summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/bytecode/CodeBlock.h
blob: cdc6a19e8b63442fd28eba58d858b18c44269924 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
/*
 * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved.
 * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef CodeBlock_h
#define CodeBlock_h

#include "BytecodeConventions.h"
#include "CallLinkInfo.h"
#include "CallReturnOffsetToBytecodeOffset.h"
#include "CodeOrigin.h"
#include "CodeType.h"
#include "CompactJITCodeMap.h"
#include "DFGCodeBlocks.h"
#include "DFGCommon.h"
#include "DFGExitProfile.h"
#include "DFGOSREntry.h"
#include "DFGOSRExit.h"
#include "EvalCodeCache.h"
#include "ExecutionCounter.h"
#include "ExpressionRangeInfo.h"
#include "GlobalResolveInfo.h"
#include "HandlerInfo.h"
#include "MethodCallLinkInfo.h"
#include "Options.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "LLIntCallLinkInfo.h"
#include "LazyOperandValueProfile.h"
#include "LineInfo.h"
#include "Nodes.h"
#include "RegExpObject.h"
#include "StructureStubInfo.h"
#include "UString.h"
#include "UnconditionalFinalizer.h"
#include "ValueProfile.h"
#include <wtf/RefCountedArray.h>
#include <wtf/FastAllocBase.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
#include "StructureStubInfo.h"

namespace JSC {

    class DFGCodeBlocks;
    class ExecState;
    class LLIntOffsetsExtractor;

    inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }

    static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }

    class CodeBlock : public UnconditionalFinalizer, public WeakReferenceHarvester {
        WTF_MAKE_FAST_ALLOCATED;
        friend class JIT;
        friend class LLIntOffsetsExtractor;
    public:
        enum CopyParsedBlockTag { CopyParsedBlock };
    protected:
        CodeBlock(CopyParsedBlockTag, CodeBlock& other, SymbolTable*);
        
        CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable*, bool isConstructor, PassOwnPtr<CodeBlock> alternative);

        WriteBarrier<JSGlobalObject> m_globalObject;
        Heap* m_heap;

    public:
        JS_EXPORT_PRIVATE virtual ~CodeBlock();
        
        int numParameters() const { return m_numParameters; }
        void setNumParameters(int newValue);
        void addParameter();
        
        int* addressOfNumParameters() { return &m_numParameters; }
        static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }

        CodeBlock* alternative() { return m_alternative.get(); }
        PassOwnPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
        void setAlternative(PassOwnPtr<CodeBlock> alternative) { m_alternative = alternative; }
        
        CodeSpecializationKind specializationKind()
        {
            if (m_isConstructor)
                return CodeForConstruct;
            return CodeForCall;
        }
        
#if ENABLE(JIT)
        CodeBlock* baselineVersion()
        {
            CodeBlock* result = replacement();
            if (!result)
                return 0; // This can happen if we're in the process of creating the baseline version.
            while (result->alternative())
                result = result->alternative();
            ASSERT(result);
            ASSERT(JITCode::isBaselineCode(result->getJITType()));
            return result;
        }
#endif
        
        void visitAggregate(SlotVisitor&);

        static void dumpStatistics();

        void dump(ExecState*);
        void printStructures(const Instruction*);
        void printStructure(const char* name, const Instruction*, int operand);

        bool isStrictMode() const { return m_isStrictMode; }

        inline bool isKnownNotImmediate(int index)
        {
            if (index == m_thisRegister && !m_isStrictMode)
                return true;

            if (isConstantRegisterIndex(index))
                return getConstant(index).isCell();

            return false;
        }

        ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
        {
            return index >= m_numVars;
        }

        HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
        int lineNumberForBytecodeOffset(unsigned bytecodeOffset);
        void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset);

#if ENABLE(JIT)

        StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
        {
            return *(binarySearch<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value()));
        }

        StructureStubInfo& getStubInfo(unsigned bytecodeIndex)
        {
            return *(binarySearch<StructureStubInfo, unsigned, getStructureStubInfoBytecodeIndex>(m_structureStubInfos.begin(), m_structureStubInfos.size(), bytecodeIndex));
        }

        CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
        {
            return *(binarySearch<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value()));
        }
        
        CallLinkInfo& getCallLinkInfo(unsigned bytecodeIndex)
        {
            return *(binarySearch<CallLinkInfo, unsigned, getCallLinkInfoBytecodeIndex>(m_callLinkInfos.begin(), m_callLinkInfos.size(), bytecodeIndex));
        }

        MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress)
        {
            return *(binarySearch<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value()));
        }

        MethodCallLinkInfo& getMethodCallLinkInfo(unsigned bytecodeIndex)
        {
            return *(binarySearch<MethodCallLinkInfo, unsigned, getMethodCallLinkInfoBytecodeIndex>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), bytecodeIndex));
        }

        unsigned bytecodeOffset(ExecState*, ReturnAddressPtr);

        unsigned bytecodeOffsetForCallAtIndex(unsigned index)
        {
            if (!m_rareData)
                return 1;
            Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector;
            if (!callIndices.size())
                return 1;
            ASSERT(index < m_rareData->m_callReturnIndexVector.size());
            return m_rareData->m_callReturnIndexVector[index].bytecodeOffset;
        }

        void unlinkCalls();
        
        bool hasIncomingCalls() { return m_incomingCalls.begin() != m_incomingCalls.end(); }
        
        void linkIncomingCall(CallLinkInfo* incoming)
        {
            m_incomingCalls.push(incoming);
        }
#if ENABLE(LLINT)
        void linkIncomingCall(LLIntCallLinkInfo* incoming)
        {
            m_incomingLLIntCalls.push(incoming);
        }
#endif // ENABLE(LLINT)
        
        void unlinkIncomingCalls();
#endif // ENABLE(JIT)

#if ENABLE(DFG_JIT) || ENABLE(LLINT)
        void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
        {
            m_jitCodeMap = jitCodeMap;
        }
        CompactJITCodeMap* jitCodeMap()
        {
            return m_jitCodeMap.get();
        }
#endif
        
#if ENABLE(DFG_JIT)
        void createDFGDataIfNecessary()
        {
            if (!!m_dfgData)
                return;
            
            m_dfgData = adoptPtr(new DFGData);
        }
        
        DFG::OSREntryData* appendDFGOSREntryData(unsigned bytecodeIndex, unsigned machineCodeOffset)
        {
            createDFGDataIfNecessary();
            DFG::OSREntryData entry;
            entry.m_bytecodeIndex = bytecodeIndex;
            entry.m_machineCodeOffset = machineCodeOffset;
            m_dfgData->osrEntry.append(entry);
            return &m_dfgData->osrEntry.last();
        }
        unsigned numberOfDFGOSREntries() const
        {
            if (!m_dfgData)
                return 0;
            return m_dfgData->osrEntry.size();
        }
        DFG::OSREntryData* dfgOSREntryData(unsigned i) { return &m_dfgData->osrEntry[i]; }
        DFG::OSREntryData* dfgOSREntryDataForBytecodeIndex(unsigned bytecodeIndex)
        {
            if (!m_dfgData)
                return 0;
            if (m_dfgData->osrEntry.isEmpty())
                return 0;
            DFG::OSREntryData* result = binarySearch<
                DFG::OSREntryData, unsigned, DFG::getOSREntryDataBytecodeIndex>(
                    m_dfgData->osrEntry.begin(), m_dfgData->osrEntry.size(),
                    bytecodeIndex, WTF::KeyMustNotBePresentInArray);
            if (result->m_bytecodeIndex != bytecodeIndex)
                return 0;
            return result;
        }
        
        void appendOSRExit(const DFG::OSRExit& osrExit)
        {
            createDFGDataIfNecessary();
            m_dfgData->osrExit.append(osrExit);
        }
        
        DFG::OSRExit& lastOSRExit()
        {
            return m_dfgData->osrExit.last();
        }
        
        void appendSpeculationRecovery(const DFG::SpeculationRecovery& recovery)
        {
            createDFGDataIfNecessary();
            m_dfgData->speculationRecovery.append(recovery);
        }
        
        unsigned numberOfOSRExits()
        {
            if (!m_dfgData)
                return 0;
            return m_dfgData->osrExit.size();
        }
        
        unsigned numberOfSpeculationRecoveries()
        {
            if (!m_dfgData)
                return 0;
            return m_dfgData->speculationRecovery.size();
        }
        
        DFG::OSRExit& osrExit(unsigned index)
        {
            return m_dfgData->osrExit[index];
        }
        
        DFG::SpeculationRecovery& speculationRecovery(unsigned index)
        {
            return m_dfgData->speculationRecovery[index];
        }
        
        void appendWeakReference(JSCell* target)
        {
            createDFGDataIfNecessary();
            m_dfgData->weakReferences.append(WriteBarrier<JSCell>(*globalData(), ownerExecutable(), target));
        }
        
        void appendWeakReferenceTransition(JSCell* codeOrigin, JSCell* from, JSCell* to)
        {
            createDFGDataIfNecessary();
            m_dfgData->transitions.append(
                WeakReferenceTransition(*globalData(), ownerExecutable(), codeOrigin, from, to));
        }
#endif

        unsigned bytecodeOffset(Instruction* returnAddress)
        {
            ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
            return static_cast<Instruction*>(returnAddress) - instructions().begin();
        }

        void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; }
        bool isNumericCompareFunction() { return m_isNumericCompareFunction; }

        unsigned numberOfInstructions() const { return m_instructions.size(); }
        RefCountedArray<Instruction>& instructions() { return m_instructions; }
        const RefCountedArray<Instruction>& instructions() const { return m_instructions; }
        
        size_t predictedMachineCodeSize();
        
        bool usesOpcode(OpcodeID);

        unsigned instructionCount() { return m_instructions.size(); }

#if ENABLE(JIT)
        void setJITCode(const JITCode& code, MacroAssemblerCodePtr codeWithArityCheck)
        {
            m_jitCode = code;
            m_jitCodeWithArityCheck = codeWithArityCheck;
#if ENABLE(DFG_JIT)
            if (m_jitCode.jitType() == JITCode::DFGJIT) {
                createDFGDataIfNecessary();
                m_globalData->heap.m_dfgCodeBlocks.m_set.add(this);
            }
#endif
        }
        JITCode& getJITCode() { return m_jitCode; }
        MacroAssemblerCodePtr getJITCodeWithArityCheck() { return m_jitCodeWithArityCheck; }
        JITCode::JITType getJITType() { return m_jitCode.jitType(); }
        ExecutableMemoryHandle* executableMemory() { return getJITCode().getExecutableMemory(); }
        virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*) = 0;
        virtual void jettison() = 0;
        enum JITCompilationResult { AlreadyCompiled, CouldNotCompile, CompiledSuccessfully };
        JITCompilationResult jitCompile(ExecState* exec)
        {
            if (getJITType() != JITCode::InterpreterThunk) {
                ASSERT(getJITType() == JITCode::BaselineJIT);
                return AlreadyCompiled;
            }
#if ENABLE(JIT)
            if (jitCompileImpl(exec))
                return CompiledSuccessfully;
            return CouldNotCompile;
#else
            UNUSED_PARAM(exec);
            return CouldNotCompile;
#endif
        }
        virtual CodeBlock* replacement() = 0;

        virtual DFG::CapabilityLevel canCompileWithDFGInternal() = 0;
        DFG::CapabilityLevel canCompileWithDFG()
        {
            DFG::CapabilityLevel result = canCompileWithDFGInternal();
            m_canCompileWithDFGState = result;
            return result;
        }
        DFG::CapabilityLevel canCompileWithDFGState() { return m_canCompileWithDFGState; }

        bool hasOptimizedReplacement()
        {
            ASSERT(JITCode::isBaselineCode(getJITType()));
            bool result = replacement()->getJITType() > getJITType();
#if !ASSERT_DISABLED
            if (result)
                ASSERT(replacement()->getJITType() == JITCode::DFGJIT);
            else {
                ASSERT(JITCode::isBaselineCode(replacement()->getJITType()));
                ASSERT(replacement() == this);
            }
#endif
            return result;
        }
#else
        JITCode::JITType getJITType() { return JITCode::BaselineJIT; }
#endif

        ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }

        void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; }
        JSGlobalData* globalData() { return m_globalData; }

        void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
        int thisRegister() const { return m_thisRegister; }

        void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; }
        bool needsFullScopeChain() const { return m_needsFullScopeChain; }
        void setUsesEval(bool usesEval) { m_usesEval = usesEval; }
        bool usesEval() const { return m_usesEval; }
        
        void setArgumentsRegister(int argumentsRegister)
        {
            ASSERT(argumentsRegister != -1);
            m_argumentsRegister = argumentsRegister;
            ASSERT(usesArguments());
        }
        int argumentsRegister()
        {
            ASSERT(usesArguments());
            return m_argumentsRegister;
        }
        int uncheckedArgumentsRegister()
        {
            if (!usesArguments())
                return InvalidVirtualRegister;
            return argumentsRegister();
        }
        void setActivationRegister(int activationRegister)
        {
            m_activationRegister = activationRegister;
        }
        int activationRegister()
        {
            ASSERT(needsFullScopeChain());
            return m_activationRegister;
        }
        int uncheckedActivationRegister()
        {
            if (!needsFullScopeChain())
                return InvalidVirtualRegister;
            return activationRegister();
        }
        bool usesArguments() const { return m_argumentsRegister != -1; }
        
        bool needsActivation() const
        {
            return needsFullScopeChain() && codeType() != GlobalCode;
        }
        
        bool argumentsAreCaptured() const
        {
            return needsActivation() || usesArguments();
        }
        
        bool argumentIsCaptured(int) const
        {
            return argumentsAreCaptured();
        }
        
        bool localIsCaptured(InlineCallFrame* inlineCallFrame, int operand) const
        {
            if (!inlineCallFrame)
                return operand < m_numCapturedVars;
            
            return inlineCallFrame->capturedVars.get(operand);
        }
        
        bool isCaptured(InlineCallFrame* inlineCallFrame, int operand) const
        {
            if (operandIsArgument(operand))
                return argumentIsCaptured(operandToArgument(operand));
            return localIsCaptured(inlineCallFrame, operand);
        }

        CodeType codeType() const { return m_codeType; }

        SourceProvider* source() const { return m_source.get(); }
        unsigned sourceOffset() const { return m_sourceOffset; }

        size_t numberOfJumpTargets() const { return m_jumpTargets.size(); }
        void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); }
        unsigned jumpTarget(int index) const { return m_jumpTargets[index]; }
        unsigned lastJumpTarget() const { return m_jumpTargets.last(); }

        void createActivation(CallFrame*);

        void clearEvalCache();

        void addPropertyAccessInstruction(unsigned propertyAccessInstruction)
        {
            m_propertyAccessInstructions.append(propertyAccessInstruction);
        }
        void addGlobalResolveInstruction(unsigned globalResolveInstruction)
        {
            m_globalResolveInstructions.append(globalResolveInstruction);
        }
        bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset);
#if ENABLE(LLINT)
        LLIntCallLinkInfo* addLLIntCallLinkInfo()
        {
            m_llintCallLinkInfos.append(LLIntCallLinkInfo());
            return &m_llintCallLinkInfos.last();
        }
#endif
#if ENABLE(JIT)
        void setNumberOfStructureStubInfos(size_t size) { m_structureStubInfos.grow(size); }
        size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
        StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }

        void addGlobalResolveInfo(unsigned globalResolveInstruction)
        {
            m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction));
        }
        GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; }
        bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset);

        void setNumberOfCallLinkInfos(size_t size) { m_callLinkInfos.grow(size); }
        size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
        CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }

        void addMethodCallLinkInfos(unsigned n) { ASSERT(m_globalData->canUseJIT()); m_methodCallLinkInfos.grow(n); }
        MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; }
        size_t numberOfMethodCallLinkInfos() { return m_methodCallLinkInfos.size(); }
#endif
        
#if ENABLE(VALUE_PROFILER)
        unsigned numberOfArgumentValueProfiles()
        {
            ASSERT(m_numParameters >= 0);
            ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
            return m_argumentValueProfiles.size();
        }
        ValueProfile* valueProfileForArgument(unsigned argumentIndex)
        {
            ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
            ASSERT(result->m_bytecodeOffset == -1);
            return result;
        }
        
        ValueProfile* addValueProfile(int bytecodeOffset)
        {
            ASSERT(bytecodeOffset != -1);
            ASSERT(m_valueProfiles.isEmpty() || m_valueProfiles.last().m_bytecodeOffset < bytecodeOffset);
            m_valueProfiles.append(ValueProfile(bytecodeOffset));
            return &m_valueProfiles.last();
        }
        unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
        ValueProfile* valueProfile(int index)
        {
            ValueProfile* result = &m_valueProfiles[index];
            ASSERT(result->m_bytecodeOffset != -1);
            return result;
        }
        ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
        {
            ValueProfile* result = WTF::genericBinarySearch<ValueProfile, int, getValueProfileBytecodeOffset>(m_valueProfiles, m_valueProfiles.size(), bytecodeOffset);
            ASSERT(result->m_bytecodeOffset != -1);
            ASSERT(instructions()[bytecodeOffset + opcodeLength(
                       m_globalData->interpreter->getOpcodeID(
                           instructions()[
                               bytecodeOffset].u.opcode)) - 1].u.profile == result);
            return result;
        }
        PredictedType valueProfilePredictionForBytecodeOffset(int bytecodeOffset)
        {
            return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction();
        }
        
        unsigned totalNumberOfValueProfiles()
        {
            return numberOfArgumentValueProfiles() + numberOfValueProfiles();
        }
        ValueProfile* getFromAllValueProfiles(unsigned index)
        {
            if (index < numberOfArgumentValueProfiles())
                return valueProfileForArgument(index);
            return valueProfile(index - numberOfArgumentValueProfiles());
        }
        
        RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
        {
            m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
            return &m_rareCaseProfiles.last();
        }
        unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
        RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
        RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset)
        {
            return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset);
        }
        
        bool likelyToTakeSlowCase(int bytecodeOffset)
        {
            if (!numberOfRareCaseProfiles())
                return false;
            unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
        }
        
        bool couldTakeSlowCase(int bytecodeOffset)
        {
            if (!numberOfRareCaseProfiles())
                return false;
            unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return value >= Options::couldTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::couldTakeSlowCaseThreshold;
        }
        
        RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
        {
            m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
            return &m_specialFastCaseProfiles.last();
        }
        unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
        RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
        RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
        {
            return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset);
        }
        
        bool likelyToTakeSpecialFastCase(int bytecodeOffset)
        {
            if (!numberOfRareCaseProfiles())
                return false;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return specialFastCaseCount >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(specialFastCaseCount) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
        }
        
        bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
        {
            if (!numberOfRareCaseProfiles())
                return false;
            unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned value = slowCaseCount - specialFastCaseCount;
            return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
        }
        
        bool likelyToTakeAnySlowCase(int bytecodeOffset)
        {
            if (!numberOfRareCaseProfiles())
                return false;
            unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned value = slowCaseCount + specialFastCaseCount;
            return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
        }
        
        unsigned executionEntryCount() const { return m_executionEntryCount; }
#endif

        unsigned globalResolveInfoCount() const
        {
#if ENABLE(JIT)    
            if (m_globalData->canUseJIT())
                return m_globalResolveInfos.size();
#endif
            return 0;
        }

        // Exception handling support

        size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
        void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); }
        HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }

        void addExpressionInfo(const ExpressionRangeInfo& expressionInfo)
        {
            createRareDataIfNecessary();
            m_rareData->m_expressionInfo.append(expressionInfo);
        }

        void addLineInfo(unsigned bytecodeOffset, int lineNo)
        {
            createRareDataIfNecessary();
            Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo;
            if (!lineInfo.size() || lineInfo.last().lineNumber != lineNo) {
                LineInfo info = { bytecodeOffset, lineNo };
                lineInfo.append(info);
            }
        }

        bool hasExpressionInfo() { return m_rareData && m_rareData->m_expressionInfo.size(); }
        bool hasLineInfo() { return m_rareData && m_rareData->m_lineInfo.size(); }
        //  We only generate exception handling info if the user is debugging
        // (and may want line number info), or if the function contains exception handler.
        bool needsCallReturnIndices()
        {
            return m_rareData &&
                (m_rareData->m_expressionInfo.size() || m_rareData->m_lineInfo.size() || m_rareData->m_exceptionHandlers.size());
        }

#if ENABLE(JIT)
        Vector<CallReturnOffsetToBytecodeOffset>& callReturnIndexVector()
        {
            createRareDataIfNecessary();
            return m_rareData->m_callReturnIndexVector;
        }
#endif

#if ENABLE(DFG_JIT)
        SegmentedVector<InlineCallFrame, 4>& inlineCallFrames()
        {
            createRareDataIfNecessary();
            return m_rareData->m_inlineCallFrames;
        }
        
        Vector<CodeOriginAtCallReturnOffset>& codeOrigins()
        {
            createRareDataIfNecessary();
            return m_rareData->m_codeOrigins;
        }
        
        // Having code origins implies that there has been some inlining.
        bool hasCodeOrigins()
        {
            return m_rareData && !!m_rareData->m_codeOrigins.size();
        }
        
        bool codeOriginForReturn(ReturnAddressPtr returnAddress, CodeOrigin& codeOrigin)
        {
            if (!hasCodeOrigins())
                return false;
            unsigned offset = getJITCode().offsetOf(returnAddress.value());
            CodeOriginAtCallReturnOffset* entry = binarySearch<CodeOriginAtCallReturnOffset, unsigned, getCallReturnOffsetForCodeOrigin>(codeOrigins().begin(), codeOrigins().size(), offset, WTF::KeyMustNotBePresentInArray);
            if (entry->callReturnOffset != offset)
                return false;
            codeOrigin = entry->codeOrigin;
            return true;
        }
        
        CodeOrigin codeOrigin(unsigned index)
        {
            ASSERT(m_rareData);
            return m_rareData->m_codeOrigins[index].codeOrigin;
        }
        
        bool addFrequentExitSite(const DFG::FrequentExitSite& site)
        {
            ASSERT(JITCode::isBaselineCode(getJITType()));
            return m_exitProfile.add(site);
        }

        DFG::ExitProfile& exitProfile() { return m_exitProfile; }
        
        CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
        {
            return m_lazyOperandValueProfiles;
        }
#endif

        // Constant Pool

        size_t numberOfIdentifiers() const { return m_identifiers.size(); }
        void addIdentifier(const Identifier& i) { return m_identifiers.append(i); }
        Identifier& identifier(int index) { return m_identifiers[index]; }

        size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
        unsigned addConstant(JSValue v)
        {
            unsigned result = m_constantRegisters.size();
            m_constantRegisters.append(WriteBarrier<Unknown>());
            m_constantRegisters.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), v);
            return result;
        }
        unsigned addOrFindConstant(JSValue);
        WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
        ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
        ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }

        unsigned addFunctionDecl(FunctionExecutable* n)
        {
            unsigned size = m_functionDecls.size();
            m_functionDecls.append(WriteBarrier<FunctionExecutable>());
            m_functionDecls.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
            return size;
        }
        FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
        int numberOfFunctionDecls() { return m_functionDecls.size(); }
        unsigned addFunctionExpr(FunctionExecutable* n)
        {
            unsigned size = m_functionExprs.size();
            m_functionExprs.append(WriteBarrier<FunctionExecutable>());
            m_functionExprs.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
            return size;
        }
        FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }

        unsigned addRegExp(RegExp* r)
        {
            createRareDataIfNecessary();
            unsigned size = m_rareData->m_regexps.size();
            m_rareData->m_regexps.append(WriteBarrier<RegExp>(*m_globalData, ownerExecutable(), r));
            return size;
        }
        unsigned numberOfRegExps() const
        {
            if (!m_rareData)
                return 0;
            return m_rareData->m_regexps.size();
        }
        RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); }

        unsigned addConstantBuffer(unsigned length)
        {
            createRareDataIfNecessary();
            unsigned size = m_rareData->m_constantBuffers.size();
            m_rareData->m_constantBuffers.append(Vector<JSValue>(length));
            return size;
        }

        JSValue* constantBuffer(unsigned index)
        {
            ASSERT(m_rareData);
            return m_rareData->m_constantBuffers[index].data();
        }

        JSGlobalObject* globalObject() { return m_globalObject.get(); }
        
        JSGlobalObject* globalObjectFor(CodeOrigin codeOrigin)
        {
            if (!codeOrigin.inlineCallFrame)
                return globalObject();
            // FIXME: if we ever inline based on executable not function, this code will need to change.
            return codeOrigin.inlineCallFrame->callee->scope()->globalObject.get();
        }

        // Jump Tables

        size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; }
        SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); }
        SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; }

        size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; }
        SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); }
        SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; }

        size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
        StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
        StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }


        SymbolTable* symbolTable() { return m_symbolTable; }
        SharedSymbolTable* sharedSymbolTable() { ASSERT(m_codeType == FunctionCode); return static_cast<SharedSymbolTable*>(m_symbolTable); }

        EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }

        enum ShrinkMode {
            // Shrink prior to generating machine code that may point directly into vectors.
            EarlyShrink,
            
            // Shrink after generating machine code, and after possibly creating new vectors
            // and appending to others. At this time it is not safe to shrink certain vectors
            // because we would have generated machine code that references them directly.
            LateShrink
        };
        void shrinkToFit(ShrinkMode);
        
        void copyPostParseDataFrom(CodeBlock* alternative);
        void copyPostParseDataFromAlternative();
        
        // Functions for controlling when JITting kicks in, in a mixed mode
        // execution world.
        
        bool checkIfJITThresholdReached()
        {
            return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
        }
        
        void dontJITAnytimeSoon()
        {
            m_llintExecuteCounter.deferIndefinitely();
        }
        
        void jitAfterWarmUp()
        {
            m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp, this);
        }
        
        void jitSoon()
        {
            m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon, this);
        }
        
        int32_t llintExecuteCounter() const
        {
            return m_llintExecuteCounter.m_counter;
        }
        
        // Functions for controlling when tiered compilation kicks in. This
        // controls both when the optimizing compiler is invoked and when OSR
        // entry happens. Two triggers exist: the loop trigger and the return
        // trigger. In either case, when an addition to m_jitExecuteCounter
        // causes it to become non-negative, the optimizing compiler is
        // invoked. This includes a fast check to see if this CodeBlock has
        // already been optimized (i.e. replacement() returns a CodeBlock
        // that was optimized with a higher tier JIT than this one). In the
        // case of the loop trigger, if the optimized compilation succeeds
        // (or has already succeeded in the past) then OSR is attempted to
        // redirect program flow into the optimized code.
        
        // These functions are called from within the optimization triggers,
        // and are used as a single point at which we define the heuristics
        // for how much warm-up is mandated before the next optimization
        // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
        // as this is called from the CodeBlock constructor.
        
        // When we observe a lot of speculation failures, we trigger a
        // reoptimization. But each time, we increase the optimization trigger
        // to avoid thrashing.
        unsigned reoptimizationRetryCounter() const
        {
            ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax);
            return m_reoptimizationRetryCounter;
        }
        
        void countReoptimization()
        {
            m_reoptimizationRetryCounter++;
            if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax)
                m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax;
        }
        
        int32_t counterValueForOptimizeAfterWarmUp()
        {
            return Options::thresholdForOptimizeAfterWarmUp << reoptimizationRetryCounter();
        }
        
        int32_t counterValueForOptimizeAfterLongWarmUp()
        {
            return Options::thresholdForOptimizeAfterLongWarmUp << reoptimizationRetryCounter();
        }
        
        int32_t* addressOfJITExecuteCounter()
        {
            return &m_jitExecuteCounter.m_counter;
        }
        
        static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_counter); }
        static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_activeThreshold); }
        static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_totalCount); }

        int32_t jitExecuteCounter() const { return m_jitExecuteCounter.m_counter; }
        
        unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
        
        // Check if the optimization threshold has been reached, and if not,
        // adjust the heuristics accordingly. Returns true if the threshold has
        // been reached.
        bool checkIfOptimizationThresholdReached()
        {
            return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
        }
        
        // Call this to force the next optimization trigger to fire. This is
        // rarely wise, since optimization triggers are typically more
        // expensive than executing baseline code.
        void optimizeNextInvocation()
        {
            m_jitExecuteCounter.setNewThreshold(0, this);
        }
        
        // Call this to prevent optimization from happening again. Note that
        // optimization will still happen after roughly 2^29 invocations,
        // so this is really meant to delay that as much as possible. This
        // is called if optimization failed, and we expect it to fail in
        // the future as well.
        void dontOptimizeAnytimeSoon()
        {
            m_jitExecuteCounter.deferIndefinitely();
        }
        
        // Call this to reinitialize the counter to its starting state,
        // forcing a warm-up to happen before the next optimization trigger
        // fires. This is called in the CodeBlock constructor. It also
        // makes sense to call this if an OSR exit occurred. Note that
        // OSR exit code is code generated, so the value of the execute
        // counter that this corresponds to is also available directly.
        void optimizeAfterWarmUp()
        {
            m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this);
        }
        
        // Call this to force an optimization trigger to fire only after
        // a lot of warm-up.
        void optimizeAfterLongWarmUp()
        {
            m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this);
        }
        
        // Call this to cause an optimization trigger to fire soon, but
        // not necessarily the next one. This makes sense if optimization
        // succeeds. Successfuly optimization means that all calls are
        // relinked to the optimized code, so this only affects call
        // frames that are still executing this CodeBlock. The value here
        // is tuned to strike a balance between the cost of OSR entry
        // (which is too high to warrant making every loop back edge to
        // trigger OSR immediately) and the cost of executing baseline
        // code (which is high enough that we don't necessarily want to
        // have a full warm-up). The intuition for calling this instead of
        // optimizeNextInvocation() is for the case of recursive functions
        // with loops. Consider that there may be N call frames of some
        // recursive function, for a reasonably large value of N. The top
        // one triggers optimization, and then returns, and then all of
        // the others return. We don't want optimization to be triggered on
        // each return, as that would be superfluous. It only makes sense
        // to trigger optimization if one of those functions becomes hot
        // in the baseline code.
        void optimizeSoon()
        {
            m_jitExecuteCounter.setNewThreshold(Options::thresholdForOptimizeSoon << reoptimizationRetryCounter(), this);
        }
        
        // The speculative JIT tracks its success rate, so that we can
        // decide when to reoptimize. It's interesting to note that these
        // counters may overflow without any protection. The success
        // counter will overflow before the fail one does, becuase the
        // fail one is used as a trigger to reoptimize. So the worst case
        // is that the success counter overflows and we reoptimize without
        // needing to. But this is harmless. If a method really did
        // execute 2^32 times then compiling it again probably won't hurt
        // anyone.
        
        void countSpeculationSuccess()
        {
            m_speculativeSuccessCounter++;
        }
        
        void countSpeculationFailure()
        {
            m_speculativeFailCounter++;
        }
        
        uint32_t speculativeSuccessCounter() const { return m_speculativeSuccessCounter; }
        uint32_t speculativeFailCounter() const { return m_speculativeFailCounter; }
        uint32_t forcedOSRExitCounter() const { return m_forcedOSRExitCounter; }
        
        uint32_t* addressOfSpeculativeSuccessCounter() { return &m_speculativeSuccessCounter; }
        uint32_t* addressOfSpeculativeFailCounter() { return &m_speculativeFailCounter; }
        uint32_t* addressOfForcedOSRExitCounter() { return &m_forcedOSRExitCounter; }
        
        static ptrdiff_t offsetOfSpeculativeSuccessCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeSuccessCounter); }
        static ptrdiff_t offsetOfSpeculativeFailCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeFailCounter); }
        static ptrdiff_t offsetOfForcedOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_forcedOSRExitCounter); }

#if ENABLE(JIT)
        // The number of failures that triggers the use of the ratio.
        unsigned largeFailCountThreshold() { return Options::largeFailCountThresholdBase << baselineVersion()->reoptimizationRetryCounter(); }
        unsigned largeFailCountThresholdForLoop() { return Options::largeFailCountThresholdBaseForLoop << baselineVersion()->reoptimizationRetryCounter(); }

        bool shouldReoptimizeNow()
        {
            return (Options::desiredSpeculativeSuccessFailRatio *
                        speculativeFailCounter() >= speculativeSuccessCounter()
                    && speculativeFailCounter() >= largeFailCountThreshold())
                || forcedOSRExitCounter() >=
                       Options::forcedOSRExitCountForReoptimization;
        }

        bool shouldReoptimizeFromLoopNow()
        {
            return (Options::desiredSpeculativeSuccessFailRatio *
                        speculativeFailCounter() >= speculativeSuccessCounter()
                    && speculativeFailCounter() >= largeFailCountThresholdForLoop())
                || forcedOSRExitCounter() >=
                       Options::forcedOSRExitCountForReoptimization;
        }
#endif

#if ENABLE(VALUE_PROFILER)
        bool shouldOptimizeNow();
#else
        bool shouldOptimizeNow() { return false; }
#endif
        
#if ENABLE(JIT)
        void reoptimize()
        {
            ASSERT(replacement() != this);
            ASSERT(replacement()->alternative() == this);
            replacement()->tallyFrequentExitSites();
            replacement()->jettison();
            countReoptimization();
            optimizeAfterWarmUp();
        }
#endif

#if ENABLE(VERBOSE_VALUE_PROFILE)
        void dumpValueProfiles();
#endif
        
        // FIXME: Make these remaining members private.

        int m_numCalleeRegisters;
        int m_numVars;
        int m_numCapturedVars;
        bool m_isConstructor;

    protected:
#if ENABLE(JIT)
        virtual bool jitCompileImpl(ExecState*) = 0;
#endif
        virtual void visitWeakReferences(SlotVisitor&);
        virtual void finalizeUnconditionally();
        
    private:
        friend class DFGCodeBlocks;
        
#if ENABLE(DFG_JIT)
        void tallyFrequentExitSites();
#else
        void tallyFrequentExitSites() { }
#endif
        
        void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&);

        CString registerName(ExecState*, int r) const;
        void printUnaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op);
        void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op);
        void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op);
        void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&);
        void printGetByIdCacheStatus(ExecState*, int location);
        enum CacheDumpMode { DumpCaches, DontDumpCaches };
        void printCallOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op, CacheDumpMode);
        void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op);
        void visitStructures(SlotVisitor&, Instruction* vPC);
        
#if ENABLE(DFG_JIT)
        bool shouldImmediatelyAssumeLivenessDuringScan()
        {
            // Null m_dfgData means that this is a baseline JIT CodeBlock. Baseline JIT
            // CodeBlocks don't need to be jettisoned when their weak references go
            // stale. So if a basline JIT CodeBlock gets scanned, we can assume that
            // this means that it's live.
            if (!m_dfgData)
                return true;
            
            // For simplicity, we don't attempt to jettison code blocks during GC if
            // they are executing. Instead we strongly mark their weak references to
            // allow them to continue to execute soundly.
            if (m_dfgData->mayBeExecuting)
                return true;

            return false;
        }
#else
        bool shouldImmediatelyAssumeLivenessDuringScan() { return true; }
#endif
        
        void performTracingFixpointIteration(SlotVisitor&);
        
        void stronglyVisitStrongReferences(SlotVisitor&);
        void stronglyVisitWeakReferences(SlotVisitor&);

        void createRareDataIfNecessary()
        {
            if (!m_rareData)
                m_rareData = adoptPtr(new RareData);
        }
        
        int m_numParameters;

        WriteBarrier<ScriptExecutable> m_ownerExecutable;
        JSGlobalData* m_globalData;

        RefCountedArray<Instruction> m_instructions;

        int m_thisRegister;
        int m_argumentsRegister;
        int m_activationRegister;

        bool m_needsFullScopeChain;
        bool m_usesEval;
        bool m_isNumericCompareFunction;
        bool m_isStrictMode;

        CodeType m_codeType;

        RefPtr<SourceProvider> m_source;
        unsigned m_sourceOffset;

        Vector<unsigned> m_propertyAccessInstructions;
        Vector<unsigned> m_globalResolveInstructions;
#if ENABLE(LLINT)
        SegmentedVector<LLIntCallLinkInfo, 8> m_llintCallLinkInfos;
        SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo> > m_incomingLLIntCalls;
#endif
#if ENABLE(JIT)
        Vector<StructureStubInfo> m_structureStubInfos;
        Vector<GlobalResolveInfo> m_globalResolveInfos;
        Vector<CallLinkInfo> m_callLinkInfos;
        Vector<MethodCallLinkInfo> m_methodCallLinkInfos;
        JITCode m_jitCode;
        MacroAssemblerCodePtr m_jitCodeWithArityCheck;
        SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo> > m_incomingCalls;
#endif
#if ENABLE(DFG_JIT) || ENABLE(LLINT)
        OwnPtr<CompactJITCodeMap> m_jitCodeMap;
#endif
#if ENABLE(DFG_JIT)
        struct WeakReferenceTransition {
            WeakReferenceTransition() { }
            
            WeakReferenceTransition(JSGlobalData& globalData, JSCell* owner, JSCell* codeOrigin, JSCell* from, JSCell* to)
                : m_from(globalData, owner, from)
                , m_to(globalData, owner, to)
            {
                if (!!codeOrigin)
                    m_codeOrigin.set(globalData, owner, codeOrigin);
            }

            WriteBarrier<JSCell> m_codeOrigin;
            WriteBarrier<JSCell> m_from;
            WriteBarrier<JSCell> m_to;
        };
        
        struct DFGData {
            DFGData()
                : mayBeExecuting(false)
                , isJettisoned(false)
            {
            }
            
            Vector<DFG::OSREntryData> osrEntry;
            SegmentedVector<DFG::OSRExit, 8> osrExit;
            Vector<DFG::SpeculationRecovery> speculationRecovery;
            Vector<WeakReferenceTransition> transitions;
            Vector<WriteBarrier<JSCell> > weakReferences;
            bool mayBeExecuting;
            bool isJettisoned;
            bool livenessHasBeenProved; // Initialized and used on every GC.
            bool allTransitionsHaveBeenMarked; // Initialized and used on every GC.
            unsigned visitAggregateHasBeenCalled; // Unsigned to make it work seamlessly with the broadest set of CAS implementations.
        };
        
        OwnPtr<DFGData> m_dfgData;
        
        // This is relevant to non-DFG code blocks that serve as the profiled code block
        // for DFG code blocks.
        DFG::ExitProfile m_exitProfile;
        CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
#endif
#if ENABLE(VALUE_PROFILER)
        Vector<ValueProfile> m_argumentValueProfiles;
        SegmentedVector<ValueProfile, 8> m_valueProfiles;
        SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
        SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
        unsigned m_executionEntryCount;
#endif

        Vector<unsigned> m_jumpTargets;
        Vector<unsigned> m_loopTargets;

        // Constant Pool
        Vector<Identifier> m_identifiers;
        COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
        Vector<WriteBarrier<Unknown> > m_constantRegisters;
        Vector<WriteBarrier<FunctionExecutable> > m_functionDecls;
        Vector<WriteBarrier<FunctionExecutable> > m_functionExprs;

        SymbolTable* m_symbolTable;

        OwnPtr<CodeBlock> m_alternative;
        
        ExecutionCounter m_llintExecuteCounter;
        
        ExecutionCounter m_jitExecuteCounter;
        int32_t m_totalJITExecutions;
        uint32_t m_speculativeSuccessCounter;
        uint32_t m_speculativeFailCounter;
        uint32_t m_forcedOSRExitCounter;
        uint16_t m_optimizationDelayCounter;
        uint16_t m_reoptimizationRetryCounter;
        
        struct RareData {
           WTF_MAKE_FAST_ALLOCATED;
        public:
            Vector<HandlerInfo> m_exceptionHandlers;

            // Rare Constants
            Vector<WriteBarrier<RegExp> > m_regexps;

            // Buffers used for large array literals
            Vector<Vector<JSValue> > m_constantBuffers;
            
            // Jump Tables
            Vector<SimpleJumpTable> m_immediateSwitchJumpTables;
            Vector<SimpleJumpTable> m_characterSwitchJumpTables;
            Vector<StringJumpTable> m_stringSwitchJumpTables;

            EvalCodeCache m_evalCodeCache;

            // Expression info - present if debugging.
            Vector<ExpressionRangeInfo> m_expressionInfo;
            // Line info - present if profiling or debugging.
            Vector<LineInfo> m_lineInfo;
#if ENABLE(JIT)
            Vector<CallReturnOffsetToBytecodeOffset> m_callReturnIndexVector;
#endif
#if ENABLE(DFG_JIT)
            SegmentedVector<InlineCallFrame, 4> m_inlineCallFrames;
            Vector<CodeOriginAtCallReturnOffset> m_codeOrigins;
#endif
        };
#if COMPILER(MSVC)
        friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
        OwnPtr<RareData> m_rareData;
#if ENABLE(JIT)
        DFG::CapabilityLevel m_canCompileWithDFGState;
#endif
    };

    // Program code is not marked by any function, so we make the global object
    // responsible for marking it.

    class GlobalCodeBlock : public CodeBlock {
    protected:
        GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
            : CodeBlock(CopyParsedBlock, other, &m_unsharedSymbolTable)
            , m_unsharedSymbolTable(other.m_unsharedSymbolTable)
        {
        }
        
        GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, PassOwnPtr<CodeBlock> alternative)
            : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false, alternative)
        {
        }

    private:
        SymbolTable m_unsharedSymbolTable;
    };

    class ProgramCodeBlock : public GlobalCodeBlock {
    public:
        ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
            : GlobalCodeBlock(CopyParsedBlock, other)
        {
        }

        ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, PassOwnPtr<CodeBlock> alternative)
            : GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0, alternative)
        {
        }
        
#if ENABLE(JIT)
    protected:
        virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
        virtual void jettison();
        virtual bool jitCompileImpl(ExecState*);
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif
    };

    class EvalCodeBlock : public GlobalCodeBlock {
    public:
        EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
            : GlobalCodeBlock(CopyParsedBlock, other)
            , m_baseScopeDepth(other.m_baseScopeDepth)
            , m_variables(other.m_variables)
        {
        }
        
        EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth, PassOwnPtr<CodeBlock> alternative)
            : GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0, alternative)
            , m_baseScopeDepth(baseScopeDepth)
        {
        }

        int baseScopeDepth() const { return m_baseScopeDepth; }

        const Identifier& variable(unsigned index) { return m_variables[index]; }
        unsigned numVariables() { return m_variables.size(); }
        void adoptVariables(Vector<Identifier>& variables)
        {
            ASSERT(m_variables.isEmpty());
            m_variables.swap(variables);
        }
        
#if ENABLE(JIT)
    protected:
        virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
        virtual void jettison();
        virtual bool jitCompileImpl(ExecState*);
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif

    private:
        int m_baseScopeDepth;
        Vector<Identifier> m_variables;
    };

    class FunctionCodeBlock : public CodeBlock {
    public:
        FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
            : CodeBlock(CopyParsedBlock, other, other.sharedSymbolTable())
        {
            // The fact that we have to do this is yucky, but is necessary because of the
            // class hierarchy issues described in the comment block for the main
            // constructor, below.
            sharedSymbolTable()->ref();
        }

        // Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new
        // as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared
        // symbol table, so we just pass as a raw pointer with a ref count of 1.  We then manually deref
        // in the destructor.
        FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor, PassOwnPtr<CodeBlock> alternative = nullptr)
            : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor, alternative)
        {
        }
        ~FunctionCodeBlock()
        {
            sharedSymbolTable()->deref();
        }
        
#if ENABLE(JIT)
    protected:
        virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
        virtual void jettison();
        virtual bool jitCompileImpl(ExecState*);
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif
    };

    inline CodeBlock* baselineCodeBlockForInlineCallFrame(InlineCallFrame* inlineCallFrame)
    {
        ASSERT(inlineCallFrame);
        ExecutableBase* executable = inlineCallFrame->executable.get();
        ASSERT(executable->structure()->classInfo() == &FunctionExecutable::s_info);
        return static_cast<FunctionExecutable*>(executable)->baselineCodeBlockFor(inlineCallFrame->isCall ? CodeForCall : CodeForConstruct);
    }
    
    inline CodeBlock* baselineCodeBlockForOriginAndBaselineCodeBlock(const CodeOrigin& codeOrigin, CodeBlock* baselineCodeBlock)
    {
        if (codeOrigin.inlineCallFrame)
            return baselineCodeBlockForInlineCallFrame(codeOrigin.inlineCallFrame);
        return baselineCodeBlock;
    }
    

    inline Register& ExecState::r(int index)
    {
        CodeBlock* codeBlock = this->codeBlock();
        if (codeBlock->isConstantRegisterIndex(index))
            return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
        return this[index];
    }

    inline Register& ExecState::uncheckedR(int index)
    {
        ASSERT(index < FirstConstantRegisterIndex);
        return this[index];
    }

#if ENABLE(DFG_JIT)
    inline bool ExecState::isInlineCallFrame()
    {
        if (LIKELY(!codeBlock() || codeBlock()->getJITType() != JITCode::DFGJIT))
            return false;
        return isInlineCallFrameSlow();
    }
#endif

#if ENABLE(DFG_JIT)
    inline void DFGCodeBlocks::mark(void* candidateCodeBlock)
    {
        // We have to check for 0 and -1 because those are used by the HashMap as markers.
        uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
        
        // This checks for both of those nasty cases in one go.
        // 0 + 1 = 1
        // -1 + 1 = 0
        if (value + 1 <= 1)
            return;
        
        HashSet<CodeBlock*>::iterator iter = m_set.find(static_cast<CodeBlock*>(candidateCodeBlock));
        if (iter == m_set.end())
            return;
        
        (*iter)->m_dfgData->mayBeExecuting = true;
    }
#endif
    
} // namespace JSC

#endif // CodeBlock_h