summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/resonance-audio/resonance_audio/utils/buffer_partitioner_test.cc
blob: a486b1f2305aebea82809be82d42ab1d223ffe02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS-IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "utils/buffer_partitioner.h"

#include <memory>

#include "third_party/googletest/googletest/include/gtest/gtest.h"
#include "base/audio_buffer.h"
#include "base/constants_and_types.h"
#include "base/misc_math.h"
#include "utils/planar_interleaved_conversion.h"
#include "utils/test_util.h"

namespace vraudio {

const size_t kNumFramesPerBuffer = 64;

using vraudio::AudioBuffer;

class BufferPartitionerTest : public ::testing::Test {
 public:
  // Public validation method. This is called for every generated |AudioBuffer|.
  AudioBuffer* ValidateAudioBufferCallback(AudioBuffer* audio_buffer) {
    if (audio_buffer != nullptr) {
      std::vector<float> received_buffer_interleaved;
      FillExternalBuffer(*audio_buffer, &received_buffer_interleaved);
      total_received_buffer_interleaved_.insert(
          total_received_buffer_interleaved_.end(),
          received_buffer_interleaved.begin(),
          received_buffer_interleaved.end());

      ++num_total_buffers_received_;
      num_total_frames_received_ += audio_buffer->num_frames();
    }
    ++num_total_callbacks_triggered_;
    return &partitioned_buffer_;
  }

 protected:
  BufferPartitionerTest()
      : partitioned_buffer_(kNumMonoChannels, kNumFramesPerBuffer),
        partitioner_(
            kNumMonoChannels, kNumFramesPerBuffer,
            std::bind(&BufferPartitionerTest::ValidateAudioBufferCallback, this,
                      std::placeholders::_1)),
        num_total_frames_received_(0),
        num_total_buffers_received_(0),
        num_total_callbacks_triggered_(0) {}
  ~BufferPartitionerTest() override {}

  // Returns a section of an |AudioBuffer| in interleaved format.
  template <typename T>
  std::vector<T> GetInterleavedVectorFromAudioBufferSection(
      const AudioBuffer& planar_buffer, size_t frame_offset,
      size_t num_frames) {
    CHECK_GE(planar_buffer.num_frames(), frame_offset + num_frames);
    std::vector<T> return_vector(planar_buffer.num_channels() * num_frames);

    FillExternalBufferWithOffset(
        planar_buffer, frame_offset, return_vector.data(), num_frames,
        planar_buffer.num_channels(), 0 /* output_offset_frames */, num_frames);

    return return_vector;
  }

  template <typename T>
  void SmallBufferInputTest(float buffer_epsilon) {
    ResetTest();

    const size_t kNumInputBuffers = 8;
    const size_t kNumFramesPerTestBuffer =
        kNumFramesPerBuffer / kNumInputBuffers;

    AudioBuffer test_buffer(vraudio::kNumMonoChannels, kNumFramesPerBuffer);
    GenerateSawToothSignal(kNumFramesPerBuffer, &test_buffer[0]);

    for (size_t i = 0; i < kNumInputBuffers; ++i) {
      const std::vector<T> input_interleaved =
          GetInterleavedVectorFromAudioBufferSection<T>(
              test_buffer, kNumFramesPerTestBuffer * i,
              kNumFramesPerTestBuffer);

      partitioner_.AddBuffer(input_interleaved.data(), kNumMonoChannels,
                             kNumFramesPerTestBuffer);
    }
    EXPECT_EQ(num_total_buffers_received_, 1U);
    EXPECT_EQ(num_total_callbacks_triggered_, num_total_buffers_received_ + 1);
    EXPECT_EQ(num_total_frames_received_, kNumFramesPerBuffer);

    AudioBuffer reconstructed_buffer(kNumMonoChannels, kNumFramesPerBuffer);
    FillAudioBuffer(total_received_buffer_interleaved_, kNumMonoChannels,
                    &reconstructed_buffer);

    EXPECT_TRUE(CompareAudioBuffers(test_buffer[0], reconstructed_buffer[0],
                                    buffer_epsilon));
  }

  template <typename T>
  void LargeBufferTest(float buffer_epsilon) {
    ResetTest();
    const size_t kNumOutputBuffers = 8;
    const size_t kNumFramesPerTestBuffer =
        kNumFramesPerBuffer * kNumOutputBuffers;

    AudioBuffer test_buffer(vraudio::kNumMonoChannels, kNumFramesPerTestBuffer);
    GenerateSawToothSignal(kNumFramesPerTestBuffer, &test_buffer[0]);

    const std::vector<T> input_interleaved =
        GetInterleavedVectorFromAudioBufferSection<T>(test_buffer, 0,
                                                      kNumFramesPerTestBuffer);

    partitioner_.AddBuffer(input_interleaved.data(), kNumMonoChannels,
                           kNumFramesPerTestBuffer);

    EXPECT_EQ(num_total_buffers_received_, kNumOutputBuffers);
    EXPECT_EQ(num_total_callbacks_triggered_, num_total_buffers_received_ + 1);
    EXPECT_EQ(num_total_frames_received_, kNumFramesPerTestBuffer);

    AudioBuffer reconstructed_buffer(kNumMonoChannels, kNumFramesPerTestBuffer);
    FillAudioBuffer(total_received_buffer_interleaved_, kNumMonoChannels,
                    &reconstructed_buffer);

    EXPECT_TRUE(CompareAudioBuffers(test_buffer[0], reconstructed_buffer[0],
                                    buffer_epsilon));
  }

  void ResetTest() {
    num_total_frames_received_ = 0;
    num_total_buffers_received_ = 0;
    num_total_callbacks_triggered_ = 0;
    total_received_buffer_interleaved_.clear();

    partitioner_.Clear();
  }

  AudioBuffer partitioned_buffer_;
  std::vector<float> total_received_buffer_interleaved_;

  BufferPartitioner partitioner_;

  // Stores the total number of frames received in
  // |ValidateAudioBufferCallback|.
  size_t num_total_frames_received_;

  // Stores the total number of buffers received in
  // |ValidateAudioBufferCallback|.
  size_t num_total_buffers_received_;

  // Stores the total number of callbacks being triggered in
  // |ValidateAudioBufferCallback|.
  size_t num_total_callbacks_triggered_;
};

// Tests the concatenation of multiple small buffers into a single
// |AudioBuffer|.
TEST_F(BufferPartitionerTest, TestSmallBufferInput) {
  // int16 to float conversions introduce rounding errors.
  SmallBufferInputTest<int16>(1e-4f /* buffer_epsilon */);
  SmallBufferInputTest<float>(1e-6f /* buffer_epsilon */);
}

// Tests the splitting of a large input buffer into multiple |AudioBuffer|s.
TEST_F(BufferPartitionerTest, TestLargeBufferInput) {
  // int16 to float conversions introduce rounding errors.
  LargeBufferTest<int16>(1e-4f /* buffer_epsilon */);
  LargeBufferTest<float>(1e-6f /* buffer_epsilon */);
}

// Tests the GetNumBufferedFramesTest() and
// GetNumGeneratedBuffersForNumInputFrames() methods.
TEST_F(BufferPartitionerTest, GetNumBufferedFramesTest) {
  const std::vector<float> input_interleaved(1, 1.0f);

  EXPECT_EQ(partitioner_.GetNumGeneratedBuffersForNumInputFrames(
                kNumFramesPerBuffer - 1),
            0U);
  EXPECT_EQ(
      partitioner_.GetNumGeneratedBuffersForNumInputFrames(kNumFramesPerBuffer),
      1U);

  for (size_t i = 0; i < kNumFramesPerBuffer * 2; ++i) {
    EXPECT_EQ(partitioner_.GetNumBufferedFrames(), i % kNumFramesPerBuffer);

    const size_t large_random_frame_number =
        i * 7 * kNumFramesPerBuffer + 13 * i;
    // Expected number of generated buffers is based on
    // |large_random_frame_number| and the internally stored remainder |i %
    // kNumFramesPerBuffer|.
    const size_t expected_num_generated_buffers =
        (large_random_frame_number + partitioner_.GetNumBufferedFrames()) /
        kNumFramesPerBuffer;

    EXPECT_EQ(partitioner_.GetNumGeneratedBuffersForNumInputFrames(
                  large_random_frame_number),
              expected_num_generated_buffers);

    // Add single frame to |partinioner_|.
    partitioner_.AddBuffer(input_interleaved.data(), kNumMonoChannels, 1);
  }
}

// Tests the Flush() method.
TEST_F(BufferPartitionerTest, FlushTest) {
  AudioBuffer test_buffer(vraudio::kNumMonoChannels, kNumFramesPerBuffer);
  GenerateDiracImpulseFilter(0, &test_buffer[0]);

  const std::vector<float> input_interleaved =
      GetInterleavedVectorFromAudioBufferSection<float>(
          test_buffer, 0 /* frame_offset */, kNumFramesPerBuffer);

  // Add only the first sample that contains the dirac impulse.
  partitioner_.AddBuffer(input_interleaved.data(), kNumMonoChannels, 1);
  partitioner_.Flush();

  EXPECT_EQ(num_total_buffers_received_, 1U);
  EXPECT_EQ(num_total_callbacks_triggered_, num_total_buffers_received_ + 1);
  EXPECT_EQ(num_total_frames_received_, kNumFramesPerBuffer);

  AudioBuffer reconstructed_buffer(kNumMonoChannels, kNumFramesPerBuffer);
  FillAudioBuffer(total_received_buffer_interleaved_, kNumMonoChannels,
                  &reconstructed_buffer);

  EXPECT_TRUE(CompareAudioBuffers(test_buffer[0], reconstructed_buffer[0],
                                  kEpsilonFloat));
}

}  // namespace vraudio