summaryrefslogtreecommitdiffstats
path: root/src/plugins/sensors/android/androidcompass.cpp
blob: d6f4f0f7bef8dbe19ad56125e510c8bde195d61e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright (C) 2019 BogDan Vatra <bogdan@kde.org>
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "androidcompass.h"

#include <qmath.h>

#include "sensormanager.h"

AndroidCompass::AndroidCompass(QSensor *sensor, QObject *parent)
    : ThreadSafeSensorBackend(sensor, parent)
{
    setDescription("Compass");
    setReading<QCompassReading>(&m_reading);
    memset(&m_accelerometerEvent, 0, sizeof(ASensorVector));
    memset(&m_magneticEvent, 0, sizeof(ASensorVector));
    m_sensorEventQueue = ASensorManager_createEventQueue(m_sensorManager->manager(), m_sensorManager->looper(), -1, &looperCallback, this);
    m_accelerometer = ASensorManager_getDefaultSensor(m_sensorManager->manager(), ASENSOR_TYPE_ACCELEROMETER);
    m_magnetometer = ASensorManager_getDefaultSensor(m_sensorManager->manager(), ASENSOR_TYPE_MAGNETIC_FIELD);
}

AndroidCompass::~AndroidCompass()
{
    stop();
    ASensorManager_destroyEventQueue(m_sensorManager->manager(), m_sensorEventQueue);
}

void AndroidCompass::start()
{
    ASensorEventQueue_enableSensor(m_sensorEventQueue, m_accelerometer);
    if (sensor()->dataRate() > 0)
        ASensorEventQueue_setEventRate(m_sensorEventQueue, m_accelerometer, std::max(ASensor_getMinDelay(m_accelerometer), sensor()->dataRate()));

    ASensorEventQueue_enableSensor(m_sensorEventQueue, m_magnetometer);
    if (sensor()->dataRate() > 0)
        ASensorEventQueue_setEventRate(m_sensorEventQueue, m_magnetometer, std::max(ASensor_getMinDelay(m_magnetometer), sensor()->dataRate()));
}

void AndroidCompass::stop()
{
    ASensorEventQueue_disableSensor(m_sensorEventQueue, m_accelerometer);
    ASensorEventQueue_disableSensor(m_sensorEventQueue, m_magnetometer);
}

void AndroidCompass::readAllEvents()
{
    {
        ASensorEvent sensorEvent;
        QMutexLocker lock(&m_sensorsMutex);
        while (ASensorEventQueue_getEvents(m_sensorEventQueue, &sensorEvent, 1)) {
            switch (sensorEvent.type) {
            case ASENSOR_TYPE_ACCELEROMETER:
                m_accelerometerEvent = sensorEvent.acceleration;
                m_accelerometerEvent.status = m_accelerometerEvent.status == ASENSOR_STATUS_NO_CONTACT ? 0 : m_accelerometerEvent.status;
                break;
            case ASENSOR_TYPE_MAGNETIC_FIELD:
                m_magneticEvent = sensorEvent.magnetic;
                m_magneticEvent.status = m_magneticEvent.status == ASENSOR_STATUS_NO_CONTACT ? 0 : m_magneticEvent.status;
                break;
            }
        }
    }

    QCoreApplication::postEvent(this, new FunctionEvent{[=]() {
        // merged getRotationMatrix https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/hardware/SensorManager.java#1182
        // and getOrientation https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/hardware/SensorManager.java#1477
        QMutexLocker lock(&m_sensorsMutex);
        auto Ax = qreal(m_accelerometerEvent.x);
        auto Ay = qreal(m_accelerometerEvent.y);
        auto Az = qreal(m_accelerometerEvent.z);

        const qreal normsqA = (Ax * Ax + Ay * Ay + Az * Az);
        const auto g = qreal(ASENSOR_STANDARD_GRAVITY);
        const qreal freeFallGravitySquared = 0.01 * g * g;
        if (normsqA < freeFallGravitySquared)
            return;

        auto Ex = qreal(m_magneticEvent.x);
        auto Ey = qreal(m_magneticEvent.y);
        auto Ez = qreal(m_magneticEvent.z);
        qreal Hx = Ey * Az - Ez * Ay;
        qreal Hy = Ez * Ax - Ex * Az;
        qreal Hz = Ex * Ay - Ey * Ax;
        const qreal normH = std::sqrt(Hx * Hx + Hy * Hy + Hz * Hz);

        if (normH < 0.1)
            return;
        const qreal invH = 1.0 / normH;
        Hx *= invH;
        Hy *= invH;
        Hz *= invH;
        const qreal invA = 1.0 / std::sqrt(Ax * Ax + Ay * Ay + Az * Az);
        Ax *= invA;
        Ay *= invA;
        Az *= invA;
        const qreal My = Az * Hx - Ax * Hz;
        qreal azimuth = std::atan2(Hy, My);
        qreal accuracyValue = (m_accelerometerEvent.status + m_magneticEvent.status) / 6.0;
        if (sensor()->skipDuplicates() && qFuzzyCompare(azimuth, m_reading.azimuth()) &&
                qFuzzyCompare(accuracyValue, m_reading.calibrationLevel())) {
            return;
        }
        m_reading.setAzimuth(qRadiansToDegrees(azimuth));
        m_reading.setCalibrationLevel(accuracyValue);
        newReadingAvailable();
    }});
}

int AndroidCompass::looperCallback(int, int, void *data)
{
    auto self = reinterpret_cast<AndroidCompass*>(data);
    self->readAllEvents();
    return 1; // 1 means keep receiving events
}