aboutsummaryrefslogtreecommitdiffstats
path: root/src/assetimport/qssgmeshutilities.cpp
blob: a17bc4a05d86b5ccb97910ca3e9c0a296bb5c297 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
/****************************************************************************
**
** Copyright (C) 2019 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt Quick 3D.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qssgmeshutilities_p.h"

#include <QtCore/QVector>
#include <QtCore/QBuffer>
#include <QtQuick3DUtils/private/qssgdataref_p.h>

QT_BEGIN_NAMESPACE

namespace QSSGMeshUtilities {

struct MeshSubsetV1
{
    // See description of a logical vertex buffer below
    quint32 m_logicalVbufIndex;
    // std::numeric_limits<quint32>::max() means use all available items
    quint32 m_count;
    // Offset is in item size, not bytes.
    quint32 m_offset;
    // Bounds of this subset.  This is filled in by the builder
    // see AddMeshSubset
    QSSGBounds3 m_bounds;
};

struct LogicalVertexBuffer
{
    quint32 m_byteOffset{ 0 };
    quint32 m_byteSize{ 0 };
    LogicalVertexBuffer(quint32 byteOff, quint32 byteSize) : m_byteOffset(byteOff), m_byteSize(byteSize) {}
    LogicalVertexBuffer() = default;
};

struct MeshV1
{
    VertexBuffer m_vertexBuffer;
    IndexBuffer m_indexBuffer;
    OffsetDataRef<LogicalVertexBuffer> m_logicalVertexBuffers; // may be empty
    OffsetDataRef<MeshSubsetV1> m_subsets;
    QSSGRenderDrawMode m_drawMode;
    QSSGRenderWinding m_winding;
    typedef MeshSubsetV1 TSubsetType;
};

template<typename TSerializer>
void serialize(TSerializer &serializer, MeshV1 &mesh)
{
    quint8 *baseAddr = reinterpret_cast<quint8 *>(&mesh);
    serializer.streamify(mesh.m_vertexBuffer.m_entries);
    serializer.align();
    for (quint32 entry = 0, __numItems = (quint32)mesh.m_vertexBuffer.m_entries.size(); entry < __numItems; ++entry) {
        MeshVertexBufferEntry &entryData = const_cast<MeshVertexBufferEntry &>(mesh.m_vertexBuffer.m_entries.index(baseAddr, entry));
        serializer.streamifyCharPointerOffset(entryData.m_nameOffset);
        serializer.align();
    }
    serializer.streamify(mesh.m_vertexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_indexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_logicalVertexBuffers);
    serializer.align();
    serializer.streamify(mesh.m_subsets);
    serializer.align();
}

struct MeshSubsetV2
{
    quint32 m_logicalVbufIndex;
    quint32 m_count;
    quint32 m_offset;
    QSSGBounds3 m_bounds;
    OffsetDataRef<char16_t> m_name;
};

struct MeshV2
{
    static const char16_t *m_defaultName;

    VertexBuffer m_vertexBuffer;
    IndexBuffer m_indexBuffer;
    OffsetDataRef<LogicalVertexBuffer> m_logicalVertexBuffers; // may be empty
    OffsetDataRef<MeshSubsetV2> m_subsets;
    QSSGRenderDrawMode m_drawMode;
    QSSGRenderWinding m_winding;
    typedef MeshSubsetV2 TSubsetType;
};

template<typename TSerializer>
void serialize(TSerializer &serializer, MeshV2 &mesh)
{
    quint8 *baseAddr = reinterpret_cast<quint8 *>(&mesh);
    serializer.streamify(mesh.m_vertexBuffer.m_entries);
    serializer.align();
    for (quint32 entry = 0, __numItems = (quint32)mesh.m_vertexBuffer.m_entries.size(); entry < __numItems; ++entry) {
        MeshVertexBufferEntry &entryData = const_cast<MeshVertexBufferEntry &>(mesh.m_vertexBuffer.m_entries.index(baseAddr, entry));
        serializer.streamifyCharPointerOffset(entryData.m_nameOffset);
        serializer.align();
    }
    serializer.streamify(mesh.m_vertexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_indexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_logicalVertexBuffers);
    serializer.align();
    serializer.streamify(mesh.m_subsets);
    serializer.align();
    for (quint32 entry = 0, __numItems = (quint32)mesh.m_subsets.size(); entry < __numItems; ++entry) {
        MeshSubsetV2 &theSubset = const_cast<MeshSubsetV2 &>(mesh.m_subsets.index(baseAddr, entry));
        serializer.streamify(theSubset.m_name);
        serializer.align();
    }
}

// Localize the knowledge required to read/write a mesh into one function
// written in such a way that you can both read and write by passing
// in one serializer type or another.
// This function needs to be careful to request alignment after every write of a
// buffer that may leave us unaligned.  The easiest way to be correct is to request
// alignment a lot.  The hardest way is to use knowledge of the datatypes and
// only request alignment when necessary.
template<typename TSerializer>
void serialize(TSerializer &serializer, Mesh &mesh)
{
    quint8 *baseAddr = reinterpret_cast<quint8 *>(&mesh);
    serializer.streamify(mesh.m_vertexBuffer.m_entries);
    serializer.align();

    for (quint32 entry = 0, numItems = mesh.m_vertexBuffer.m_entries.size(); entry < numItems; ++entry) {
        MeshVertexBufferEntry &entryData = mesh.m_vertexBuffer.m_entries.index(baseAddr, entry);
        serializer.streamifyCharPointerOffset(entryData.m_nameOffset);
        serializer.align();
    }
    serializer.streamify(mesh.m_vertexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_indexBuffer.m_data);
    serializer.align();
    serializer.streamify(mesh.m_subsets);
    serializer.align();

    for (quint32 entry = 0, numItems = mesh.m_subsets.size(); entry < numItems; ++entry) {
        MeshSubset &theSubset = const_cast<MeshSubset &>(mesh.m_subsets.index(baseAddr, entry));
        serializer.streamify(theSubset.m_name);
        serializer.align();
    }
    serializer.streamify(mesh.m_joints);
    serializer.align();
}

struct TotallingSerializer
{
    quint32 m_numBytes;
    const quint8 *m_baseAddress;
    TotallingSerializer(const quint8 *inBaseAddr) : m_numBytes(0), m_baseAddress(inBaseAddr) {}
    template<typename TDataType>
    void streamify(const OffsetDataRef<TDataType> &data)
    {
        m_numBytes += data.size() * sizeof(TDataType);
    }
    void streamify(const char *data)
    {
        if (data == nullptr)
            data = "";
        quint32 len = (quint32)strlen(data) + 1;
        m_numBytes += 4;
        m_numBytes += len;
    }
    void streamifyCharPointerOffset(quint32 inOffset)
    {
        if (inOffset) {
            const char *dataPtr = (const char *)(inOffset + m_baseAddress);
            streamify(dataPtr);
        } else
            streamify("");
    }
    bool needsAlignment() const { return getAlignmentAmount() > 0; }
    quint32 getAlignmentAmount() const { return 4 - (m_numBytes % 4); }
    void align()
    {
        if (needsAlignment())
            m_numBytes += getAlignmentAmount();
    }
};

struct ByteWritingSerializer
{
    QIODevice &m_stream;
    TotallingSerializer m_byteCounter;
    quint8 *m_baseAddress;
    ByteWritingSerializer(QIODevice &str, quint8 *inBaseAddress)
        : m_stream(str), m_byteCounter(inBaseAddress), m_baseAddress(inBaseAddress)
    {
    }

    template<typename TDataType>
    void streamify(const OffsetDataRef<TDataType> &data)
    {
        m_byteCounter.streamify(data);
        const int written = m_stream.write(reinterpret_cast<const char *>(data.begin(m_baseAddress)), data.size() * sizeof(TDataType));
        (void)written;
    }
    void streamify(const char *data)
    {
        m_byteCounter.streamify(data);
        if (data == nullptr)
            data = "";
        quint32 len = (quint32)strlen(data) + 1;
        int written = m_stream.write(reinterpret_cast<const char *>(&len), sizeof(quint32));
        written = m_stream.write(data, len);
        (void)written;
    }
    void streamifyCharPointerOffset(quint32 inOffset)
    {
        const char *dataPtr = (const char *)(inOffset + m_baseAddress);
        streamify(dataPtr);
    }

    void align()
    {
        if (m_byteCounter.needsAlignment()) {
            quint8 buffer[] = { 0, 0, 0, 0 };
            const int written = m_stream.write(reinterpret_cast<const char *>(buffer), m_byteCounter.getAlignmentAmount());
            (void)written;
            m_byteCounter.align();
        }
    }
};

struct MemoryAssigningSerializer
{
    const quint8 *m_memory;
    const quint8 *m_baseAddress;
    quint32 m_size;
    TotallingSerializer m_byteCounter;
    bool m_failure;
    MemoryAssigningSerializer(const quint8 *data, quint32 size, quint32 startOffset)
        : m_memory(data + startOffset), m_baseAddress(data), m_size(size), m_byteCounter(data), m_failure(false)
    {
        // We expect 4 byte aligned memory to begin with
        Q_ASSERT((((size_t)m_memory) % 4) == 0);
    }

    template<typename TDataType>
    void streamify(const OffsetDataRef<TDataType> &_data)
    {
        OffsetDataRef<TDataType> &data = const_cast<OffsetDataRef<TDataType> &>(_data);
        if (m_failure) {
            data.m_size = 0;
            data.m_offset = 0;
            return;
        }
        quint32 current = m_byteCounter.m_numBytes;
        m_byteCounter.streamify(_data);
        if (m_byteCounter.m_numBytes > m_size) {
            data.m_size = 0;
            data.m_offset = 0;
            m_failure = true;
            return;
        }
        quint32 numBytes = m_byteCounter.m_numBytes - current;
        if (numBytes) {
            data.m_offset = (quint32)(m_memory - m_baseAddress);
            updateMemoryBuffer(numBytes);
        } else {
            data.m_offset = 0;
            data.m_size = 0;
        }
    }
    void streamify(const char *&_data)
    {
        quint32 len;
        m_byteCounter.m_numBytes += 4;
        if (m_byteCounter.m_numBytes > m_size) {
            _data = "";
            m_failure = true;
            return;
        }
        memcpy(&len, m_memory, 4);
        updateMemoryBuffer(4);
        m_byteCounter.m_numBytes += len;
        if (m_byteCounter.m_numBytes > m_size) {
            _data = "";
            m_failure = true;
            return;
        }
        _data = (const char *)m_memory;
        updateMemoryBuffer(len);
    }
    void streamifyCharPointerOffset(quint32 &inOffset)
    {
        const char *dataPtr;
        streamify(dataPtr);
        inOffset = (quint32)(dataPtr - (const char *)m_baseAddress);
    }
    void align()
    {
        if (m_byteCounter.needsAlignment()) {
            quint32 numBytes = m_byteCounter.getAlignmentAmount();
            m_byteCounter.align();
            updateMemoryBuffer(numBytes);
        }
    }
    void updateMemoryBuffer(quint32 numBytes) { m_memory += numBytes; }
};

inline quint32 getMeshDataSize(Mesh &mesh)
{
    TotallingSerializer s(reinterpret_cast<quint8 *>(&mesh));
    serialize(s, mesh);
    return s.m_numBytes;
}

template<typename TDataType>
quint32 nextIndex(const quint8 *inBaseAddress, const OffsetDataRef<quint8> data, quint32 idx)
{
    quint32 numItems = data.size() / sizeof(TDataType);
    if (idx < numItems) {
        const TDataType *dataPtr(reinterpret_cast<const TDataType *>(data.begin(inBaseAddress)));
        return dataPtr[idx];
    } else {
        Q_UNREACHABLE();
        return 0;
    }
}

template<typename TDataType>
quint32 nextIndex(const QByteArray &data, quint32 idx)
{
    quint32 numItems = data.size() / sizeof(TDataType);
    if (idx < numItems) {
        const TDataType *dataPtr(reinterpret_cast<const TDataType *>(data.begin()));
        return dataPtr[idx];
    } else {
        Q_ASSERT(false);
        return 0;
    }
}

inline quint32 nextIndex(const QByteArray &inData, QSSGRenderComponentType inCompType, quint32 idx)
{
    if (inData.size() == 0)
        return idx;
    switch (inCompType) {
    case QSSGRenderComponentType::UnsignedInteger8:
        return nextIndex<quint8>(inData, idx);
    case QSSGRenderComponentType::Integer8:
        return nextIndex<quint8>(inData, idx);
    case QSSGRenderComponentType::UnsignedInteger16:
        return nextIndex<quint16>(inData, idx);
    case QSSGRenderComponentType::Integer16:
        return nextIndex<qint16>(inData, idx);
    case QSSGRenderComponentType::UnsignedInteger32:
        return nextIndex<quint32>(inData, idx);
    case QSSGRenderComponentType::Integer32:
        return nextIndex<qint32>(inData, idx);
    default:
        // Invalid index buffer index type.
        Q_ASSERT(false);
    }

    return 0;
}

template<typename TMeshType>
// Not exposed to the outside world
TMeshType *doInitialize(quint16 /*meshFlags*/, QSSGByteView data)
{
    const quint8 *newMem = data.begin();
    quint32 amountLeft = data.size() - sizeof(TMeshType);
    MemoryAssigningSerializer s(newMem, amountLeft, sizeof(TMeshType));
    TMeshType *retval = (TMeshType *)newMem;
    serialize(s, *retval);
    if (s.m_failure)
        return nullptr;
    return retval;
}

static char16_t g_DefaultName[] = { 0 };

const char16_t *Mesh::m_defaultName = g_DefaultName;

template<typename TMeshType>
struct SubsetNameHandler
{
};

template<>
struct SubsetNameHandler<MeshV1>
{
    void assignName(const quint8 * /*v1BaseAddress*/, const MeshSubsetV1 & /*mesh*/, quint8 * /*baseAddress*/, quint8 *& /*nameBuffer*/, MeshSubset &outDest)
    {
        outDest.m_name = OffsetDataRef<char16_t>();
    }
    quint32 nameLength(const MeshSubsetV1 &) { return 0; }
};

template<>
struct SubsetNameHandler<MeshV2>
{
    void assignName(const quint8 *v2BaseAddress, const MeshSubsetV2 &mesh, quint8 *baseAddress, quint8 *&nameBuffer, MeshSubset &outDest)
    {
        outDest.m_name.m_size = mesh.m_name.m_size;
        outDest.m_name.m_offset = (quint32)(nameBuffer - baseAddress);
        quint32 dtypeSize = mesh.m_name.m_size * 2;
        memcpy(nameBuffer, mesh.m_name.begin(v2BaseAddress), dtypeSize);
        nameBuffer += dtypeSize;
    }
    quint32 nameLength(const MeshSubsetV2 &mesh) { return (mesh.m_name.size() + 1) * 2; }
};

quint32 getAlignedOffset(quint32 offset, quint32 align)
{
    Q_ASSERT(align > 0);
    const quint32 leftover = (align > 0) ? offset % align : 0;
    if (leftover)
        return offset + (align - leftover);
    return offset;
}

template<typename TPreviousMeshType>
Mesh *createMeshFromPreviousMesh(TPreviousMeshType *temp)
{
    quint32 newMeshSize = sizeof(Mesh);
    quint8 *tempBaseAddress = reinterpret_cast<quint8 *>(temp);
    quint32 alignment = sizeof(void *);

    quint32 vertBufferSize = getAlignedOffset(temp->m_vertexBuffer.m_data.size(), alignment);
    newMeshSize += vertBufferSize;
    quint32 entryDataSize = temp->m_vertexBuffer.m_entries.size() * sizeof(MeshVertexBufferEntry);
    newMeshSize += entryDataSize;
    quint32 indexBufferSize = getAlignedOffset(temp->m_indexBuffer.m_data.size(), alignment);
    newMeshSize += indexBufferSize;
    quint32 entryNameSize = 0;
    for (quint32 entryIdx = 0, entryEnd = temp->m_vertexBuffer.m_entries.size(); entryIdx < entryEnd; ++entryIdx) {
        const QSSGRenderVertexBufferEntry theEntry = temp->m_vertexBuffer.m_entries.index(tempBaseAddress, entryIdx).toVertexBufferEntry(tempBaseAddress);
        const char *namePtr = theEntry.m_name;
        if (namePtr == nullptr)
            namePtr = "";

        entryNameSize += (quint32)strlen(theEntry.m_name) + 1;
    }
    entryNameSize = getAlignedOffset(entryNameSize, alignment);

    newMeshSize += entryNameSize;
    quint32 subsetBufferSize = temp->m_subsets.size() * sizeof(MeshSubset);
    newMeshSize += subsetBufferSize;
    quint32 nameLength = 0;
    for (quint32 subsetIdx = 0, subsetEnd = temp->m_subsets.size(); subsetIdx < subsetEnd; ++subsetIdx) {
        nameLength += SubsetNameHandler<TPreviousMeshType>().nameLength(temp->m_subsets.index(tempBaseAddress, subsetIdx));
    }
    nameLength = getAlignedOffset(nameLength, alignment);

    newMeshSize += nameLength;

    Mesh *retval = new Mesh();
    quint8 *baseOffset = reinterpret_cast<quint8 *>(retval);
    quint8 *vertBufferData = baseOffset + sizeof(Mesh);
    quint8 *entryBufferData = vertBufferData + vertBufferSize;
    quint8 *entryNameBuffer = entryBufferData + entryDataSize;
    quint8 *indexBufferData = entryNameBuffer + entryNameSize;
    quint8 *subsetBufferData = indexBufferData + indexBufferSize;
    quint8 *nameData = subsetBufferData + subsetBufferSize;

    retval->m_drawMode = temp->m_drawMode;
    retval->m_winding = temp->m_winding;
    retval->m_vertexBuffer = temp->m_vertexBuffer;
    retval->m_vertexBuffer.m_data.m_offset = (quint32)(vertBufferData - baseOffset);
    retval->m_vertexBuffer.m_entries.m_offset = (quint32)(entryBufferData - baseOffset);
    memcpy(vertBufferData, temp->m_vertexBuffer.m_data.begin(tempBaseAddress), temp->m_vertexBuffer.m_data.size());
    memcpy(entryBufferData, temp->m_vertexBuffer.m_entries.begin(tempBaseAddress), entryDataSize);
    for (quint32 idx = 0, __numItems = (quint32)temp->m_vertexBuffer.m_entries.size(); idx < __numItems; ++idx) {
        const MeshVertexBufferEntry &src = temp->m_vertexBuffer.m_entries.index(tempBaseAddress, idx);
        MeshVertexBufferEntry &dest = retval->m_vertexBuffer.m_entries.index(baseOffset, idx);

        const char *targetName = reinterpret_cast<const char *>(src.m_nameOffset + tempBaseAddress);
        if (src.m_nameOffset == 0)
            targetName = "";
        quint32 nameLen = (quint32)strlen(targetName) + 1;
        dest.m_nameOffset = (quint32)(entryNameBuffer - baseOffset);
        memcpy(entryNameBuffer, targetName, nameLen);
        entryNameBuffer += nameLen;
    }

    retval->m_indexBuffer = temp->m_indexBuffer;
    retval->m_indexBuffer.m_data.m_offset = (quint32)(indexBufferData - baseOffset);
    memcpy(indexBufferData, temp->m_indexBuffer.m_data.begin(tempBaseAddress), temp->m_indexBuffer.m_data.size());

    retval->m_subsets.m_size = temp->m_subsets.m_size;
    retval->m_subsets.m_offset = (quint32)(subsetBufferData - baseOffset);

    for (quint32 idx = 0, numItems = (quint32)temp->m_subsets.size(); idx < numItems; ++idx) {
        MeshSubset &dest = const_cast<MeshSubset &>(retval->m_subsets.index(baseOffset, idx));
        const typename TPreviousMeshType::TSubsetType &src = temp->m_subsets.index(tempBaseAddress, idx);
        dest.m_count = src.m_count;
        dest.m_offset = src.m_offset;
        dest.m_bounds = src.m_bounds;
        SubsetNameHandler<TPreviousMeshType>().assignName(tempBaseAddress, src, baseOffset, nameData, dest);
    }
    return retval;
}

QSSGBounds3 Mesh::calculateSubsetBounds(const QSSGRenderVertexBufferEntry &inEntry,
                                          const QByteArray &inVertxData,
                                          quint32 inStride,
                                          const QByteArray &inIndexData,
                                          QSSGRenderComponentType inIndexCompType,
                                          quint32 inSubsetCount,
                                          quint32 inSubsetOffset)
{
    QSSGBounds3 retval = QSSGBounds3();
    const QSSGRenderVertexBufferEntry &entry(inEntry);
    if (entry.m_componentType != QSSGRenderComponentType::Float32 || entry.m_numComponents != 3) {
        Q_ASSERT(false);
        return retval;
    }

    const quint8 *beginPtr = reinterpret_cast<const quint8 *>(inVertxData.constData());
    quint32 numBytes = inVertxData.size();
    quint32 dataStride = inStride;
    quint32 posOffset = entry.m_firstItemOffset;
    // The loop below could be template specialized *if* we wanted to do this.
    // and the perf of the existing loop was determined to be a problem.
    // Else I would rather stay way from the template specialization.
    for (quint32 idx = 0, __numItems = (quint32)inSubsetCount; idx < __numItems; ++idx) {
        quint32 dataIdx = nextIndex(inIndexData, inIndexCompType, idx + inSubsetOffset);
        quint32 finalOffset = (dataIdx * dataStride) + posOffset;
        if (finalOffset + sizeof(Vec3) <= numBytes) {
            const quint8 *dataPtr = beginPtr + finalOffset;
            const auto vec3 = *reinterpret_cast<const Vec3 *>(dataPtr);
            retval.include(QVector3D(vec3.x, vec3.y, vec3.z));
        } else {
            Q_ASSERT(false);
        }
    }

    return retval;
}

void Mesh::save(QIODevice &outStream) const
{
    Mesh &mesh(const_cast<Mesh &>(*this));
    quint8 *baseAddress = reinterpret_cast<quint8 *>(&mesh);
    quint32 meshSize = sizeof(Mesh);
    quint32 meshDataSize = getMeshDataSize(mesh);
    quint32 numBytes = meshSize + meshDataSize;
    MeshDataHeader header(numBytes);
    int written = outStream.write(reinterpret_cast<const char *>(&header), sizeof(MeshDataHeader)); // 12 bytes
    written = outStream.write(reinterpret_cast<const char *>(this), sizeof(Mesh));
    (void)written;
    ByteWritingSerializer writer(outStream, baseAddress);
    serialize(writer, mesh);
}

bool Mesh::save(const char *inFilePath) const
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadWrite)) {
        Q_ASSERT(false);
        return false;
    }

    save(file);
    file.close();
    return true;
}

Mesh *Mesh::load(QIODevice &inStream)
{
    MeshDataHeader header;
    inStream.read(reinterpret_cast<char *>(&header), sizeof(MeshDataHeader));
    Q_ASSERT(header.m_fileId == MeshDataHeader::getFileId());
    if (header.m_fileId != MeshDataHeader::getFileId())
        return nullptr;
    if (header.m_fileVersion < 1 || header.m_fileVersion > MeshDataHeader::getCurrentFileVersion())
        return nullptr;
    if (header.m_sizeInBytes < sizeof(Mesh))
        return nullptr;
    char *meshBufferData = reinterpret_cast<char *>(::malloc(header.m_sizeInBytes));
    qint64 sizeRead = inStream.read(meshBufferData, header.m_sizeInBytes);
    //    QByteArray meshBuffer = inStream.read(header.m_sizeInBytes);
    if (sizeRead == header.m_sizeInBytes) {
        QSSGByteView meshBuffer = toByteView(meshBufferData, header.m_sizeInBytes);
        if (header.m_fileVersion == 1) {
            MeshV1 *temp = doInitialize<MeshV1>(header.m_headerFlags, meshBuffer);
            if (temp == nullptr)
                goto failure;
            return createMeshFromPreviousMesh(temp);

        } else if (header.m_fileVersion == 2) {
            MeshV2 *temp = doInitialize<MeshV2>(header.m_headerFlags, meshBuffer);
            if (temp == nullptr)
                goto failure;
            return createMeshFromPreviousMesh(temp);
        } else {
            Mesh *retval = initialize(header.m_fileVersion, header.m_headerFlags, meshBuffer);
            if (retval == nullptr)
                goto failure;
            return retval;
        }
    }

failure:
    Q_ASSERT(false);
    ::free(meshBufferData);
    return nullptr;
}

Mesh *Mesh::load(const char *inFilePath)
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadOnly)) {
        Q_ASSERT(false);
        return nullptr;
    }

    auto mesh = load(file);
    file.close();
    return mesh;
}

Mesh *Mesh::initialize(quint16 meshVersion, quint16 meshFlags, QSSGByteView data)
{
    if (meshVersion != MeshDataHeader::getCurrentFileVersion())
        return nullptr;
    return doInitialize<Mesh>(meshFlags, data);
}

quint32 Mesh::saveMulti(QIODevice &inStream, quint32 inId) const
{
    quint32 nextId = 1;
    MeshMultiHeader tempHeader;
    MeshMultiHeader *theHeader = nullptr;
    MeshMultiHeader *theWriteHeader = nullptr;

    qint64 newMeshStartPos = 0;
    if (inStream.size() != 0) {
        theHeader = loadMultiHeader(inStream);
        if (theHeader == nullptr) {
            Q_ASSERT(false);
            return 0;
        }
        quint8 *headerBaseAddr = reinterpret_cast<quint8 *>(theHeader);
        for (quint32 idx = 0, end = theHeader->m_entries.size(); idx < end; ++idx) {
            if (inId != 0) {
                Q_ASSERT(inId != theHeader->m_entries.index(headerBaseAddr, idx).m_meshId);
            }
            nextId = qMax(nextId, theHeader->m_entries.index(headerBaseAddr, idx).m_meshId + 1);
        }
        newMeshStartPos = sizeof(MeshMultiHeader) + theHeader->m_entries.size() * sizeof(MeshMultiEntry);
        theWriteHeader = theHeader;
    } else {
        theWriteHeader = &tempHeader;
    }

    // inStream.SetPosition(-newMeshStartPos, SeekPosition::End);
    inStream.seek(inStream.size() - newMeshStartPos); // ### not sure about this one
    qint64 meshOffset = inStream.pos();

    save(inStream);

    if (inId != 0)
        nextId = inId;
    quint8 *theWriteBaseAddr = reinterpret_cast<quint8 *>(theWriteHeader);
    // Now write a new header out.
    int written = inStream.write(reinterpret_cast<char *>(theWriteHeader->m_entries.begin(theWriteBaseAddr)),
                   theWriteHeader->m_entries.size());
    MeshMultiEntry newEntry(static_cast<qint64>(meshOffset), nextId);
    written = inStream.write(reinterpret_cast<char *>(&newEntry), sizeof(MeshMultiEntry));
    theWriteHeader->m_entries.m_size++;
    written = inStream.write(reinterpret_cast<char *>(theWriteHeader), sizeof(MeshMultiHeader));
    (void)written;

    return static_cast<quint32>(nextId);
}

quint32 Mesh::saveMulti(const char *inFilePath) const
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadWrite)) {
        Q_ASSERT(false);
        return (quint32)-1;
    }

    quint32 id = saveMulti(file);
    file.close();
    return id;
}

MultiLoadResult Mesh::loadMulti(QIODevice &inStream, quint32 inId)
{
    MeshMultiHeader *theHeader(loadMultiHeader(inStream));
    if (theHeader == nullptr) {
        return MultiLoadResult();
    }
    quint64 fileOffset = (quint64)-1;
    quint32 theId = inId;
    quint8 *theHeaderBaseAddr = reinterpret_cast<quint8 *>(theHeader);
    bool foundMesh = false;
    for (quint32 idx = 0, end = theHeader->m_entries.size(); idx < end && !foundMesh; ++idx) {
        const MeshMultiEntry &theEntry(theHeader->m_entries.index(theHeaderBaseAddr, idx));
        if (theEntry.m_meshId == inId || (inId == 0 && theEntry.m_meshId > theId)) {
            if (theEntry.m_meshId == inId)
                foundMesh = true;
            theId = qMax(theId, (quint32)theEntry.m_meshId);
            fileOffset = theEntry.m_meshOffset;
        }
    }
    Mesh *retval = nullptr;
    if (fileOffset == (quint64)-1) {
        goto endFunction;
    }

    inStream.seek(static_cast<qint64>(fileOffset));
    retval = load(inStream);
endFunction:
    free(theHeader);
    return MultiLoadResult(retval, theId);
}

MultiLoadResult Mesh::loadMulti(const char *inFilePath, quint32 inId)
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadOnly)) {
        Q_ASSERT(false);
        return MultiLoadResult();
    }

    auto result = loadMulti(file, inId);
    file.close();
    return result;
}

bool Mesh::isMulti(QIODevice &inStream)
{
    MeshMultiHeader theHeader;
    inStream.seek(inStream.size() - ((qint64)(sizeof(MeshMultiHeader))));
    quint32 numBytes = inStream.read(reinterpret_cast<char *>(&theHeader), sizeof(MeshMultiHeader));
    if (numBytes != sizeof(MeshMultiHeader))
        return false;
    return theHeader.m_version == MeshMultiHeader::getMultiStaticVersion();
}

MeshMultiHeader *Mesh::loadMultiHeader(QIODevice &inStream)
{
    MeshMultiHeader theHeader;
    inStream.seek(inStream.size() - ((qint64)sizeof(MeshMultiHeader)));
    quint32 numBytes = inStream.read(reinterpret_cast<char *>(&theHeader), sizeof(MeshMultiHeader));
    if (numBytes != sizeof(MeshMultiHeader) || theHeader.m_fileId != MeshMultiHeader::getMultiStaticFileId()
        || theHeader.m_version > MeshMultiHeader::getMultiStaticVersion()) {
        return nullptr;
    }
    size_t allocSize = sizeof(MeshMultiHeader) + theHeader.m_entries.m_size * sizeof(MeshMultiEntry);
    quint8 *baseAddr = static_cast<quint8 *>(::malloc(allocSize));
    if (baseAddr == nullptr) {
        Q_ASSERT(false);
        return nullptr;
    }
    MeshMultiHeader *retval = new (baseAddr) MeshMultiHeader(theHeader);
    quint8 *entryData = baseAddr + sizeof(MeshMultiHeader);
    retval->m_entries.m_offset = (quint32)(entryData - baseAddr);
    inStream.seek(inStream.size() - ((qint64)allocSize));

    numBytes = inStream.read(reinterpret_cast<char *>(entryData), retval->m_entries.m_size * sizeof(MeshMultiEntry));
    if (numBytes != retval->m_entries.m_size * sizeof(MeshMultiEntry)) {
        Q_ASSERT(false);
        delete retval;
        retval = nullptr;
    }
    return retval;
}

MeshMultiHeader *Mesh::loadMultiHeader(const char *inFilePath)
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadOnly)) {
        Q_ASSERT(false);
        return nullptr;
    }

    auto result = loadMultiHeader(file);
    file.close();
    return result;
}

quint32 GetHighestId(MeshMultiHeader *inHeader)
{
    if (inHeader == nullptr) {
        Q_ASSERT(false);
        return 0;
    }
    quint8 *baseHeaderAddr = reinterpret_cast<quint8 *>(inHeader);
    quint32 highestId = 0;
    for (quint32 idx = 0, end = inHeader->m_entries.size(); idx < end; ++idx)
        highestId = qMax(highestId, inHeader->m_entries.index(baseHeaderAddr, idx).m_meshId);
    return highestId;
}

quint32 Mesh::getHighestMultiVersion(QIODevice &inStream)
{
    return GetHighestId(loadMultiHeader(inStream));
}

quint32 Mesh::getHighestMultiVersion(const char *inFilePath)
{
    QFile file(QString::fromLocal8Bit(inFilePath));
    if (!file.open(QIODevice::ReadOnly)) {
        Q_ASSERT(false);
        return (quint32)-1;
    }

    auto result = getHighestMultiVersion(file);
    file.close();
    return result;
}

namespace {

#if 0
MeshBuilderVBufEntry ToEntry(const QVector<float> &data, const char *name, quint32 numComponents)
{
    return MeshBuilderVBufEntry(name, QByteArray(reinterpret_cast<const char *>(data.data())), QSSGRenderComponentTypes::Float32, numComponents);
}
#endif

struct DynamicVBuf
{
    quint32 m_stride;
    QVector<QSSGRenderVertexBufferEntry> m_vertexBufferEntries;
    QByteArray m_vertexData;

    void clear()
    {
        m_stride = 0;
        m_vertexBufferEntries.clear();
        m_vertexData.clear();
    }
};
struct DynamicIndexBuf
{
    QSSGRenderComponentType m_compType;
    QByteArray m_indexData;
    void clear() { m_indexData.clear(); }
};

struct SubsetDesc
{
    quint32 m_count{ 0 };
    quint32 m_offset{ 0 };

    QSSGBounds3 m_bounds;
    QString m_name;
    SubsetDesc(quint32 c, quint32 off) : m_count(c), m_offset(off) {}
    SubsetDesc() = default;
};

class MeshBuilderImpl : public QSSGMeshBuilder
{
    DynamicVBuf m_vertexBuffer;
    DynamicIndexBuf m_indexBuffer;
    QVector<Joint> m_joints;
    QVector<SubsetDesc> m_meshSubsetDescs;
    QSSGRenderDrawMode m_drawMode;
    QSSGRenderWinding m_winding;
    QByteArray m_newIndexBuffer;
    QVector<quint8> m_meshBuffer;

public:
    MeshBuilderImpl() { reset(); }
    ~MeshBuilderImpl() override { reset(); }
    void release() override { delete this; }
    void reset() override
    {
        m_vertexBuffer.clear();
        m_indexBuffer.clear();
        m_joints.clear();
        m_meshSubsetDescs.clear();
        m_drawMode = QSSGRenderDrawMode::Triangles;
        m_winding = QSSGRenderWinding::CounterClockwise;
        m_meshBuffer.clear();
    }

    void setDrawParameters(QSSGRenderDrawMode drawMode, QSSGRenderWinding winding) override
    {
        m_drawMode = drawMode;
        m_winding = winding;
    }

    // Somewhat burly method to interleave the data as tightly as possible
    // while taking alignment into account.
    bool setVertexBuffer(const QVector<MeshBuilderVBufEntry> &entries) override
    {
        quint32 currentOffset = 0;
        quint32 bufferAlignment = 0;
        quint32 numItems = 0;
        bool retval = true;
        for (quint32 idx = 0, __numItems = (quint32)entries.size(); idx < __numItems; ++idx) {
            const MeshBuilderVBufEntry &entry(entries[idx]);
            // Ignore entries with no data.
            if (entry.m_data.begin() == nullptr || entry.m_data.size() == 0)
                continue;

            quint32 alignment = getSizeOfType(entry.m_componentType);
            bufferAlignment = qMax(bufferAlignment, alignment);
            quint32 byteSize = alignment * entry.m_numComponents;

            if (entry.m_data.size() % alignment != 0) {
                Q_ASSERT(false);
                retval = false;
            }

            quint32 localNumItems = entry.m_data.size() / byteSize;
            if (numItems == 0) {
                numItems = localNumItems;
            } else if (numItems != localNumItems) {
                Q_ASSERT(false);
                retval = false;
                numItems = qMin(numItems, localNumItems);
            }
            // Lots of platforms can't handle non-aligned data.
            // so ensure we are aligned.
            currentOffset = getAlignedOffset(currentOffset, alignment);
            QSSGRenderVertexBufferEntry vbufEntry(entry.m_name, entry.m_componentType, entry.m_numComponents, currentOffset);
            m_vertexBuffer.m_vertexBufferEntries.push_back(vbufEntry);
            currentOffset += byteSize;
        }
        m_vertexBuffer.m_stride = getAlignedOffset(currentOffset, bufferAlignment);

        // Packed interleave the data
        for (quint32 idx = 0; idx < numItems; ++idx) {
            quint32 dataOffset = 0;
            for (qint32 entryIdx = 0; entryIdx < entries.size(); ++entryIdx) {
                const MeshBuilderVBufEntry &entry(entries[entryIdx]);
                // Ignore entries with no data.
                if (entry.m_data.begin() == nullptr || entry.m_data.size() == 0)
                    continue;

                quint32 alignment = (quint32)getSizeOfType(entry.m_componentType);
                quint32 byteSize = alignment * entry.m_numComponents;
                quint32 offset = byteSize * idx;
                quint32 newOffset = getAlignedOffset(dataOffset, alignment);
                QBuffer vertexDataBuffer(&m_vertexBuffer.m_vertexData);
                vertexDataBuffer.open(QIODevice::WriteOnly | QIODevice::Append);
                if (newOffset != dataOffset) {
                    QByteArray filler(newOffset - dataOffset, '\0');
                    vertexDataBuffer.write(filler);
                }
                vertexDataBuffer.write(entry.m_data.begin() + offset, byteSize);
                vertexDataBuffer.close();
                dataOffset = newOffset + byteSize;
            }
            Q_ASSERT(dataOffset == m_vertexBuffer.m_stride);
        }
        return retval;
    }

    void setVertexBuffer(const QVector<QSSGRenderVertexBufferEntry> &entries, quint32 stride, QByteArray data) override
    {
        for (quint32 idx = 0, __numItems = (quint32)entries.size(); idx < __numItems; ++idx) {
            m_vertexBuffer.m_vertexBufferEntries.push_back(entries[idx]);
        }
        QBuffer vertexDataBuffer(&m_vertexBuffer.m_vertexData);
        vertexDataBuffer.open(QIODevice::WriteOnly);
        vertexDataBuffer.write(data);
        vertexDataBuffer.close();
        if (stride == 0) {
            // Calculate the stride of the buffer using the vbuf entries
            for (quint32 idx = 0, __numItems = (quint32)entries.size(); idx < __numItems; ++idx) {
                const QSSGRenderVertexBufferEntry &entry(entries[idx]);
                stride = qMax(stride,
                              (quint32)(entry.m_firstItemOffset
                                        + (entry.m_numComponents * getSizeOfType(entry.m_componentType))));
            }
        }
        m_vertexBuffer.m_stride = stride;
    }

    void setIndexBuffer(const QByteArray &data, QSSGRenderComponentType comp) override
    {
        m_indexBuffer.m_compType = comp;
        QBuffer indexBuffer(&m_indexBuffer.m_indexData);
        indexBuffer.open(QIODevice::WriteOnly);
        indexBuffer.write(data);
        indexBuffer.close();
    }

    void addJoint(qint32 jointID, qint32 parentID, const float *invBindPose, const float *localToGlobalBoneSpace) override
    {
        m_joints.push_back(Joint(jointID, parentID, invBindPose, localToGlobalBoneSpace));
    }

    SubsetDesc createSubset(const char16_t *inName, quint32 count, quint32 offset)
    {
        if (inName == nullptr)
            inName = u"";
        SubsetDesc retval(count, offset);
        retval.m_name = QString::fromUtf16(inName);
        return retval;
    }

    // indexBuffer std::numeric_limits<quint32>::max() means no index buffer.
    // count of std::numeric_limits<quint32>::max() means use all available items.
    // offset means exactly what you would think.  Offset is in item size, not bytes.
    void addMeshSubset(const char16_t *inName, quint32 count, quint32 offset, quint32 boundsPositionEntryIndex) override
    {
        SubsetDesc retval = createSubset(inName, count, offset);
        if (boundsPositionEntryIndex != std::numeric_limits<quint32>::max()) {
            retval.m_bounds = Mesh::calculateSubsetBounds(m_vertexBuffer.m_vertexBufferEntries[boundsPositionEntryIndex],
                                                          m_vertexBuffer.m_vertexData,
                                                          m_vertexBuffer.m_stride,
                                                          m_indexBuffer.m_indexData,
                                                          m_indexBuffer.m_compType,
                                                          count,
                                                          offset);
        }
        m_meshSubsetDescs.push_back(retval);
    }

    void addMeshSubset(const char16_t *inName, quint32 count, quint32 offset, const QSSGBounds3 &inBounds) override
    {
        SubsetDesc retval = createSubset(inName, count, offset);
        retval.m_bounds = inBounds;
        m_meshSubsetDescs.push_back(retval);
    }

    // We connect sub meshes which habe the same material
    void connectSubMeshes() override
    {
        if (m_meshSubsetDescs.size() < 2) {
            // nothing to do
            return;
        }

        quint32 matDuplicates = 0;

        // as a pre-step we check if we have duplicate material at all
        for (quint32 i = 0, subsetEnd = m_meshSubsetDescs.size(); i < subsetEnd && !matDuplicates; ++i) {
            SubsetDesc &currentSubset = m_meshSubsetDescs[i];

            for (quint32 j = 0, subsetEnd = m_meshSubsetDescs.size(); j < subsetEnd; ++j) {
                SubsetDesc &theSubset = m_meshSubsetDescs[j];

                if (i == j)
                    continue;

                if (currentSubset.m_name == theSubset.m_name) {
                    matDuplicates++;
                    break; // found a duplicate bail out
                }
            }
        }

        // did we find some duplicates?
        if (matDuplicates) {
            QVector<SubsetDesc> newMeshSubsetDescs;
            QVector<SubsetDesc>::iterator theIter;
            QString curMatName;
            m_newIndexBuffer.clear();

            for (theIter = m_meshSubsetDescs.begin(); theIter != m_meshSubsetDescs.end(); ++theIter) {
                bool bProcessed = false;

                for (QVector<SubsetDesc>::iterator iter = newMeshSubsetDescs.begin(); iter != newMeshSubsetDescs.end(); ++iter) {
                    if (theIter->m_name == iter->m_name) {
                        bProcessed = true;
                        break;
                    }
                }

                if (bProcessed)
                    continue;

                curMatName = theIter->m_name;

                quint32 theIndexCompSize = (quint32)getSizeOfType(m_indexBuffer.m_compType);
                // get pointer to indices
                char *theIndices = (m_indexBuffer.m_indexData.begin()) + (theIter->m_offset * theIndexCompSize);
                // write new offset
                theIter->m_offset = m_newIndexBuffer.size() / theIndexCompSize;
                // store indices
                QBuffer newIndexBuffer(&m_newIndexBuffer);
                newIndexBuffer.open(QIODevice::WriteOnly);
                newIndexBuffer.write(theIndices, theIter->m_count * theIndexCompSize);

                for (int j = 0, subsetEnd = m_meshSubsetDescs.size(); j < subsetEnd; ++j) {
                    if (theIter == &m_meshSubsetDescs[j])
                        continue;

                    SubsetDesc &theSubset = m_meshSubsetDescs[j];

                    if (curMatName == theSubset.m_name) {
                        // get pointer to indices
                        char *theIndices = (m_indexBuffer.m_indexData.data()) + (theSubset.m_offset * theIndexCompSize);
                        // store indices
                        newIndexBuffer.write(theIndices, theSubset.m_count * theIndexCompSize);
                        // increment indices count
                        theIter->m_count += theSubset.m_count;
                    }
                    newIndexBuffer.close();
                }

                newMeshSubsetDescs.push_back(*theIter);
            }

            m_meshSubsetDescs.clear();
            m_meshSubsetDescs = newMeshSubsetDescs;
            m_indexBuffer.m_indexData.clear();
            QBuffer indexBuffer(&m_indexBuffer.m_indexData);
            indexBuffer.open(QIODevice::WriteOnly);
            indexBuffer.write(m_newIndexBuffer);
            indexBuffer.close();
            // compute new bounding box
            for (theIter = m_meshSubsetDescs.begin(); theIter != m_meshSubsetDescs.end(); ++theIter) {
                theIter->m_bounds = Mesh::calculateSubsetBounds(m_vertexBuffer.m_vertexBufferEntries[0],
                                                                m_vertexBuffer.m_vertexData,
                                                                m_vertexBuffer.m_stride,
                                                                m_indexBuffer.m_indexData,
                                                                m_indexBuffer.m_compType,
                                                                theIter->m_count,
                                                                theIter->m_offset);
            }
        }
    }

    // Here is the NVTriStrip magic.
    void optimizeMesh() override
    {
        if (getSizeOfType(m_indexBuffer.m_compType) != 2) {
            // we currently re-arrange unsigned int indices.
            // this is because NvTriStrip only supports short indices
            Q_ASSERT(getSizeOfType(m_indexBuffer.m_compType) == 4);
            return;
        }
    }

    template<typename TDataType>
    static void assign(quint8 *inBaseAddress, quint8 *inDataAddress, OffsetDataRef<TDataType> &inBuffer, const QByteArray &inDestData)
    {
        inBuffer.m_offset = (quint32)(inDataAddress - inBaseAddress);
        inBuffer.m_size = inDestData.size();
        memcpy(inDataAddress, inDestData.data(), inDestData.size());
    }
    template<typename TDataType>
    static void assign(quint8 *inBaseAddress, quint8 *inDataAddress, OffsetDataRef<TDataType> &inBuffer, const QVector<TDataType> &inDestData)
    {
        inBuffer.m_offset = (quint32)(inDataAddress - inBaseAddress);
        inBuffer.m_size = inDestData.size();
        memcpy(inDataAddress, inDestData.data(), inDestData.size());
    }
    template<typename TDataType>
    static void assign(quint8 *inBaseAddress, quint8 *inDataAddress, OffsetDataRef<TDataType> &inBuffer, quint32 inDestSize)
    {
        inBuffer.m_offset = (quint32)(inDataAddress - inBaseAddress);
        inBuffer.m_size = inDestSize;
    }
    // Return the current mesh.  This is only good for this function call, item may change or be
    // released
    // due to any further function calls.
    Mesh &getMesh() override
    {
        quint32 meshSize = sizeof(Mesh);
        quint32 alignment = sizeof(void *);
        quint32 vertDataSize = getAlignedOffset(m_vertexBuffer.m_vertexData.size(), alignment);
        meshSize += vertDataSize;
        quint32 entrySize = m_vertexBuffer.m_vertexBufferEntries.size() * sizeof(QSSGRenderVertexBufferEntry);
        meshSize += entrySize;
        quint32 entryNameSize = 0;
        for (quint32 idx = 0, end = m_vertexBuffer.m_vertexBufferEntries.size(); idx < end; ++idx) {
            const QSSGRenderVertexBufferEntry &theEntry(m_vertexBuffer.m_vertexBufferEntries[idx]);
            const char *entryName = theEntry.m_name;
            if (entryName == nullptr)
                entryName = "";
            entryNameSize += (quint32)(strlen(theEntry.m_name)) + 1;
        }
        entryNameSize = getAlignedOffset(entryNameSize, alignment);
        meshSize += entryNameSize;
        quint32 indexBufferSize = getAlignedOffset(m_indexBuffer.m_indexData.size(), alignment);
        meshSize += indexBufferSize;
        quint32 subsetSize = m_meshSubsetDescs.size() * sizeof(MeshSubset);
        quint32 nameSize = 0;
        for (quint32 idx = 0, end = m_meshSubsetDescs.size(); idx < end; ++idx) {
            if (!m_meshSubsetDescs[idx].m_name.isEmpty())
                nameSize += m_meshSubsetDescs[idx].m_name.size() + 1;
        }
        nameSize *= sizeof(char16_t);
        nameSize = getAlignedOffset(nameSize, alignment);

        meshSize += subsetSize + nameSize;
        quint32 jointsSize = m_joints.size() * sizeof(Joint);
        meshSize += jointsSize;
        m_meshBuffer.resize(meshSize);
        quint8 *baseAddress = m_meshBuffer.data();
        Mesh *retval = reinterpret_cast<Mesh *>(baseAddress);
        retval->m_drawMode = m_drawMode;
        retval->m_winding = m_winding;
        quint8 *vertBufferData = baseAddress + sizeof(Mesh);
        quint8 *vertEntryData = vertBufferData + vertDataSize;
        quint8 *vertEntryNameData = vertEntryData + entrySize;
        quint8 *indexBufferData = vertEntryNameData + entryNameSize;
        quint8 *subsetBufferData = indexBufferData + indexBufferSize;
        quint8 *nameBufferData = subsetBufferData + subsetSize;
        quint8 *jointBufferData = nameBufferData + nameSize;

        retval->m_vertexBuffer.m_stride = m_vertexBuffer.m_stride;
        assign(baseAddress, vertBufferData, retval->m_vertexBuffer.m_data, m_vertexBuffer.m_vertexData);
        retval->m_vertexBuffer.m_entries.m_size = m_vertexBuffer.m_vertexBufferEntries.size();
        retval->m_vertexBuffer.m_entries.m_offset = (quint32)(vertEntryData - baseAddress);
        for (quint32 idx = 0, end = m_vertexBuffer.m_vertexBufferEntries.size(); idx < end; ++idx) {
            const QSSGRenderVertexBufferEntry &theEntry(m_vertexBuffer.m_vertexBufferEntries[idx]);
            MeshVertexBufferEntry &theDestEntry(retval->m_vertexBuffer.m_entries.index(baseAddress, idx));
            theDestEntry.m_componentType = theEntry.m_componentType;
            theDestEntry.m_firstItemOffset = theEntry.m_firstItemOffset;
            theDestEntry.m_numComponents = theEntry.m_numComponents;
            const char *targetName = theEntry.m_name;
            if (targetName == nullptr)
                targetName = "";

            quint32 entryNameLen = (quint32)(strlen(targetName)) + 1;
            theDestEntry.m_nameOffset = (quint32)(vertEntryNameData - baseAddress);
            memcpy(vertEntryNameData, theEntry.m_name, entryNameLen);
            vertEntryNameData += entryNameLen;
        }

        retval->m_indexBuffer.m_componentType = m_indexBuffer.m_compType;
        assign(baseAddress, indexBufferData, retval->m_indexBuffer.m_data, m_indexBuffer.m_indexData);
        assign(baseAddress, subsetBufferData, retval->m_subsets, m_meshSubsetDescs.size());
        for (quint32 idx = 0, end = m_meshSubsetDescs.size(); idx < end; ++idx) {
            SubsetDesc &theDesc = m_meshSubsetDescs[idx];
            MeshSubset &theSubset = reinterpret_cast<MeshSubset *>(subsetBufferData)[idx];
            theSubset.m_bounds = theDesc.m_bounds;
            theSubset.m_count = theDesc.m_count;
            theSubset.m_offset = theDesc.m_offset;
            if (!theDesc.m_name.isEmpty()) {
                theSubset.m_name.m_size = theDesc.m_name.size() + 1;
                theSubset.m_name.m_offset = (quint32)(nameBufferData - baseAddress);
                std::transform(theDesc.m_name.begin(),
                               theDesc.m_name.end(),
                               reinterpret_cast<char16_t *>(nameBufferData),
                               [](QChar c) { return static_cast<char16_t>(c.unicode()); });
                reinterpret_cast<char16_t *>(nameBufferData)[theDesc.m_name.size()] = 0;
                nameBufferData += (theDesc.m_name.size() + 1) * sizeof(char16_t);
            } else {
                theSubset.m_name.m_size = 0;
                theSubset.m_name.m_offset = 0;
            }
        }
        assign(baseAddress, jointBufferData, retval->m_joints, m_joints);
        return *retval;
    }

    Mesh *buildMesh(const MeshData &meshData, QString &error, const QSSGBounds3 &inBounds) override
    {
        // Do some basic validation of the meshData
        if (meshData.m_vertexBuffer.size() == 0) {
            error = QObject::tr("Vertex buffer empty");
            return nullptr;
        }
        if (meshData.m_attributeCount == 0) {
            error = QObject::tr("No attributes defined");
            return nullptr;
        }

        reset();
        setDrawParameters(static_cast<QSSGRenderDrawMode>(meshData.m_primitiveType),
                          QSSGRenderWinding::CounterClockwise);

        // The expectation is that the vertex buffer included in meshData is already properly
        // formatted and doesn't need further processing.

        // Validate attributes
        QVector<QSSGRenderVertexBufferEntry> vBufEntries;
        QSSGRenderComponentType indexBufferComponentType = QSSGRenderComponentType::Unknown;
        int indexBufferTypeSize = 0;
        for (int i = 0; i < meshData.m_attributeCount; ++i) {
            const MeshData::Attribute &att = meshData.m_attributes[i];
            auto componentType = static_cast<QSSGRenderComponentType>(att.componentType);
            if (att.semantic == MeshData::Attribute::IndexSemantic) {
                indexBufferComponentType = componentType;
                indexBufferTypeSize = att.typeSize();
            } else {
                const char *name = nullptr;
                switch (att.semantic) {
                case MeshData::Attribute::PositionSemantic:
                    name = Mesh::getPositionAttrName();
                    break;
                case MeshData::Attribute::NormalSemantic:
                    name = Mesh::getNormalAttrName();
                    break;
                case MeshData::Attribute::TexCoordSemantic:
                    name = Mesh::getUVAttrName();
                    break;
                case MeshData::Attribute::TangentSemantic:
                    name = Mesh::getTexTanAttrName();
                    break;
                case MeshData::Attribute::BinormalSemantic:
                    name = Mesh::getTexBinormalAttrName();
                    break;
                default:
                    error = QObject::tr("Warning: Invalid attribute semantic: %1")
                            .arg(att.semantic);
                    return nullptr;
                }
                vBufEntries << QSSGRenderVertexBufferEntry(name, componentType,
                                                           unsigned(att.componentCount()),
                                                           unsigned(att.offset));
            }
        }
        setVertexBuffer(vBufEntries, unsigned(meshData.m_stride), meshData.m_vertexBuffer);

        int vertexCount = 0;
        if (indexBufferComponentType != QSSGRenderComponentType::Unknown) {
            setIndexBuffer(meshData.m_indexBuffer, indexBufferComponentType);
            vertexCount = meshData.m_indexBuffer.size() / indexBufferTypeSize;
        } else {
            vertexCount = meshData.m_vertexBuffer.size() / meshData.m_stride;
        }

        addMeshSubset(Mesh::m_defaultName, unsigned(vertexCount), 0, inBounds);

        return &getMesh();
    }
};
}

QSSGMeshBuilder::~QSSGMeshBuilder() = default;

QSSGRef<QSSGMeshBuilder> QSSGMeshBuilder::createMeshBuilder()
{
    return QSSGRef<QSSGMeshBuilder>(new MeshBuilderImpl());
}
}

QT_END_NAMESPACE