transposed_filter_coeffs_[0];
  for (size_t i = 0; i < up_rate_; ++i) {
    for (size_t j = 0; j < coeffs_per_phase_; ++j) {
      if (j * up_rate_ + i < filter_length) {
        const size_t coeff_index =
            (coeffs_per_phase_ - 1 - j) + i * coeffs_per_phase_;
        transposed_coefficients_channel[coeff_index] = filter[j * up_rate_ + i];
      }
    }
  }
}

void Resampler::GenerateSincFilter(float cutoff_frequency, float sample_rate,
                                   size_t filter_length,
                                   AudioBuffer::Channel* buffer) {

  DCHECK_GT(sample_rate, 0.0f);
  const float angular_cutoff_frequency =
      kTwoPi * cutoff_frequency / sample_rate;

  const size_t half_filter_length = filter_length / 2;
  GenerateHannWindow(true /* Full Window */, filter_length, buffer);
  auto* buffer_channel = &buffer[0];

  for (size_t i = 0; i < filter_length; ++i) {
    if (i == half_filter_length) {
      (*buffer_channel)[half_filter_length] *= angular_cutoff_frequency;
    } else {
      const float denominator =
          static_cast<float>(i) - (static_cast<float>(filter_length) / 2.0f);
      DCHECK_GT(std::abs(denominator), kEpsilonFloat);
      (*buffer_channel)[i] *=
          std::sin(angular_cutoff_frequency * denominator) / denominator;
    }
  }
  // Normalize.
  const float normalizing_factor =
      static_cast<float>(up_rate_) /
      std::accumulate(buffer_channel->begin(), buffer_channel->end(), 0.0f);
  ScalarMultiply(filter_length, normalizing_factor, buffer_channel->begin(),
                 buffer_channel->begin());
}

}  // namespace vraudio