summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/dsp/spectral_reverb.cc
blob: e03d34ccddf8e145624c1d2cfcdd3fd5636d994f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

// Prevent Visual Studio from complaining about std::copy_n.
#if defined(_WIN32)
#define _SCL_SECURE_NO_WARNINGS
#endif

#include "dsp/spectral_reverb.h"

#include <algorithm>
#include <cstdlib>
#include <numeric>

#include "base/constants_and_types.h"
#include "base/logging.h"
#include "base/simd_utils.h"
#include "dsp/spectral_reverb_constants_and_tables.h"
#include "dsp/utils.h"

namespace vraudio {

namespace {

// FFT length and length of time domain data processed.
const size_t kFftSize = 4096;

// Length of magnitude and phase buffers.
const size_t kMagnitudeLength = kFftSize / 2 + 1;

// Number of overlaps per kFftSize time domain chunk of input.
const size_t kNumOverlap = 4;

// Number of samples per overlap.
const size_t kOverlapLength = kFftSize / kNumOverlap;

// Three quarters FFT size, used for copying chunks of input.
const size_t kThreeQuarterFftSize = kFftSize - kOverlapLength;

// Number of channels needed to overlap add output data.
const size_t kNumQuadChannels = 4;

// Number of buffers of delay applies to the magnitude spectrum.
const size_t kMagnitudeDelay = 3;

// Length of a buffer of noise used to provide random phase.
const size_t kNoiseLength = 16384;

// Length of the noise buffer from which a phase buffer can start.
const size_t kAvailableNoiselength = kNoiseLength - kMagnitudeLength;

// Returns a random integer in the range provided. Used to index into the random
// buffer for phase values.
inline size_t GetRandomIntegerInRange(size_t min, size_t max) {
  DCHECK_GE(max, min);
  return min + static_cast<size_t>(std::rand()) % (max - min);
}

}  // namespace

SpectralReverb::SpectralReverb(int sample_rate, size_t frames_per_buffer)
    : sample_rate_(sample_rate),
      frames_per_buffer_(frames_per_buffer),
      magnitude_delay_index_(0),
      overlap_add_index_(0),
      fft_manager_(kFftSize / 2),
      sin_cos_random_phase_buffer_(kNumStereoChannels, kNoiseLength),
      unscaled_window_(kNumMonoChannels, kFftSize),
      window_(kNumMonoChannels, kFftSize),
      feedback_(kNumMonoChannels, kMagnitudeLength),
      magnitude_compensation_(kNumMonoChannels, kMagnitudeLength),
      magnitude_delay_(kMagnitudeDelay, kMagnitudeLength),
      fft_size_input_(kNumMonoChannels, kFftSize),
      input_circular_buffer_(kFftSize + frames_per_buffer_, frames_per_buffer_,
                             kOverlapLength),
      output_circular_buffers_(kNumStereoChannels),
      out_time_buffer_(kNumQuadChannels, kFftSize),
      temp_freq_buffer_(kNumStereoChannels, kFftSize),
      scaled_magnitude_buffer_(kNumMonoChannels, kMagnitudeLength),
      temp_magnitude_buffer_(kNumMonoChannels, kMagnitudeLength),
      temp_phase_buffer_(kNumStereoChannels, kMagnitudeLength),
      output_accumulator_(kNumStereoChannels),
      is_gain_near_zero_(false),
      is_feedback_near_zero_(false) {
  DCHECK_GT(sample_rate, 0);
  DCHECK_GT(frames_per_buffer_, 0U);

  // Seed std::rand, used for phase selection.
  std::srand(1);
  GenerateRandomPhaseBuffer();
  GenerateAnalysisWindow();
  InitializeCircularBuffersAndAccumulators();
  fft_size_input_.Clear();
  magnitude_compensation_.Clear();
}

void SpectralReverb::SetGain(float gain) {
  DCHECK_GE(gain, 0.0f);
  ScalarMultiply(window_.num_frames(), gain, &unscaled_window_[0][0],
                 &window_[0][0]);
  // If the gain is less than -60dB we will bypass all processing.
  is_gain_near_zero_ = gain <= kNegative60dbInAmplitude;
  // If we are to bypass processing we clear the circular buffer so that we
  // don't process old input when the spectral reverb is restarted.
  if (is_gain_near_zero_ || is_feedback_near_zero_) {
    input_circular_buffer_.Clear();
  }
}

void SpectralReverb::SetRt60PerOctaveBand(const float* rt60_values) {
  DCHECK(rt60_values);
  const float sample_rate_float = static_cast<float>(sample_rate_);
  // Fill the entries in the feedback channel with the feedback values up to
  // that frequency. The feedback channels entries are per frequency in the same
  // way as the magnitude vectors. Also fill the magnitude compensation vector
  // such that the peak value at each frequency for any given reverberation time
  // will be |kDefaultReverbGain|.
  AudioBuffer::Channel* feedback_channel = &feedback_[0];
  feedback_channel->Clear();
  AudioBuffer::Channel* magnitude_compensation_channel =
      &magnitude_compensation_[0];
  magnitude_compensation_channel->Clear();
  const float frequency_step = sample_rate_float / static_cast<float>(kFftSize);
  int index = GetFeedbackIndexFromRt60(rt60_values[0], sample_rate_float);
  float current_feedback =
      index == kInvalidIndex ? 0.0f : kSpectralReverbFeedback[index];
  float magnitude_compensation_value =
      index == kInvalidIndex ? 0.0f : kMagnitudeCompensation[index];
  const size_t max_frequency_bin =
      std::min(static_cast<size_t>(
                   (kOctaveBandCentres[kNumReverbOctaveBands - 1] * kSqrtTwo) /
                   frequency_step),
               feedback_channel->size());
  // The upper edge of the octave band is sqrt(2) * centre_frequency :
  // https://en.wikipedia.org/wiki/Octave_band#Octave_Bands
  float upper_octave_band_edge = kOctaveBandCentres[0] * kSqrtTwo;
  for (size_t i = 0, j = 0; i < max_frequency_bin; ++i) {
    const float current_freq = static_cast<float>(i) * frequency_step;
    if (current_freq > upper_octave_band_edge) {
      ++j;
      DCHECK_LT(j, kNumReverbOctaveBands);
      upper_octave_band_edge = kOctaveBandCentres[j] * kSqrtTwo;
      index = GetFeedbackIndexFromRt60(rt60_values[j], sample_rate_float);
      current_feedback =
          index == kInvalidIndex ? 0.0f : kSpectralReverbFeedback[index];
      magnitude_compensation_value =
          index == kInvalidIndex ? 0.0f : kMagnitudeCompensation[index];
    }
    (*feedback_channel)[i] = current_feedback;
    (*magnitude_compensation_channel)[i] = magnitude_compensation_value;
  }
  // If the sum of all feedback values is below the minimum feedback value, it
  // is safe to assume we can bypass the spectral reverb entirely.
  is_feedback_near_zero_ =
      std::accumulate(feedback_channel->begin(), feedback_channel->end(),
                      0.0f) < kSpectralReverbFeedback[0];
  // If we are to bypass processing we clear the circular buffer so that we
  // don't process old input when the spectral reverb is restarted.
  if (is_gain_near_zero_ || is_feedback_near_zero_) {
    input_circular_buffer_.Clear();
  }
}

void SpectralReverb::Process(const AudioBuffer::Channel& input,
                             AudioBuffer::Channel* left_out,
                             AudioBuffer::Channel* right_out) {
  DCHECK_EQ(input.size(), left_out->size());
  DCHECK_EQ(input.size(), right_out->size());
  DCHECK_EQ(input.size(), frames_per_buffer_);


  if (is_gain_near_zero_ || is_feedback_near_zero_) {
    left_out->Clear();
    right_out->Clear();
    return;
  }

  // Here we insert |frames_per_buffer_| samples on each function call. Then,
  // once there are |kOverlapLength| samples in the input circular buffer we
  // retrieve |kOverlapLength| samples from it and process |kFftSize| samples of
  // input at a time, sliding along by |kOverlapLength| samples. We then place
  // |kOverlapLength| samples into the output buffer and we will extract
  // |frames_per_buffer_| samples from the output buffer on each function call.
  input_circular_buffer_.InsertBuffer(input);
  while (input_circular_buffer_.GetOccupancy() >= kOverlapLength) {
    std::copy_n(&fft_size_input_[0][kOverlapLength], kThreeQuarterFftSize,
                &fft_size_input_[0][0]);
    input_circular_buffer_.RetrieveBufferWithOffset(kThreeQuarterFftSize,
                                                    &fft_size_input_[0]);
    fft_manager_.FreqFromTimeDomain(fft_size_input_[0], &temp_freq_buffer_[0]);
    fft_manager_.GetCanonicalFormatFreqBuffer(temp_freq_buffer_[0],
                                              &temp_freq_buffer_[1]);
    fft_manager_.MagnitudeFromCanonicalFreqBuffer(temp_freq_buffer_[1],
                                                  &scaled_magnitude_buffer_[0]);
    // Apply the magnitude compensation to the input magnitude spectrum before
    // feedback is applied.
    MultiplyPointwise(kMagnitudeLength, magnitude_compensation_[0].begin(),
                      scaled_magnitude_buffer_[0].begin(),
                      scaled_magnitude_buffer_[0].begin());
    // Generate time domain reverb blocks.
    GetNextReverbBlock(magnitude_delay_index_, &out_time_buffer_[0],
                       &out_time_buffer_[1]);
    magnitude_delay_index_ = (magnitude_delay_index_ + 1) % kMagnitudeDelay;
    GetNextReverbBlock(magnitude_delay_index_, &out_time_buffer_[2],
                       &out_time_buffer_[3]);

    // Combine the reverb blocks for both left and right output.
    AddPointwise(kFftSize, out_time_buffer_[0].begin(),
                 out_time_buffer_[2].begin(), out_time_buffer_[0].begin());
    AddPointwise(kFftSize, out_time_buffer_[1].begin(),
                 out_time_buffer_[3].begin(), out_time_buffer_[1].begin());

    // Window the left and right output (While applying inverse FFT scaling).
    MultiplyPointwise(kFftSize, out_time_buffer_[0].begin(), window_[0].begin(),
                      out_time_buffer_[0].begin());
    MultiplyPointwise(kFftSize, out_time_buffer_[1].begin(), window_[0].begin(),
                      out_time_buffer_[1].begin());

    // Next perform the addition and the submission into the output buffer.
    AccumulateOverlap(0 /*channel*/, out_time_buffer_[0]);
    AccumulateOverlap(1 /*channel*/, out_time_buffer_[1]);
    overlap_add_index_ = (overlap_add_index_ + 1) % kNumOverlap;
  }
  output_circular_buffers_[0]->RetrieveBuffer(left_out);
  output_circular_buffers_[1]->RetrieveBuffer(right_out);
}

void SpectralReverb::AccumulateOverlap(size_t channel_index,
                                       const AudioBuffer::Channel& buffer) {
  // Use a modulo indexed multi channel audio buffer with each channel of length
  // |kOverlapLength| to perform an overlap add.
  for (size_t i = 0, index = overlap_add_index_; i < kNumOverlap;
       ++i, index = (index + 1) % kNumOverlap) {
    float* accumulator_start_point =
        output_accumulator_[channel_index][index].begin();
    AddPointwise(kOverlapLength, buffer.begin() + i * kOverlapLength,
                 accumulator_start_point, accumulator_start_point);
  }
  output_circular_buffers_[channel_index]->InsertBuffer(
      output_accumulator_[channel_index][overlap_add_index_]);
  output_accumulator_[channel_index][overlap_add_index_].Clear();
}

void SpectralReverb::GenerateAnalysisWindow() {
  // Genarate a pseudo tukey window from three overlapping hann windows, scaled
  // by the inverse fft scale.
  AudioBuffer::Channel* window_channel = &window_[0];
  // Use the unscaled window buffer as temporary storage.
  GenerateHannWindow(true /* full */, kMagnitudeLength, &unscaled_window_[0]);
  float* hann_window = &unscaled_window_[0][0];
  // Scale the hann window such that the sum of three will have unity peak.
  const float kThreeQuarters = 0.75f;
  ScalarMultiply(kMagnitudeLength, kThreeQuarters, hann_window, hann_window);
  for (size_t offset = 0; offset < kThreeQuarterFftSize;
       offset += kOverlapLength) {
    float* tripple_hann_window = &(*window_channel)[offset];
    AddPointwise(kMagnitudeLength, hann_window, tripple_hann_window,
                 tripple_hann_window);
  }
  fft_manager_.ApplyReverseFftScaling(window_channel);
  unscaled_window_[0] = *window_channel;
}

void SpectralReverb::GenerateRandomPhaseBuffer() {
  AudioBuffer::Channel* sin_phase_channel = &sin_cos_random_phase_buffer_[0];
  AudioBuffer::Channel* cos_phase_channel = &sin_cos_random_phase_buffer_[1];
  // Initially use the sin channel to store the random data before taking sine
  // and cosine.
  GenerateUniformNoise(/*min=*/0.0f, /*max=*/kPi, /*seed=*/1U,
                       sin_phase_channel);
  for (size_t i = 0; i < sin_cos_random_phase_buffer_.num_frames(); ++i) {

    (*cos_phase_channel)[i] = std::cos((*sin_phase_channel)[i]);
    (*sin_phase_channel)[i] = std::sin((*sin_phase_channel)[i]);
  }
}

void SpectralReverb::GetNextReverbBlock(size_t delay_index,
                                        AudioBuffer::Channel* left_channel,
                                        AudioBuffer::Channel* right_channel) {
  DCHECK(left_channel);
  DCHECK(right_channel);

  // Generate reverb magnitude by combining the delayed magnitude with the
  // current magnitude.
  AudioBuffer::Channel* temp_magnitude_channel = &temp_magnitude_buffer_[0];
  *temp_magnitude_channel = scaled_magnitude_buffer_[0];
  MultiplyAndAccumulatePointwise(
      kMagnitudeLength, magnitude_delay_[delay_index].begin(),
      feedback_[0].begin(), temp_magnitude_channel->begin());
  // Reinsert this new reverb magnitude into the delay buffer.
  magnitude_delay_[delay_index] = *temp_magnitude_channel;

  for (size_t i = 0; i < kNumStereoChannels; ++i) {
    // Extract a random phase buffer.
    const size_t random_offset =
        GetRandomIntegerInRange(0, kAvailableNoiselength);
    // We gaurantee an aligned offset as when SSE is used we need it.
    const size_t phase_offset = FindNextAlignedArrayIndex(
        random_offset, sizeof(float), kMemoryAlignmentBytes);
    // Convert from magnitude and phase to a time domain output.
    fft_manager_.CanonicalFreqBufferFromMagnitudeAndSinCosPhase(
        phase_offset, (*temp_magnitude_channel),
        sin_cos_random_phase_buffer_[0], sin_cos_random_phase_buffer_[1],
        &temp_freq_buffer_[0]);

    AudioBuffer::Channel* out_channel = i == 0 ? left_channel : right_channel;
    fft_manager_.GetPffftFormatFreqBuffer(temp_freq_buffer_[0],
                                          &temp_freq_buffer_[1]);
    fft_manager_.TimeFromFreqDomain(temp_freq_buffer_[1], out_channel);
  }
}

void SpectralReverb::InitializeCircularBuffersAndAccumulators() {
  AudioBuffer zeros(kNumMonoChannels, kOverlapLength);
  zeros.Clear();
  for (size_t channel = 0; channel < kNumStereoChannels; ++channel) {
    // Prefill the |output_circular_buffers_| with |kOverlapLength| /
    // |frames_per_buffer_| calls worth of zeros.
    output_circular_buffers_[channel].reset(
        new CircularBuffer(kOverlapLength + frames_per_buffer_, kOverlapLength,
                           frames_per_buffer_));
    // Due to differences in the |frames_per_buffer_| used for input and output
    // and |kOverlapLength| used for processing, a certain number of buffers of
    // zeros must be inserted into the output buffers such that enough input can
    // build up to process |kOverlapLength| worth, and enough output will build
    // up to return |frames_per_buffer_| worth.
    const size_t zeroed_buffers_of_output = kOverlapLength / frames_per_buffer_;
    for (size_t i = 0; i < zeroed_buffers_of_output; ++i) {
      output_circular_buffers_[channel]->InsertBuffer(zeros[0]);
    }
    output_accumulator_[channel] = AudioBuffer(kNumOverlap, kOverlapLength);
    output_accumulator_[channel].Clear();
  }
}

}  // namespace vraudio