summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/reverb_onset_update_processor.cc
blob: 3a5dbcf024c56c61b5a5dccda25a33ca1a832421 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "dsp/reverb_onset_update_processor.h"

#include <algorithm>

#include "base/constants_and_types.h"
#include "base/simd_utils.h"
#include "dsp/spectral_reverb_constants_and_tables.h"
#include "dsp/utils.h"

namespace vraudio {

namespace {

// Find the absolute difference between two size_t values.
inline size_t absdiff(size_t lhs, size_t rhs) {
  return lhs > rhs ? lhs - rhs : rhs - lhs;
}

}  // namespace

ReverbOnsetUpdateProcessor::ReverbOnsetUpdateProcessor(
    size_t frames_per_buffer, int sampling_rate, AudioBuffer* base_curves,
    AudioBuffer* adder_curves)
    : sampling_rate_(sampling_rate),
      tail_update_cursor_(0),
      tail_length_(CeilToMultipleOfFramesPerBuffer(kCorrectionCurveLength,
                                                   frames_per_buffer)),
      gain_(1.0f),
      curve_indices_(GetNumReverbOctaveBands(sampling_rate_), kInvalidIndex),
      pure_decay_coefficients_(curve_indices_.size(), 0.0f),
      pure_decay_exponents_(curve_indices_.size(), 0.0f),
      band_buffer_(kNumStereoChannels, frames_per_buffer),
      envelope_buffer_(kNumMonoChannels, frames_per_buffer),
      base_curves_(base_curves),
      adder_curves_(adder_curves) {}

void ReverbOnsetUpdateProcessor::SetReverbTimes(const float* rt60_values) {
  DCHECK(rt60_values);
  const size_t num_octave_bands = curve_indices_.size();
  const float sampling_rate_float = static_cast<float>(sampling_rate_);
  tail_update_cursor_ = 0;
  // Choose curves for each band.
  for (size_t band = 0; band < num_octave_bands; ++band) {
    curve_indices_[band] =
        GetFeedbackIndexFromRt60(rt60_values[band], sampling_rate_float);
    // Deal with the case where only the convolution is needed.
    if (curve_indices_[band] == kInvalidIndex) {
      const float min_reverb_time =
          kMinReverbTimeForFeedback48kHz *
          (sampling_rate_float / kDefaultSpectralReverbSampleRate);
      const float effective_rt =
          rt60_values[band] <= min_reverb_time ? rt60_values[band] : 0.0f;
      pure_decay_exponents_[band] =
          std::abs(effective_rt) > kEpsilonFloat
              ? std::exp(kNegativeLog1000 /
                         (sampling_rate_float * effective_rt))
              : 0.0f;
      pure_decay_coefficients_[band] = pure_decay_exponents_[band];
    }
  }
}

bool ReverbOnsetUpdateProcessor::Process(
    const std::vector<AudioBuffer>& bandpassed_noise_left,
    const std::vector<AudioBuffer>& bandpassed_noise_right,
    AudioBuffer::Channel* kernel_channel_left,
    AudioBuffer::Channel* kernel_channel_right) {
  if (tail_update_cursor_ >= tail_length_) {
    // Processing the reverb tail is finished.
    tail_update_cursor_ = 0;
    return false;
  }
  const size_t frames_per_buffer = band_buffer_.num_frames();
  DCHECK(kernel_channel_left);
  DCHECK(kernel_channel_right);
  DCHECK_EQ(bandpassed_noise_left.size(), curve_indices_.size());
  DCHECK_EQ(bandpassed_noise_right.size(), curve_indices_.size());
  DCHECK_EQ(bandpassed_noise_left[0].num_frames(), tail_length_);
  DCHECK_EQ(bandpassed_noise_right[0].num_frames(), tail_length_);
  DCHECK_GE(tail_length_, kCorrectionCurveLength);
  DCHECK_EQ(kernel_channel_left->size(), frames_per_buffer);
  DCHECK_EQ(kernel_channel_right->size(), frames_per_buffer);

  // Clear for accumulation per frequency band.
  kernel_channel_left->Clear();
  kernel_channel_right->Clear();

  AudioBuffer::Channel& band_channel_left = band_buffer_[0];
  AudioBuffer::Channel& band_channel_right = band_buffer_[1];
  // Define the number of samples we are still able to copy from the multiplier
  // and adder curves.
  const size_t copy_length =
      frames_per_buffer + tail_update_cursor_ <= kCorrectionCurveLength
          ? frames_per_buffer
          : absdiff(kCorrectionCurveLength, tail_update_cursor_);
  AudioBuffer::Channel* envelope_channel = &envelope_buffer_[0];
  // Compute the band buffer for each band response.
  for (size_t band = 0; band < curve_indices_.size(); ++band) {
    const AudioBuffer::Channel& noise_channel_left =
        bandpassed_noise_left[band][0];
    const AudioBuffer::Channel& noise_channel_right =
        bandpassed_noise_right[band][0];
    // Fill the band buffer with the next noise buffer and apply gain.
    ScalarMultiply(frames_per_buffer, gain_,
                   noise_channel_left.begin() + tail_update_cursor_,
                   band_channel_left.begin());
    ScalarMultiply(frames_per_buffer, gain_,
                   noise_channel_right.begin() + tail_update_cursor_,
                   band_channel_right.begin());
    // Skip the band if we have an invalid index
    const int curve_index = curve_indices_[band];
    if (curve_index != kInvalidIndex) {
      // Apply the correct compensation curve to the buffer.
      const float scale = kCurveCorrectionMultipliers[curve_index];
      AudioBuffer::Channel* adder_curve_channel;
      if (tail_update_cursor_ < kCorrectionCurveLength) {
        // Use either the high frequency or low frequency curve.
        if (static_cast<size_t>(curve_index) >= kCurveChangeoverIndex) {
          adder_curve_channel = &(*adder_curves_)[1];
          std::copy_n((*base_curves_)[1].begin() + tail_update_cursor_,
                      copy_length, envelope_channel->begin());
        } else {
          adder_curve_channel = &(*adder_curves_)[0];
          std::copy_n((*base_curves_)[0].begin() + tail_update_cursor_,
                      copy_length, envelope_channel->begin());
        }
        // Construct the correct envelope (chunk thereof).
        ScalarMultiplyAndAccumulate(
            copy_length, scale,
            adder_curve_channel->begin() + tail_update_cursor_,
            envelope_channel->begin());
        // Ensure the end part of the envelope does not contain spurious data.
        std::fill(envelope_channel->begin() + copy_length,
                  envelope_channel->end(), 0.0f);
      } else {
        // If we have moved past the length of the correction curve, fill the
        // envelope chunk with zeros.
        envelope_channel->Clear();
      }

      // Apply that envelope to the given band and accumulate into the output.
      MultiplyAndAccumulatePointwise(
          frames_per_buffer, envelope_channel->begin(),
          band_channel_left.begin(), kernel_channel_left->begin());
      MultiplyAndAccumulatePointwise(
          frames_per_buffer, envelope_channel->begin(),
          band_channel_right.begin(), kernel_channel_right->begin());
    } else {
      // If the decay time is too short for the spectral reverb to make a
      // contribution (0.15s @48kHz), the compensation filter will consist of
      // the entire tail.
      for (size_t frame = 0; frame < frames_per_buffer; ++frame) {
        (*kernel_channel_left)[frame] +=
            pure_decay_coefficients_[band] * band_channel_left[frame];
        (*kernel_channel_right)[frame] +=
            pure_decay_coefficients_[band] * band_channel_right[frame];
        // Update the decay coefficient.
        pure_decay_coefficients_[band] *= pure_decay_exponents_[band];
      }
    }
  }
  // Update the cursor.
  tail_update_cursor_ += frames_per_buffer;

  return true;
}

}  // namespace vraudio