summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/chromium/cc/CCMathUtil.cpp
blob: 42933688bbd367a4645cce409cb2ae302b411a20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
 * Copyright (C) 2012 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#include "cc/CCMathUtil.h"

#include "FloatPoint.h"
#include "FloatQuad.h"
#include "IntRect.h"
#include "TransformationMatrix.h"

namespace WebCore {

struct HomogeneousCoordinate {
    HomogeneousCoordinate(double newX, double newY, double newZ, double newW)
        : x(newX)
        , y(newY)
        , z(newZ)
        , w(newW)
    {
    }

    bool shouldBeClipped() const
    {
        return w <= 0;
    }

    FloatPoint cartesianPoint2d() const
    {
        if (w == 1)
            return FloatPoint(x, y);

        // For now, because this code is used privately only by CCMathUtil, it should never be called when w == 0, and we do not yet need to handle that case.
        ASSERT(w);
        double invW = 1.0 / w;
        return FloatPoint(x * invW, y * invW);
    }

    double x;
    double y;
    double z;
    double w;
};

static HomogeneousCoordinate projectPoint(const TransformationMatrix& transform, const FloatPoint& p)
{
    // In this case, the layer we are trying to project onto is perpendicular to ray
    // (point p and z-axis direction) that we are trying to project. This happens when the
    // layer is rotated so that it is infinitesimally thin, or when it is co-planar with
    // the camera origin -- i.e. when the layer is invisible anyway.
    if (!transform.m33())
        return HomogeneousCoordinate(0, 0, 0, 1);

    double x = p.x();
    double y = p.y();
    double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) / transform.m33();
    // implicit definition of w = 1;

    double outX = x * transform.m11() + y * transform.m21() + z * transform.m31() + transform.m41();
    double outY = x * transform.m12() + y * transform.m22() + z * transform.m32() + transform.m42();
    double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33() + transform.m43();
    double outW = x * transform.m14() + y * transform.m24() + z * transform.m34() + transform.m44();

    return HomogeneousCoordinate(outX, outY, outZ, outW);
}

static HomogeneousCoordinate mapPoint(const TransformationMatrix& transform, const FloatPoint& p)
{
    double x = p.x();
    double y = p.y();
    // implicit definition of z = 0;
    // implicit definition of w = 1;

    double outX = x * transform.m11() + y * transform.m21() + transform.m41();
    double outY = x * transform.m12() + y * transform.m22() + transform.m42();
    double outZ = x * transform.m13() + y * transform.m23() + transform.m43();
    double outW = x * transform.m14() + y * transform.m24() + transform.m44();

    return HomogeneousCoordinate(outX, outY, outZ, outW);
}

static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2)
{
    // Points h1 and h2 form a line in 4d, and any point on that line can be represented
    // as an interpolation between h1 and h2:
    //    p = (1-t) h1 + (t) h2
    //
    // We want to compute point p such that p.w == epsilon, where epsilon is a small
    // non-zero number. (but the smaller the number is, the higher the risk of overflow)
    // To do this, we solve for t in the following equation:
    //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
    //
    // Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2.

    // Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here.
    ASSERT(h2.w != h1.w);
    // Exactly one of h1 or h2 (but not both) must be on the negative side of the w plane when this is called.
    ASSERT(h1.shouldBeClipped() ^ h2.shouldBeClipped());

    double w = 0.00001; // or any positive non-zero small epsilon

    double t = (w - h1.w) / (h2.w - h1.w);

    double x = (1-t) * h1.x + t * h2.x;
    double y = (1-t) * h1.y + t * h2.y;
    double z = (1-t) * h1.z + t * h2.z;

    return HomogeneousCoordinate(x, y, z, w);
}

static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& ymin, float& ymax, const FloatPoint& p)
{
    xmin = std::min(p.x(), xmin);
    xmax = std::max(p.x(), xmax);
    ymin = std::min(p.y(), ymin);
    ymax = std::max(p.y(), ymax);
}

static FloatRect computeEnclosingRect(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4)
{
    // This function performs clipping as necessary and computes the enclosing 2d
    // FloatRect of the vertices. Doing these two steps simultaneously allows us to avoid
    // the overhead of storing an unknown number of clipped vertices.

    // If no vertices on the quad are clipped, then we can simply return the enclosing rect directly.
    bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
    if (!somethingClipped) {
        FloatQuad mappedQuad = FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
        return mappedQuad.boundingBox();
    }

    bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.shouldBeClipped() && h4.shouldBeClipped();
    if (everythingClipped)
        return FloatRect();

    float xmin = std::numeric_limits<float>::max();
    float xmax = std::numeric_limits<float>::min();
    float ymin = std::numeric_limits<float>::max();
    float ymax = std::numeric_limits<float>::min();

    if (!h1.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d());

    if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h1, h2).cartesianPoint2d());

    if (!h2.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d());

    if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h2, h3).cartesianPoint2d());

    if (!h3.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d());

    if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h3, h4).cartesianPoint2d());

    if (!h4.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d());

    if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h4, h1).cartesianPoint2d());

    return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin));
}

static inline void addVertexToClippedQuad(const FloatPoint& newVertex, FloatPoint clippedQuad[8], int& numVerticesInClippedQuad)
{
    clippedQuad[numVerticesInClippedQuad] = newVertex;
    numVerticesInClippedQuad++;
}

IntRect CCMathUtil::mapClippedRect(const TransformationMatrix& transform, const IntRect& srcRect)
{
    return enclosingIntRect(mapClippedRect(transform, FloatRect(srcRect)));
}

FloatRect CCMathUtil::mapClippedRect(const TransformationMatrix& transform, const FloatRect& srcRect)
{
    if (transform.isIdentityOrTranslation()) {
        FloatRect mappedRect(srcRect);
        mappedRect.move(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
        return mappedRect;
    }

    // Apply the transform, but retain the result in homogeneous coordinates.
    FloatQuad q = FloatQuad(FloatRect(srcRect));
    HomogeneousCoordinate h1 = mapPoint(transform, q.p1());
    HomogeneousCoordinate h2 = mapPoint(transform, q.p2());
    HomogeneousCoordinate h3 = mapPoint(transform, q.p3());
    HomogeneousCoordinate h4 = mapPoint(transform, q.p4());

    return computeEnclosingRect(h1, h2, h3, h4);
}

FloatRect CCMathUtil::projectClippedRect(const TransformationMatrix& transform, const FloatRect& srcRect)
{
    // Perform the projection, but retain the result in homogeneous coordinates.
    FloatQuad q = FloatQuad(FloatRect(srcRect));
    HomogeneousCoordinate h1 = projectPoint(transform, q.p1());
    HomogeneousCoordinate h2 = projectPoint(transform, q.p2());
    HomogeneousCoordinate h3 = projectPoint(transform, q.p3());
    HomogeneousCoordinate h4 = projectPoint(transform, q.p4());

    return computeEnclosingRect(h1, h2, h3, h4);
}

void CCMathUtil::mapClippedQuad(const TransformationMatrix& transform, const FloatQuad& srcQuad, FloatPoint clippedQuad[8], int& numVerticesInClippedQuad)
{
    HomogeneousCoordinate h1 = mapPoint(transform, srcQuad.p1());
    HomogeneousCoordinate h2 = mapPoint(transform, srcQuad.p2());
    HomogeneousCoordinate h3 = mapPoint(transform, srcQuad.p3());
    HomogeneousCoordinate h4 = mapPoint(transform, srcQuad.p4());

    // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained.

    numVerticesInClippedQuad = 0;

    if (!h1.shouldBeClipped())
        addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h2.shouldBeClipped())
        addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h3.shouldBeClipped())
        addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h4.shouldBeClipped())
        addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    ASSERT(numVerticesInClippedQuad <= 8);
}

FloatRect CCMathUtil::computeEnclosingRectOfVertices(FloatPoint vertices[], int numVertices)
{
    if (numVertices < 2)
        return FloatRect();

    float xmin = std::numeric_limits<float>::max();
    float xmax = std::numeric_limits<float>::min();
    float ymin = std::numeric_limits<float>::max();
    float ymax = std::numeric_limits<float>::min();

    for (int i = 0; i < numVertices; ++i)
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]);

    return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin));
}

FloatQuad CCMathUtil::mapQuad(const TransformationMatrix& transform, const FloatQuad& q, bool& clipped)
{
    if (transform.isIdentityOrTranslation()) {
        FloatQuad mappedQuad(q);
        mappedQuad.move(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
        clipped = false;
        return mappedQuad;
    }

    HomogeneousCoordinate h1 = mapPoint(transform, q.p1());
    HomogeneousCoordinate h2 = mapPoint(transform, q.p2());
    HomogeneousCoordinate h3 = mapPoint(transform, q.p3());
    HomogeneousCoordinate h4 = mapPoint(transform, q.p4());

    clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();

    // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior.
    return FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
}

FloatQuad CCMathUtil::projectQuad(const TransformationMatrix& transform, const FloatQuad& q, bool& clipped)
{
    FloatQuad projectedQuad;
    bool clippedPoint;
    projectedQuad.setP1(transform.projectPoint(q.p1(), &clippedPoint));
    clipped = clippedPoint;
    projectedQuad.setP2(transform.projectPoint(q.p2(), &clippedPoint));
    clipped |= clippedPoint;
    projectedQuad.setP3(transform.projectPoint(q.p3(), &clippedPoint));
    clipped |= clippedPoint;
    projectedQuad.setP4(transform.projectPoint(q.p4(), &clippedPoint));
    clipped |= clippedPoint;

    return projectedQuad;
}

} // namespace WebCore