summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/resampler_test.cc
blob: 5b23de58f5893ef908feae383b1533a223802f1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "dsp/resampler.h"

#include <numeric>
#include <utility>
#include <vector>

#include "third_party/googletest/googletest/include/gtest/gtest.h"
#include "base/constants_and_types.h"
#include "utils/test_util.h"

namespace vraudio {

namespace {

const int kToneFrequency = 1000;

const size_t kInputBufferLength = 441;

const int kSourceDataSampleRate = 44100;
const int kUpDestinationDataSampleRate = 48000;
const int kDownDestinationDataSampleRate = 24000;

TEST(ResamplerTest, UpSampleTest) {
  // Create input buffer with 1000Hz sine wave at 44100Hz, 441 samples long.
  // This should be ten periods of a sine wave.
  AudioBuffer input(kNumMonoChannels, kInputBufferLength);
  GenerateSineWave(kToneFrequency, kSourceDataSampleRate, &input[0]);

  Resampler resampler;
  resampler.SetRateAndNumChannels(
      kSourceDataSampleRate, kUpDestinationDataSampleRate, kNumMonoChannels);
  AudioBuffer output(kNumMonoChannels,
                     resampler.GetNextOutputLength(kInputBufferLength));
  resampler.Process(input, &output);

  // Ensure the length of the output is as expected.
  const size_t input_length_proportion =
      kSourceDataSampleRate / kInputBufferLength;
  const size_t expected_output_length =
      kUpDestinationDataSampleRate / input_length_proportion;
  EXPECT_EQ(expected_output_length, output.num_frames());

  // Ensure the output also contains 10 periods of a sine wave, confirming it is
  // still at 1000Hz given the new sampling rate.
  AudioBuffer thresholded_output(kNumMonoChannels, output.num_frames());
  for (size_t i = 0; i < output.num_frames(); ++i) {
    thresholded_output[0][i] = std::abs(output[0][i]) < 0.5f ? 0.0f : 1.0f;
  }
  size_t num_square_wave_corners = 1;
  // We have now generated a square wave with twice the number of corners as
  // there are zero crossings.
  for (size_t i = 0; i < output.num_frames() - 1; ++i) {
    if (thresholded_output[0][i] != thresholded_output[0][i + 1]) {
      num_square_wave_corners++;
    }
  }
  const size_t zerocross_count = num_square_wave_corners / 2;

  const size_t num_expected_zero_crossings =
      2 * kToneFrequency / (kSourceDataSampleRate / kInputBufferLength);
  EXPECT_EQ(num_expected_zero_crossings, zerocross_count);
}

TEST(ResamplerTest, DownSampleTest) {
  // Create input buffer with 1000Hz sine wave at 44100Hz, 441 samples long.
  // This should be ten periods of a sine wave.
  AudioBuffer input(kNumMonoChannels, kInputBufferLength);
  GenerateSineWave(kToneFrequency, kSourceDataSampleRate, &input[0]);

  Resampler resampler;
  resampler.SetRateAndNumChannels(
      kSourceDataSampleRate, kDownDestinationDataSampleRate, kNumMonoChannels);
  AudioBuffer output(kNumMonoChannels,
                     resampler.GetNextOutputLength(kInputBufferLength));
  resampler.Process(input, &output);

  // Ensure the length of the output is as expected.
  const size_t input_length_proportion =
      kSourceDataSampleRate / kInputBufferLength;
  const size_t expected_output_length =
      kDownDestinationDataSampleRate / input_length_proportion;
  EXPECT_EQ(expected_output_length, output.num_frames());

  // Ensure the output also contains one period of a sine wave, confirming it is
  // still at 100Hz given the new sampling rate.
  AudioBuffer thresholded_output(kNumMonoChannels, output.num_frames());
  for (size_t i = 0; i < output.num_frames(); ++i) {
    thresholded_output[0][i] = std::abs(output[0][i]) < 0.5f ? 0.0f : 1.0f;
  }
  int zero_cross_count = 1;
  for (size_t i = 0; i < output.num_frames() - 1; ++i) {
    if (thresholded_output[0][i] != thresholded_output[0][i + 1]) {
      zero_cross_count++;
    }
  }
  const int num_expected_zero_crossings =
      4 * kToneFrequency / (kSourceDataSampleRate / kInputBufferLength);
  EXPECT_EQ(num_expected_zero_crossings, zero_cross_count);
}

TEST(ResamplerTest, ResetStateTest) {
  // Create input buffer with 1000Hz sine wave at 44100Hz, 441 samples long.
  // This should be ten periods of a sine wave.
  AudioBuffer input(kNumMonoChannels, kInputBufferLength);
  GenerateSineWave(kToneFrequency, kSourceDataSampleRate, &input[0]);

  Resampler resampler;
  resampler.SetRateAndNumChannels(
      kSourceDataSampleRate, kUpDestinationDataSampleRate, kNumMonoChannels);
  AudioBuffer output_1(kNumMonoChannels,
                       resampler.GetNextOutputLength(kInputBufferLength));
  resampler.Process(input, &output_1);

  resampler.ResetState();
  AudioBuffer output_2(kNumMonoChannels,
                       resampler.GetNextOutputLength(kInputBufferLength));
  resampler.Process(input, &output_2);

  // If the clearing of the resampler worked properly there should be no
  // internal state between process calls and thus both outputs should be
  // identical.
  for (size_t sample = 0; sample < output_1.num_frames(); ++sample) {
    EXPECT_NEAR(output_1[0][sample], output_2[0][sample], kEpsilonFloat);
  }
}

TEST(ResamplerTest, TwoChannelTest) {
  AudioBuffer input(kNumStereoChannels, kInputBufferLength);
  GenerateSineWave(kToneFrequency, kSourceDataSampleRate, &input[0]);
  GenerateSineWave(2 * kToneFrequency, kSourceDataSampleRate, &input[1]);

  Resampler resampler;
  resampler.SetRateAndNumChannels(
      kSourceDataSampleRate, kUpDestinationDataSampleRate, kNumStereoChannels);
  AudioBuffer output(kNumStereoChannels,
                     resampler.GetNextOutputLength(kInputBufferLength));
  resampler.Process(input, &output);

  AudioBuffer thresholded_output(kNumStereoChannels, output.num_frames());
  for (size_t i = 0; i < output.num_frames(); ++i) {
    thresholded_output[0][i] = std::abs(output[0][i]) < 0.5f ? 0.0f : 1.0f;
    thresholded_output[1][i] = std::abs(output[1][i]) < 0.5f ? 0.0f : 1.0f;
  }
  int channel_0_zero_cross_count = 1;
  int channel_1_zero_cross_count = 1;
  for (size_t i = 0; i < output.num_frames() - 1; ++i) {
    if (thresholded_output[0][i] != thresholded_output[0][i + 1]) {
      channel_0_zero_cross_count++;
    }
    if (thresholded_output[1][i] != thresholded_output[1][i + 1]) {
      channel_1_zero_cross_count++;
    }
  }
  const int channel_0_expected_zero_crossings =
      4 * kToneFrequency / (kSourceDataSampleRate / kInputBufferLength);
  const int channel_1_expected_zero_crossings =
      8 * kToneFrequency / (kSourceDataSampleRate / kInputBufferLength);
  EXPECT_EQ(channel_0_zero_cross_count, channel_0_expected_zero_crossings);
  EXPECT_EQ(channel_1_zero_cross_count, channel_1_expected_zero_crossings);
}

TEST(ResamplerTest, DiracImpulseUpsampleTest) {
  const size_t kInputSignalSize = 128;
  AudioBuffer input_signal(kNumMonoChannels, kInputSignalSize);
  GenerateDiracImpulseFilter(kInputSignalSize / 2, &input_signal[0]);

  const int kSourceSamplingRate = 100;
  const int kDestinationSamplingRate = 200;

  Resampler resampler;
  resampler.SetRateAndNumChannels(kSourceSamplingRate, kDestinationSamplingRate,
                                  kNumMonoChannels);

  AudioBuffer output_signal(kNumMonoChannels,
                            resampler.GetNextOutputLength(kInputSignalSize));
  const int resampling_factor = kDestinationSamplingRate / kSourceSamplingRate;
  EXPECT_EQ(kInputSignalSize * resampling_factor, output_signal.num_frames());
  // Perform resampling. Dirac impulse position should shift according to
  // "resampling_factor".
  resampler.Process(input_signal, &output_signal);
  EXPECT_EQ(kInputSignalSize * resampling_factor, output_signal.num_frames());

  DelayCompare(input_signal[0], output_signal[0], kInputSignalSize / 2,
               kEpsilonFloat);
}

TEST(ResamplerTest, GetNextOutputLengthTest) {
  const size_t input_length = 10;
  Resampler resampler;
  resampler.SetRateAndNumChannels(kSourceDataSampleRate,
                                  kSourceDataSampleRate / 2, kNumMonoChannels);
  // In this case the source rate is twice the destination rate, we can expect
  // the output length to be half the input_length.

  resampler.SetRateAndNumChannels(kSourceDataSampleRate,
                                  kSourceDataSampleRate * 2, kNumMonoChannels);
  // In this case the source rate is half the destination rate, we can
  // expect the output length to be twice the input_length.
  EXPECT_EQ(input_length * 2, resampler.GetNextOutputLength(input_length));
}

TEST(Resampler, AreSampleRatesSupportedTest) {
  const size_t kNumPairs = 6;
  const int kSourceRates[kNumPairs] = {4000, 16000, 44100, 96000, 41999, 48000};
  const int kDestRates[kNumPairs] = {96000, 44100, 48000, 32000, 44100, 43210};
  const bool kExpectedResults[kNumPairs] = {true, true,  true,
                                            true, false, false};

  // We generally support only rates with relatively high GCD.
  for (size_t i = 0; i < kNumPairs; ++i) {
    const bool result =
        Resampler::AreSampleRatesSupported(kSourceRates[i], kDestRates[i]);
    EXPECT_EQ(result, kExpectedResults[i]);
  }
}

class OutputLengthTest : public ::testing::TestWithParam<std::pair<int, int>> {
};

// Tests that the lengths returned by the |Process| method are always equal to
// the length returned by |GetMaxOutputLength|, or one sample less.
TEST_P(OutputLengthTest, OutputLengthTest) {
  const size_t kInputSize = 512;
  Resampler resampler;
  const auto rates = GetParam();
  resampler.SetRateAndNumChannels(rates.first, rates.second, kNumMonoChannels);
  AudioBuffer input(kNumMonoChannels, kInputSize);
  const size_t max_output_length = resampler.GetMaxOutputLength(kInputSize);
  AudioBuffer output(kNumMonoChannels, max_output_length);

  // Process 100 times and expect the lengts to be maximum length or one less.
  const size_t kTimesToProcess = 100;
  for (size_t i = 0; i < kTimesToProcess; ++i) {
    const size_t next_output_length = resampler.GetNextOutputLength(kInputSize);
    resampler.Process(input, &output);
    EXPECT_LE(next_output_length, max_output_length);
    EXPECT_LE(max_output_length - next_output_length, 1U);
  }
}

INSTANTIATE_TEST_CASE_P(RatePairs, OutputLengthTest,
                        ::testing::Values(std::make_pair(44100, 48000),
                                          std::make_pair(48000, 44100)));

}  // namespace

class PolyphaseFilterTest : public ::testing::Test {
 protected:
  PolyphaseFilterTest() {}
  // Virtual methods from ::testing::Test
  ~PolyphaseFilterTest() override {}
  void SetUp() override {}
  void TearDown() override {}

  std::unique_ptr<AudioBuffer> GetPolyphaseFilter(
      const AudioBuffer::Channel& filter_coefficients, int coeffs_per_phase,
      int up_rate) {
    // Create a resampler with arbitrary source and destination sampling rates.
    Resampler resampler;
    resampler.SetRateAndNumChannels(kSourceDataSampleRate,
                                    kSourceDataSampleRate, kNumMonoChannels);
    resampler.up_rate_ = up_rate;
    resampler.transposed_filter_coeffs_.Clear();
    resampler.coeffs_per_phase_ = coeffs_per_phase;
    resampler.ArrangeFilterAsPolyphase(filter_coefficients.size(),
                                       filter_coefficients);
    std::unique_ptr<AudioBuffer> polyphase_filter(new AudioBuffer());
    *polyphase_filter = resampler.transposed_filter_coeffs_;
    return polyphase_filter;
  }
};

TEST_F(PolyphaseFilterTest, CorrectPolyphaseFilterTest) {
  // Choose an uprate which is a factor of the filters length.
  const int filter_length = 24;
  const int uprate = 4;
  const int phase_length = filter_length / uprate;

  // Create a vector of ascending numbers (1:24).
  AudioBuffer ascending(kNumMonoChannels, filter_length);
  ascending.Clear();
  std::iota(ascending[0].begin(), ascending[0].end(), 1.0f);

  std::unique_ptr<AudioBuffer> output =
      GetPolyphaseFilter(ascending[0], phase_length, uprate);

  // In polyphase format, the filter coefficients can be thought of as a matrix
  // with uprate columns. The last uprate coeffecients are in the first row and
  // the first uprate coefficients are in the last row. This is stored in a
  // vector, column by column.
  //
  // 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
  // becomes:
  //  21    22    23    24
  //  17    18    19    20
  //  13    14    15    16
  //   9    10    11    12
  //   5     6     7     8
  //   1     2     3     4
  size_t index = 0;
  for (int phase = uprate; phase > 0; --phase) {
    for (int value = filter_length - phase + 1; value > uprate - phase;
         value -= uprate) {
      EXPECT_EQ(static_cast<float>(value), (*output)[0][index++]);
    }
  }
}

}  // namespace vraudio