summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/PathTraversalState.cpp
blob: c6bf7a6bf4310835eb45e94bfd8300983a8aca39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
 * Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2015 Apple Inc.  All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include "PathTraversalState.h"

#include <wtf/MathExtras.h>
#include <wtf/Vector.h>

namespace WebCore {

static const float kPathSegmentLengthTolerance = 0.00001f;

static inline FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second)
{
    return FloatPoint((first.x() + second.x()) / 2.0f, (first.y() + second.y()) / 2.0f);
}

static inline float distanceLine(const FloatPoint& start, const FloatPoint& end)
{
    float dx = end.x() - start.x();
    float dy = end.y() - start.y();
    return sqrtf(dx * dx + dy * dy);
}

struct QuadraticBezier {
    QuadraticBezier() { }
    QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e)
        : start(s)
        , control(c)
        , end(e)
    {
    }
    
    float approximateDistance() const
    {
        return distanceLine(start, control) + distanceLine(control, end);
    }
    
    void split(QuadraticBezier& left, QuadraticBezier& right) const
    {
        left.control = midPoint(start, control);
        right.control = midPoint(control, end);
        
        FloatPoint leftControlToRightControl = midPoint(left.control, right.control);
        left.end = leftControlToRightControl;
        right.start = leftControlToRightControl;

        left.start = start;
        right.end = end;
    }
    
    FloatPoint start;
    FloatPoint control;
    FloatPoint end;
};

struct CubicBezier {
    CubicBezier() { }
    CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e)
        : start(s)
        , control1(c1)
        , control2(c2)
        , end(e)
    {
    }
    
    float approximateDistance() const
    {
        return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end);
    }
        
    void split(CubicBezier& left, CubicBezier& right) const
    {    
        FloatPoint startToControl1 = midPoint(control1, control2);
        
        left.start = start;
        left.control1 = midPoint(start, control1);
        left.control2 = midPoint(left.control1, startToControl1);
        
        right.control2 = midPoint(control2, end);
        right.control1 = midPoint(right.control2, startToControl1);
        right.end = end;
        
        FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1);
        left.end = leftControl2ToRightControl1;
        right.start = leftControl2ToRightControl1;
    }
    
    FloatPoint start;
    FloatPoint control1;
    FloatPoint control2;
    FloatPoint end;
};

// FIXME: This function is possibly very slow due to the ifs required for proper path measuring
// A simple speed-up would be to use an additional boolean template parameter to control whether
// to use the "fast" version of this function with no PathTraversalState updating, vs. the slow
// version which does update the PathTraversalState.  We'll have to shark it to see if that's necessary.
// Another check which is possible up-front (to send us down the fast path) would be to check if
// approximateDistance() + current total distance > desired distance
template<class CurveType>
static float curveLength(const PathTraversalState& traversalState, const CurveType& originalCurve, FloatPoint& previous, FloatPoint& current)
{
    static const unsigned curveStackDepthLimit = 20;
    CurveType curve = originalCurve;
    Vector<CurveType, curveStackDepthLimit> curveStack;
    float totalLength = 0;

    while (true) {
        float length = curve.approximateDistance();

        if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() < curveStackDepthLimit) {
            CurveType leftCurve;
            CurveType rightCurve;
            curve.split(leftCurve, rightCurve);
            curve = leftCurve;
            curveStack.append(rightCurve);
            continue;
        }

        totalLength += length;
        if (traversalState.action() == PathTraversalState::Action::VectorAtLength) {
            previous = curve.start;
            current = curve.end;
            if (traversalState.totalLength() + totalLength > traversalState.desiredLength())
                break;
        }

        if (curveStack.isEmpty())
            break;

        curve = curveStack.last();
        curveStack.removeLast();
    }

    if (traversalState.action() != PathTraversalState::Action::VectorAtLength) {
        ASSERT(curve.end == originalCurve.end);
        previous = curve.start;
        current = curve.end;
    }

    return totalLength;
}

PathTraversalState::PathTraversalState(Action action, float desiredLength)
    : m_action(action)
    , m_desiredLength(desiredLength)
{
    ASSERT(action != Action::TotalLength || !desiredLength);
}

void PathTraversalState::closeSubpath()
{
    m_totalLength += distanceLine(m_current, m_start);
    m_current = m_start;
}

void PathTraversalState::moveTo(const FloatPoint& point)
{
    m_previous = m_current = m_start = point;
}

void PathTraversalState::lineTo(const FloatPoint& point)
{
    m_totalLength += distanceLine(m_current, point);
    m_current = point;
}

void PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd)
{
    m_totalLength += curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd), m_previous, m_current);
}

void PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd)
{
    m_totalLength += curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd), m_previous, m_current);
}

bool PathTraversalState::finalizeAppendPathElement()
{
    if (m_action == Action::TotalLength)
        return false;

    if (m_action == Action::SegmentAtLength) {
        if (m_totalLength >= m_desiredLength)
            m_success = true;
        return m_success;
    }

    ASSERT(m_action == Action::VectorAtLength);

    if (m_totalLength >= m_desiredLength) {
        float slope = FloatPoint(m_current - m_previous).slopeAngleRadians();
        float offset = m_desiredLength - m_totalLength;
        m_current.move(offset * cosf(slope), offset * sinf(slope));

        if (!m_isZeroVector && !m_desiredLength)
            m_isZeroVector = true;
        else {
            m_success = true;
            m_normalAngle = rad2deg(slope);
        }
    }

    m_previous = m_current;
    return m_success;
}

bool PathTraversalState::appendPathElement(PathElementType type, const FloatPoint* points)
{
    switch (type) {
    case PathElementMoveToPoint:
        moveTo(points[0]);
        break;
    case PathElementAddLineToPoint:
        lineTo(points[0]);
        break;
    case PathElementAddQuadCurveToPoint:
        quadraticBezierTo(points[0], points[1]);
        break;
    case PathElementAddCurveToPoint:
        cubicBezierTo(points[0], points[1], points[2]);
        break;
    case PathElementCloseSubpath:
        closeSubpath();
        break;
    }
    
    return finalizeAppendPathElement();
}

bool PathTraversalState::processPathElement(PathElementType type, const FloatPoint* points)
{
    if (m_success)
        return true;

    if (m_isZeroVector) {
        PathTraversalState traversalState(*this);
        m_success = traversalState.appendPathElement(type, points);
        m_normalAngle = traversalState.m_normalAngle;
        return m_success;
    }

    return appendPathElement(type, points);
}

}