summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/geometrical_acoustics/proxy_room_estimator.cc
blob: d0df0369a5f131de68075cb82457c138916a1a24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "geometrical_acoustics/proxy_room_estimator.h"

#include <algorithm>
#include <cmath>

#include "Eigen/Core"
#include "base/logging.h"
#include "platforms/common/room_effects_utils.h"

namespace vraudio {

namespace {

// Normals of the walls of an axis-aligned cube. Walls are indexed like this:
//  0: Left   (-x)
//  1: Right  (+x)
//  2: Bottom (-y)
//  3: Top    (+y)
//  4: Back   (-z)
//  5: Front  (+z)
static const float kCubeWallNormals[kNumRoomSurfaces][3] = {
    {-1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f},  {0.0f, -1.0f, 0.0f},
    {0.0f, 1.0f, 0.0f},  {0.0f, 0.0f, -1.0f}, {0.0f, 0.0f, 1.0f}};

// A helper function to determine if a ray (shooting from |ray_origin| in the
// |ray_direction| direction) intersects with a plane (whose normal is
// |plane_normal| and whose distance to the origin is
// |plane_distance_to_origin|). When returning true, the intersection point is
// stored in |intersection|.
bool PlaneIntersection(const WorldPosition& plane_normal,
                       float plane_distance_to_origin,
                       const WorldPosition& ray_origin,
                       const WorldPosition& ray_direction,
                       WorldPosition* intersection) {
  // Do not count if the direction is too close to parallel to the plane (i.e.,
  // the dot product of |direction| and |plane_normal|, |d_dot_n| is too close
  // to zero).
  const float d_dot_n = ray_direction.dot(plane_normal);
  if (std::abs(d_dot_n) < vraudio::kEpsilonFloat) {
    return false;
  }

  // Find the intersection point.
  const float t =
      (plane_distance_to_origin - ray_origin.dot(plane_normal)) / d_dot_n;

  // Do not count back-intersection, i.e., the intersection is in the negative
  // |ray_direction|.
  if (t < 0.0f) {
    return false;
  }

  *intersection = ray_origin + t * ray_direction;
  return true;
}

// A helper function to find the index of the wall with which the ray
// intersects. Returns true if such wall is found.
bool FindIntersectingWallIndex(const WorldPosition& dimensions,
                               const WorldPosition& origin,
                               const WorldPosition& direction,
                               size_t* wall_index) {
  // The ray intersects a wall if:
  // 1. It intersects the plane of the wall.
  // 2. The intersection point lies in the bounding box of the wall.
  const float dx = dimensions[0] * 0.5f;
  const float dy = dimensions[1] * 0.5f;
  const float dz = dimensions[2] * 0.5f;

  // Data used to test plane intersections (1. above): normals and distances
  // of all the walls.
  const float wall_distances[kNumRoomSurfaces] = {dx, dx, dy, dy, dz, dz};

  // Data used to test whether the intersecting point is in the bounding box
  // of the wall (2. above). The bounding box has a small thickness
  // |wall_thickness| along the normal direction of the wall.
  const float wall_thickness = AcousticRay::kRayEpsilon;

  // The centers and corresponding dimensions defining the bounding boxes of
  // all the walls.
  const WorldPosition wall_centers[kNumRoomSurfaces] = {
      {-dx, 0.0f, 0.0f}, {+dx, 0.0f, 0.0f}, {0.0f, -dy, 0.0f},
      {0.0f, +dy, 0.0f}, {0.0f, 0.0f, -dz}, {0.0f, 0.0f, +dz},
  };
  const WorldPosition wall_dimensions[kNumRoomSurfaces] = {
      {wall_thickness, dimensions[1], dimensions[2]},
      {wall_thickness, dimensions[1], dimensions[2]},
      {dimensions[0], wall_thickness, dimensions[2]},
      {dimensions[0], wall_thickness, dimensions[2]},
      {dimensions[0], dimensions[1], wall_thickness},
      {dimensions[0], dimensions[1], wall_thickness},
  };

  // Iterate through all the walls to find the one that the ray intersects with.
  for (size_t wall = 0; wall < kNumRoomSurfaces; ++wall) {
    WorldPosition intersection;
    if (PlaneIntersection(WorldPosition(kCubeWallNormals[wall]),
                          wall_distances[wall], origin, direction,
                          &intersection) &&
        IsPositionInAabb(intersection, wall_centers[wall],
                         wall_dimensions[wall])) {
      *wall_index = wall;
      return true;
    }
  }

  return false;
}

// A helper function to sort a vector of {position, distance} pairs according
// to the distances and exclude outliers.
std::vector<std::pair<WorldPosition, float>>
SortPositionsAndDistancesAndFindInliers(
    float outlier_portion, const std::vector<std::pair<WorldPosition, float>>&
                               positions_and_distances) {
  std::vector<std::pair<WorldPosition, float>>
      sorted_inlier_positions_and_distances(positions_and_distances);

  std::sort(sorted_inlier_positions_and_distances.begin(),
            sorted_inlier_positions_and_distances.end(),
            [](const std::pair<WorldPosition, float>& position_and_distance_1,
               const std::pair<WorldPosition, float>& position_and_distance_2) {
              return position_and_distance_1.second <
                     position_and_distance_2.second;
            });

  const float total_size =
      static_cast<float>(sorted_inlier_positions_and_distances.size());
  const size_t inliner_begin =
      static_cast<size_t>(std::floor(total_size * outlier_portion));
  const size_t inliner_end =
      static_cast<size_t>(std::ceil(total_size * (1.0f - outlier_portion)));

  std::copy(sorted_inlier_positions_and_distances.begin() + inliner_begin,
            sorted_inlier_positions_and_distances.begin() + inliner_end,
            sorted_inlier_positions_and_distances.begin());
  sorted_inlier_positions_and_distances.resize(inliner_end - inliner_begin);

  return sorted_inlier_positions_and_distances;
}

// A helper function to compute the average position and distance from a
// vector of positions and distances.
void ComputeAveragePositionAndDistance(
    const std::vector<std::pair<WorldPosition, float>>& positions_and_distances,
    WorldPosition* average_position, float* average_distance) {
  DCHECK(!positions_and_distances.empty());
  WorldPosition sum_positions(0.0f, 0.0f, 0.0f);
  float sum_distances = 0.0f;
  for (const std::pair<WorldPosition, float>& position_and_distance :
       positions_and_distances) {
    sum_positions += position_and_distance.first;
    sum_distances += position_and_distance.second;
  }

  const float inverse_size =
      1.0f / static_cast<float>(positions_and_distances.size());
  *average_position = sum_positions * inverse_size;
  *average_distance = sum_distances * inverse_size;
}

}  // namespace

void ProxyRoomEstimator::CollectHitPointData(
    const std::vector<Path>& paths_batch) {
  // The size of already collected hit points before this batch.
  const size_t previous_size = hit_points_.size();
  hit_points_.resize(previous_size + paths_batch.size());

  // Collect one hit point per path.
  for (size_t path_index = 0; path_index < paths_batch.size(); ++path_index) {
    const size_t hit_point_index = path_index + previous_size;
    const Path& path = paths_batch.at(path_index);
    hit_points_[hit_point_index] = CollectHitPointDataFromPath(path);
  }
}

bool ProxyRoomEstimator::EstimateCubicProxyRoom(
    float outlier_portion, RoomProperties* room_properties) {
  // Check that |outlier_portion| is in the range of [0, 0.5].
  CHECK_GE(outlier_portion, 0.0f);
  CHECK_LE(outlier_portion, 0.5f);

  // Estimation fails if there is no hit point.
  if (hit_points_.empty()) {
    return false;
  }

  // The geometry part (position, dimensions, and rotation) of the proxy room.
  if (!EstimateCubeGeometry(outlier_portion, room_properties->position,
                            room_properties->dimensions,
                            room_properties->rotation)) {
    LOG(WARNING) << "Unable to estimate a cube without a hit point with finite "
                 << "|t_far|; returning a default cube.";
    return false;
  }

  // The surface material part of the proxy room.
  EstimateSurfaceMaterials(WorldPosition(room_properties->position),
                           WorldPosition(room_properties->dimensions),
                           room_properties->material_names);
  return true;
}

ProxyRoomEstimator::HitPointData
ProxyRoomEstimator::CollectHitPointDataFromPath(const Path& path) {
  CHECK(!path.rays.empty());
  HitPointData hit_point;

  // Common data.
  const AcousticRay& first_order_ray = path.rays[0];
  hit_point.origin = WorldPosition(first_order_ray.origin());
  hit_point.direction = WorldPosition(first_order_ray.direction());

  // Treating escaped and non-escaped rays differently for their |t_far| and
  // |absorption_coefficients|.
  if (path.rays.size() > 1) {
    hit_point.t_far = first_order_ray.t_far();

    // Figure out the absorption coefficients by examining the incoming and the
    // reflected energy.
    const AcousticRay& second_order_ray = path.rays[1];
    for (size_t i = 0; i < kNumReverbOctaveBands; ++i) {
      const float incoming_energy = first_order_ray.energies().at(i);
      const float reflected_energy = second_order_ray.energies().at(i);
      CHECK_GT(incoming_energy, 0.0f);
      CHECK_GE(incoming_energy, reflected_energy);

      hit_point.absorption_coefficients[i] =
          1.0f - (reflected_energy / incoming_energy);
    }
  } else {
    hit_point.t_far = AcousticRay::kInfinity;

    // Escaped rays are considered as completely absorbed.
    for (size_t i = 0; i < kNumReverbOctaveBands; ++i) {
      hit_point.absorption_coefficients[i] = 1.0f;
    }
  }

  return hit_point;
}

bool ProxyRoomEstimator::EstimateCubeGeometry(float outlier_portion,
                                              float* position,
                                              float* dimensions,
                                              float* rotation) {
  // First group the hit points according to which cube wall it would hit,
  // assuming an initial guess of a cube that
  // 1. centers at the origin of the first ray,
  // 2. has unit dimensions, and
  // 3. has no rotation.
  const WorldPosition cube_dimensions(1.0f, 1.0f, 1.0f);
  const std::array<std::vector<HitPointData>, kNumRoomSurfaces>
      hit_points_on_walls =
          GroupHitPointsByWalls(hit_points_[0].origin, cube_dimensions);

  // Compute the positions and distances of from the hit points on walls.
  const std::vector<std::pair<WorldPosition, float>> positions_and_distances =
      ComputeDistancesAndPositionsFromHitPoints(hit_points_on_walls);

  // Cannot estimate if there are no valid positions and distances.
  if (positions_and_distances.empty()) {
    return false;
  }

  // Sort the |positions_and_distances| according to the distances and also
  // filter out outliers (whose distances are too large or too small).
  const std::vector<std::pair<WorldPosition, float>>
      sorted_inlier_positions_and_distances =
          SortPositionsAndDistancesAndFindInliers(outlier_portion,
                                                  positions_and_distances);

  // Cannot estimate if there are no inlying positions and distances.
  if (sorted_inlier_positions_and_distances.empty()) {
    return false;
  }

  // Take the average distance and origin of the inlier hit points.
  WorldPosition average_hit_point_poisition;
  float average_distance;
  ComputeAveragePositionAndDistance(sorted_inlier_positions_and_distances,
                                    &average_hit_point_poisition,
                                    &average_distance);

  // Use twice the average distance as the cube's dimensions.
  const float estimated_cube_dimension = 2.0f * average_distance;
  dimensions[0] = estimated_cube_dimension;
  dimensions[1] = estimated_cube_dimension;
  dimensions[2] = estimated_cube_dimension;

  // Use the average hit point position as the cube's position.
  position[0] = average_hit_point_poisition[0];
  position[1] = average_hit_point_poisition[1];
  position[2] = average_hit_point_poisition[2];

  // No rotation.
  rotation[0] = 0.0f;
  rotation[1] = 0.0f;
  rotation[2] = 0.0f;
  rotation[3] = 1.0f;

  return true;
}

std::array<std::vector<ProxyRoomEstimator::HitPointData>, kNumRoomSurfaces>
ProxyRoomEstimator::GroupHitPointsByWalls(
    const WorldPosition& room_position, const WorldPosition& room_dimensions) {
  const WorldPosition kOrigin(0.0f, 0.0f, 0.0f);

  // No rotation for an axis-aligned room.
  const WorldRotation kNoRotation(1.0f, 0.0f, 0.0f, 0.0f);

  // Reserve memory space for hit points on walls.
  std::array<std::vector<HitPointData>, kNumRoomSurfaces> hit_points_on_walls;
  for (std::vector<HitPointData>& hit_points_on_wall : hit_points_on_walls) {
    hit_points_on_wall.reserve(hit_points_.size());
  }

  for (const HitPointData& hit_point : hit_points_) {
    // First transform the ray's origin and direction to the local space
    // of the cube centered at |position|.
    WorldPosition local_direction;
    GetRelativeDirection(kOrigin, kNoRotation, hit_point.direction,
                         &local_direction);
    WorldPosition local_origin;
    GetRelativeDirection(room_position, kNoRotation, hit_point.origin,
                         &local_origin);

    // Find the wall that the ray intersects.
    size_t wall_index;
    if (FindIntersectingWallIndex(room_dimensions, local_origin,
                                  local_direction, &wall_index)) {
      hit_points_on_walls[wall_index].push_back(hit_point);
    }
  }

  return hit_points_on_walls;
}

std::vector<std::pair<WorldPosition, float>>
ProxyRoomEstimator::ComputeDistancesAndPositionsFromHitPoints(
    const std::array<std::vector<HitPointData>, kNumRoomSurfaces>&
        hit_points_on_walls) {
  std::vector<std::pair<WorldPosition, float>> positions_and_distances;
  for (size_t wall = 0; wall < kNumRoomSurfaces; ++wall) {
    const WorldPosition wall_normal(kCubeWallNormals[wall]);
    for (const HitPointData& hit_point : hit_points_on_walls[wall]) {
      if (hit_point.t_far == AcousticRay::kInfinity) {
        continue;
      }

      std::pair<WorldPosition, float> position_and_distance;
      position_and_distance.first =
          hit_point.origin + (hit_point.t_far * hit_point.direction);
      position_and_distance.second =
          (position_and_distance.first - hit_point.origin).dot(wall_normal);
      positions_and_distances.push_back(position_and_distance);
    }
  }

  return positions_and_distances;
}

void ProxyRoomEstimator::EstimateSurfaceMaterials(
    const WorldPosition& room_position, const WorldPosition& room_dimensions,
    MaterialName* material_names) {
  // Compute the average absorption coefficients on all the walls.
  CoefficientsVector average_absorption_coefficients[kNumRoomSurfaces];

  // Now that we have better estimates of the proxy room's position, dimensions,
  // and rotation, re-group the hit points using these estimates.
  const std::array<std::vector<HitPointData>, kNumRoomSurfaces>&
      hit_points_on_walls =
          GroupHitPointsByWalls(room_position, room_dimensions);
  for (size_t wall = 0; wall < kNumRoomSurfaces; ++wall) {
    const std::vector<HitPointData>& hit_points = hit_points_on_walls[wall];
    for (const HitPointData& hit_point : hit_points) {
      average_absorption_coefficients[wall] +=
          CoefficientsVector(hit_point.absorption_coefficients.data());
    }
  }

  for (size_t wall = 0; wall < kNumRoomSurfaces; ++wall) {
    if (!hit_points_on_walls[wall].empty()) {
      average_absorption_coefficients[wall] /=
          static_cast<float>(hit_points_on_walls[wall].size());
    } else {
      // If no hit point is found on this wall, we consider all energy absorbed
      // in this direction and the absorption coefficient being 1.0.
      average_absorption_coefficients[wall].fill(1.0f);
    }
  }

  // Find the closest surface material. The distance between two materials is
  // defined as the simple Euclidean distance.
  for (size_t wall = 0; wall < kNumRoomSurfaces; ++wall) {
    MaterialName min_distance_material_name = MaterialName::kTransparent;
    float min_material_distance = std::numeric_limits<float>::infinity();

    // We want to exclude kUniform from fitting.
    const size_t num_materials_to_fit =
        static_cast<size_t>(MaterialName::kNumMaterialNames) - 1;
    for (size_t material_index = 0; material_index < num_materials_to_fit;
         ++material_index) {
      const RoomMaterial& material = GetRoomMaterial(material_index);
      const float material_distance =
          (average_absorption_coefficients[wall] -
           CoefficientsVector(material.absorption_coefficients))
              .norm();
      if (material_distance < min_material_distance) {
        min_material_distance = material_distance;
        min_distance_material_name = material.name;
      }
    }
    material_names[wall] = min_distance_material_name;
    LOG(INFO) << "Wall[" << wall << "] material= " << min_distance_material_name
              << " distance= " << min_material_distance;
  }
}

}  // namespace vraudio