summaryrefslogtreecommitdiffstats
path: root/Source/WTF/wtf/HashTraits.h
blob: 729318e0f5595786874b32d9c033c071fcf6ce8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
 * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef WTF_HashTraits_h
#define WTF_HashTraits_h

#include <wtf/HashFunctions.h>
#include <wtf/StdLibExtras.h>
#include <utility>
#include <limits>

namespace WTF {

class String;

template<typename T> struct HashTraits;

template<bool isInteger, typename T> struct GenericHashTraitsBase;

template<typename T> struct GenericHashTraitsBase<false, T> {
    // The emptyValueIsZero flag is used to optimize allocation of empty hash tables with zeroed memory.
    static const bool emptyValueIsZero = false;
    
    // The hasIsEmptyValueFunction flag allows the hash table to automatically generate code to check
    // for the empty value when it can be done with the equality operator, but allows custom functions
    // for cases like String that need them.
    static const bool hasIsEmptyValueFunction = false;

    // The starting table size. Can be overridden when we know beforehand that
    // a hash table will have at least N entries.
    static const unsigned minimumTableSize = 8;
};

// Default integer traits disallow both 0 and -1 as keys (max value instead of -1 for unsigned).
template<typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
    static const bool emptyValueIsZero = true;
    static void constructDeletedValue(T& slot) { slot = static_cast<T>(-1); }
    static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
};

template<typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> {
    typedef T TraitType;
    typedef T EmptyValueType;

    static T emptyValue() { return T(); }

    // Type for return value of functions that do not transfer ownership, such as get.
    typedef T PeekType;
    template<typename U> static U&& peek(U&& value) { return std::forward<U>(value); }
};

template<typename T> struct HashTraits : GenericHashTraits<T> { };

template<typename T> struct FloatHashTraits : GenericHashTraits<T> {
    static T emptyValue() { return std::numeric_limits<T>::infinity(); }
    static void constructDeletedValue(T& slot) { slot = -std::numeric_limits<T>::infinity(); }
    static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); }
};

template<> struct HashTraits<float> : FloatHashTraits<float> { };
template<> struct HashTraits<double> : FloatHashTraits<double> { };

// Default unsigned traits disallow both 0 and max as keys -- use these traits to allow zero and disallow max - 1.
template<typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
    static const bool emptyValueIsZero = false;
    static T emptyValue() { return std::numeric_limits<T>::max(); }
    static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max() - 1; }
    static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; }
};

// Can be used with strong enums, allows zero as key.
template<typename T> struct StrongEnumHashTraits : GenericHashTraits<T> {
    using UnderlyingType = typename std::underlying_type<T>::type;
    static const bool emptyValueIsZero = false;
    static T emptyValue() { return static_cast<T>(std::numeric_limits<UnderlyingType>::max()); }
    static void constructDeletedValue(T& slot) { slot = static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); }
    static bool isDeletedValue(T value) { return value == static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); }
};

template<typename P> struct HashTraits<P*> : GenericHashTraits<P*> {
    static const bool emptyValueIsZero = true;
    static void constructDeletedValue(P*& slot) { slot = reinterpret_cast<P*>(-1); }
    static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); }
};

template<typename T> struct SimpleClassHashTraits : GenericHashTraits<T> {
    static const bool emptyValueIsZero = true;
    static void constructDeletedValue(T& slot) { new (NotNull, std::addressof(slot)) T(HashTableDeletedValue); }
    static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); }
};

template<typename T, typename Deleter> struct HashTraits<std::unique_ptr<T, Deleter>> : SimpleClassHashTraits<std::unique_ptr<T, Deleter>> {
    typedef std::nullptr_t EmptyValueType;
    static EmptyValueType emptyValue() { return nullptr; }

    static void constructDeletedValue(std::unique_ptr<T, Deleter>& slot) { new (NotNull, std::addressof(slot)) std::unique_ptr<T, Deleter> { reinterpret_cast<T*>(-1) }; }
    static bool isDeletedValue(const std::unique_ptr<T, Deleter>& value) { return value.get() == reinterpret_cast<T*>(-1); }

    typedef T* PeekType;
    static T* peek(const std::unique_ptr<T, Deleter>& value) { return value.get(); }
    static T* peek(std::nullptr_t) { return nullptr; }

    static void customDeleteBucket(std::unique_ptr<T, Deleter>& value)
    {
        // The custom delete function exists to avoid a dead store before the value is destructed.
        // The normal destruction sequence of a bucket would be:
        // 1) Call the destructor of unique_ptr.
        // 2) unique_ptr store a zero for its internal pointer.
        // 3) unique_ptr destroys its value.
        // 4) Call constructDeletedValue() to set the bucket as destructed.
        //
        // The problem is the call in (3) prevents the compile from eliminating the dead store in (2)
        // becase a side effect of free() could be observing the value.
        //
        // This version of deleteBucket() ensures the dead 2 stores changing "value"
        // are on the same side of the function call.
        ASSERT(!isDeletedValue(value));
        T* pointer = value.release();
        constructDeletedValue(value);

        // The null case happens if a caller uses std::move() to remove the pointer before calling remove()
        // with an iterator. This is very uncommon.
        if (LIKELY(pointer))
            Deleter()(pointer);
    }
};

template<typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
    static P* emptyValue() { return nullptr; }

    typedef P* PeekType;
    static PeekType peek(const RefPtr<P>& value) { return value.get(); }
    static PeekType peek(P* value) { return value; }

    static void customDeleteBucket(RefPtr<P>& value)
    {
        // See unique_ptr's customDeleteBucket() for an explanation.
        ASSERT(!SimpleClassHashTraits<RefPtr<P>>::isDeletedValue(value));
        auto valueToBeDestroyed = WTFMove(value);
        SimpleClassHashTraits<RefPtr<P>>::constructDeletedValue(value);
    }
};

template<> struct HashTraits<String> : SimpleClassHashTraits<String> {
    static const bool hasIsEmptyValueFunction = true;
    static bool isEmptyValue(const String&);

    static void customDeleteBucket(String&);
};

// This struct template is an implementation detail of the isHashTraitsEmptyValue function,
// which selects either the emptyValue function or the isEmptyValue function to check for empty values.
template<typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker;
template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> {
    template<typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); }
};
template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> {
    template<typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); }
};
template<typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value)
{
    return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
}

template<typename Traits, typename T>
struct HashTraitHasCustomDelete {
    static T& bucketArg;
    template<typename X> static std::true_type TestHasCustomDelete(X*, decltype(X::customDeleteBucket(bucketArg))* = nullptr);
    static std::false_type TestHasCustomDelete(...);
    typedef decltype(TestHasCustomDelete(static_cast<Traits*>(nullptr))) ResultType;
    static const bool value = ResultType::value;
};

template<typename Traits, typename T>
typename std::enable_if<HashTraitHasCustomDelete<Traits, T>::value>::type
hashTraitsDeleteBucket(T& value)
{
    Traits::customDeleteBucket(value);
}

template<typename Traits, typename T>
typename std::enable_if<!HashTraitHasCustomDelete<Traits, T>::value>::type
hashTraitsDeleteBucket(T& value)
{
    value.~T();
    Traits::constructDeletedValue(value);
}

template<typename FirstTraitsArg, typename SecondTraitsArg>
struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> {
    typedef FirstTraitsArg FirstTraits;
    typedef SecondTraitsArg SecondTraits;
    typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType;
    typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType;

    static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
    static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); }

    static const unsigned minimumTableSize = FirstTraits::minimumTableSize;

    static void constructDeletedValue(TraitType& slot) { FirstTraits::constructDeletedValue(slot.first); }
    static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); }
};

template<typename First, typename Second>
struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { };

template<typename KeyTypeArg, typename ValueTypeArg>
struct KeyValuePair {
    typedef KeyTypeArg KeyType;

    KeyValuePair()
    {
    }

    template<typename K, typename V>
    KeyValuePair(K&& key, V&& value)
        : key(std::forward<K>(key))
        , value(std::forward<V>(value))
    {
    }

    template <typename OtherKeyType, typename OtherValueType>
    KeyValuePair(KeyValuePair<OtherKeyType, OtherValueType>&& other)
        : key(std::forward<OtherKeyType>(other.key))
        , value(std::forward<OtherValueType>(other.value))
    {
    }

    KeyTypeArg key;
    ValueTypeArg value;
};

template<typename KeyTraitsArg, typename ValueTraitsArg>
struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> {
    typedef KeyTraitsArg KeyTraits;
    typedef ValueTraitsArg ValueTraits;
    typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType;
    typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType;
    typedef typename ValueTraitsArg::TraitType ValueType;

    static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
    static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); }

    static const unsigned minimumTableSize = KeyTraits::minimumTableSize;

    static void constructDeletedValue(TraitType& slot) { KeyTraits::constructDeletedValue(slot.key); }
    static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); }

    static void customDeleteBucket(TraitType& value)
    {
        static_assert(std::is_trivially_destructible<KeyValuePair<int, int>>::value,
            "The wrapper itself has to be trivially destructible for customDeleteBucket() to make sense, since we do not destruct the wrapper itself.");

        hashTraitsDeleteBucket<KeyTraits>(value.key);
        value.value.~ValueType();
    }
};

template<typename Key, typename Value>
struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { };

template<typename T>
struct NullableHashTraits : public HashTraits<T> {
    static const bool emptyValueIsZero = false;
    static T emptyValue() { return reinterpret_cast<T>(1); }
};

// Useful for classes that want complete control over what is empty and what is deleted,
// and how to construct both.
template<typename T>
struct CustomHashTraits : public GenericHashTraits<T> {
    static const bool emptyValueIsZero = false;
    static const bool hasIsEmptyValueFunction = true;
    
    static void constructDeletedValue(T& slot)
    {
        new (NotNull, std::addressof(slot)) T(T::DeletedValue);
    }
    
    static bool isDeletedValue(const T& value)
    {
        return value.isDeletedValue();
    }
    
    static T emptyValue()
    {
        return T(T::EmptyValue);
    }
    
    static bool isEmptyValue(const T& value)
    {
        return value.isEmptyValue();
    }
};

} // namespace WTF

using WTF::HashTraits;
using WTF::PairHashTraits;
using WTF::NullableHashTraits;
using WTF::SimpleClassHashTraits;

#endif // WTF_HashTraits_h