summaryrefslogtreecommitdiffstats
path: root/res/effectlib/SMAA.glsllib
blob: 97e0153a7c4f7ee65789826a201903a7f1f20c53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
/****************************************************************************
**
** Copyright (C) 2014 NVIDIA Corporation.
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt 3D Studio.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

/**
 * Copyright (C) 2011 Jorge Jimenez (jorge@iryoku.com)
 * Copyright (C) 2011 Jose I. Echevarria (joseignacioechevarria@gmail.com)
 * Copyright (C) 2011 Belen Masia (bmasia@unizar.es)
 * Copyright (C) 2011 Fernando Navarro (fernandn@microsoft.com)
 * Copyright (C) 2011 Diego Gutierrez (diegog@unizar.es)
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice,
 *       this list of conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the following disclaimer
 *       in the documentation and/or other materials provided with the
 *       distribution:
 *
 *      "Uses SMAA. Copyright (C) 2011 by Jorge Jimenez, Jose I. Echevarria,
 *       Tiago Sousa, Belen Masia, Fernando Navarro and Diego Gutierrez."
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are
 * those of the authors and should not be interpreted as representing official
 * policies, either expressed or implied, of the copyright holders.
 */


/**
 *                  _______  ___  ___       ___           ___
 *                 /       ||   \/   |     /   \         /   \
 *                |   (---- |  \  /  |    /  ^  \       /  ^  \
 *                 \   \    |  |\/|  |   /  /_\  \     /  /_\  \
 *              ----)   |   |  |  |  |  /  _____  \   /  _____  \
 *             |_______/    |__|  |__| /__/     \__\ /__/     \__\
 *
 *                               E N H A N C E D
 *       S U B P I X E L   M O R P H O L O G I C A L   A N T I A L I A S I N G
 *
 *                         http://www.iryoku.com/smaa/
 *
 * Hi, welcome aboard!
 *
 * Here you'll find instructions to get the shader up and running as fast as
 * possible.
 *
 * IMPORTANTE NOTICE: when updating, remember to update both this file and the
 * precomputed textures! They may change from version to version.
 *
 * The shader has three passes, chained together as follows:
 *
 *                           |input|------------------
 *                              v                     |
 *                    [ SMAA*EdgeDetection ]          |
 *                              v                     |
 *                          |edgesTex|                |
 *                              v                     |
 *              [ SMAABlendingWeightCalculation ]     |
 *                              v                     |
 *                          |blendTex|                |
 *                              v                     |
 *                [ SMAANeighborhoodBlending ] <------
 *                              v
 *                           |output|
 *
 * Note that each [pass] has its own vertex and pixel shader.
 *
 * You've three edge detection methods to choose from: luma, color or depth.
 * They represent different quality/performance and anti-aliasing/sharpness
 * tradeoffs, so our recommendation is for you to choose the one that best
 * suits your particular scenario:
 *
 * - Depth edge detection is usually the fastest but it may miss some edges.
 *
 * - Luma edge detection is usually more expensive than depth edge detection,
 *   but catches visible edges that depth edge detection can miss.
 *
 * - Color edge detection is usually the most expensive one but catches
 *   chroma-only edges.
 *
 * For quickstarters: just use luma edge detection.
 *
 * The general advice is to not rush the integration process and ensure each
 * step is done correctly (don't try to integrate SMAA T2x with predicated edge
 * detection from the start!). Ok then, let's go!
 *
 *  1. The first step is to create two RGBA temporal framebuffers for holding
 *     |edgesTex| and |blendTex|.
 *
 *     In DX10, you can use a RG framebuffer for the edges texture, but in our
 *     experience it yields worse performance.
 *
 *     On the Xbox 360, you can use the same framebuffer for resolving both
 *     |edgesTex| and |blendTex|, as they aren't needed simultaneously.
 *
 *  2. Both temporal framebuffers |edgesTex| and |blendTex| must be cleared
 *     each frame. Do not forget to clear the alpha channel!
 *
 *  3. The next step is loading the two supporting precalculated textures,
 *     'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
 *     C++ headers, and also as regular DDS files. They'll be needed for the
 *     'SMAABlendingWeightCalculation' pass.
 *
 *     If you use the C++ headers, be sure to load them in the format specified
 *     inside of them.
 *
 *  4. In DX9, all samplers must be set to linear filtering and clamp, with the
 *     exception of 'searchTex', which must be set to point filtering.
 *
 *  5. All texture reads and buffer writes must be non-sRGB, with the exception
 *     of the input read and the output write of input in
 *     'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
 *     this last pass are not possible, the technique will work anyway, but
 *     will perform antialiasing in gamma space.
 *
 *     IMPORTANT: for best results the input read for the color/luma edge
 *     detection should *NOT* be sRGB.
 *
 *  6. Before including SMAA.h you'll have to setup the framebuffer pixel size,
 *     the target and any optional configuration defines. Optionally you can
 *     use a preset.
 *
 *     You have three targets available:
 *         SMAA_HLSL_3
 *         SMAA_HLSL_4
 *         SMAA_HLSL_4_1
 *         SMAA_GLSL_3 *
 *         SMAA_GLSL_4 *
 *
 *         * (See SMAA_ONLY_COMPILE_VS below).
 *
 *     And four presets:
 *         SMAA_PRESET_LOW          (%60 of the quality)
 *         SMAA_PRESET_MEDIUM       (%80 of the quality)
 *         SMAA_PRESET_HIGH         (%95 of the quality)
 *         SMAA_PRESET_ULTRA        (%99 of the quality)
 *
 *     For example:
 *         #define SMAA_PIXEL_SIZE float2(1.0 / 1280.0, 1.0 / 720.0)
 *         #define SMAA_HLSL_4 1
 *         #define SMAA_PRESET_HIGH 1
 *         include "SMAA.h"
 *
 *  7. Then, you'll have to setup the passes as indicated in the scheme above.
 *     You can take a look into SMAA.fx, to see how we did it for our demo.
 *     Checkout the function wrappers, you may want to copy-paste them!
 *
 *  8. It's recommended to validate the produced |edgesTex| and |blendTex|.
 *     It's advised to not continue with the implementation until both buffers
 *     are verified to produce identical results to our reference demo.
 *
 *  9. After you get the last pass to work, it's time to optimize. You'll have
 *     to initialize a stencil buffer in the first pass (discard is already in
 *     the code), then mask execution by using it the second pass. The last
 *     pass should be executed in all pixels.
 *
 *
 * After this point you can choose to enable predicated thresholding,
 * temporal supersampling and motion blur integration:
 *
 * a) If you want to use predicated thresholding, take a look into
 *    SMAA_PREDICATION; you'll need to pass an extra texture in the edge
 *    detection pass.
 *
 * b) If you want to enable temporal supersampling (SMAA T2x):
 *
 * 1. The first step is to render using subpixel jitters. I won't go into
 *    detail, but it's as simple as moving each vertex position in the
 *    vertex shader, you can check how we do it in our DX10 demo.
 *
 * 2. Then, you must setup the temporal resolve. You may want to take a look
 *    into SMAAResolve for resolving 2x modes. After you get it working, you'll
 *    probably see ghosting everywhere. But fear not, you can enable the
 *    CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
 *
 * 3. The next step is to apply SMAA to each subpixel jittered frame, just as
 *    done for 1x.
 *
 * 4. At this point you should already have something usable, but for best
 *    results the proper area textures must be set depending on current jitter.
 *    For this, the parameter 'subsampleIndices' of
 *    'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
 *    mode:
 *
 *    @SUBSAMPLE_INDICES
 *
 *    | S# |  Camera Jitter   |  subsampleIndices  |
 *    +----+------------------+--------------------+
 *    |  0 |  ( 0.25, -0.25)  |  int4(1, 1, 1, 0)  |
 *    |  1 |  (-0.25,  0.25)  |  int4(2, 2, 2, 0)  |
 *
 *    These jitter positions assume a bottom-to-top y axis. S# stands for the
 *    sample number.
 *
 * More information about temporal supersampling here:
 *    http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
 *
 * c) If you want to enable spatial multisampling (SMAA S2x):
 *
 * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
 *    created with:
 *      - DX10:     see below (*)
 *      - DX10.1:   D3D10_STANDARD_MULTISAMPLE_PATTERN or
 *      - DX11:     D3D11_STANDARD_MULTISAMPLE_PATTERN
 *
 *    This allows to ensure that the subsample order matches the table in
 *    @SUBSAMPLE_INDICES.
 *
 *    (*) In the case of DX10, we refer the reader to:
 *      - SMAA::detectMSAAOrder and
 *      - SMAA::msaaReorder
 *
 *    These functions allow to match the standard multisample patterns by
 *    detecting the subsample order for a specific GPU, and reordering
 *    them appropriately.
 *
 * 2. A shader must be run to output each subsample into a separate buffer
 *    (DX10 is required). You can use SMAASeparate for this purpose, or just do
 *    it in an existing pass (for example, in the tone mapping pass).
 *
 * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
 *    the results in the final buffer. The second run should alpha blend with
 *    the existing final buffer using a blending factor of 0.5.
 *    'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
 *    b).
 *
 * d) If you want to enable temporal supersampling on top of SMAA S2x
 *    (which actually is SMAA 4x):
 *
 * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
 *    to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
 *    must be set as follows:
 *
 *    | F# | S# |   Camera Jitter    |    Net Jitter     |  subsampleIndices  |
 *    +----+----+--------------------+-------------------+--------------------+
 *    |  0 |  0 |  ( 0.125,  0.125)  |  ( 0.375, -0.125) |  int4(5, 3, 1, 3)  |
 *    |  0 |  1 |  ( 0.125,  0.125)  |  (-0.125,  0.375) |  int4(4, 6, 2, 3)  |
 *    +----+----+--------------------+-------------------+--------------------+
 *    |  1 |  2 |  (-0.125, -0.125)  |  ( 0.125, -0.375) |  int4(3, 5, 1, 4)  |
 *    |  1 |  3 |  (-0.125, -0.125)  |  (-0.375,  0.125) |  int4(6, 4, 2, 4)  |
 *
 *    These jitter positions assume a bottom-to-top y axis. F# stands for the
 *    frame number. S# stands for the sample number.
 *
 * 2. After calculating SMAA S2x for current frame (with the new subsample
 *    indices), previous frame must be reprojected as in SMAA T2x mode (see
 *    point b).
 *
 * e) If motion blur is used, you may want to do the edge detection pass
 *    together with motion blur. This has two advantages:
 *
 * 1. Pixels under heavy motion can be omitted from the edge detection process.
 *    For these pixels we can just store "no edge", as motion blur will take
 *    care of them.
 * 2. The center pixel tap is reused.
 *
 * Note that in this case depth testing should be used instead of stenciling,
 * as we have to write all the pixels in the motion blur pass.
 *
 * That's it!
 */

//-----------------------------------------------------------------------------
// SMAA Presets

/**
 * Note that if you use one of these presets, the corresponding macros below
 * won't be used.
 */

#if SMAA_PRESET_LOW == 1
#define SMAA_THRESHOLD 0.15
#define SMAA_MAX_SEARCH_STEPS 4
#define SMAA_MAX_SEARCH_STEPS_DIAG 0
#define SMAA_CORNER_ROUNDING 100
#elif SMAA_PRESET_MEDIUM == 1
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 8
#define SMAA_MAX_SEARCH_STEPS_DIAG 0
#define SMAA_CORNER_ROUNDING 100
#elif SMAA_PRESET_HIGH == 1
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 16
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
#define SMAA_CORNER_ROUNDING 25
#elif SMAA_PRESET_ULTRA == 1
#define SMAA_THRESHOLD 0.05
#define SMAA_MAX_SEARCH_STEPS 32
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
#define SMAA_CORNER_ROUNDING 25
#endif

//-----------------------------------------------------------------------------
// Configurable Defines

/**
 * SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
 * Lowering this value you will be able to detect more edges at the expense of
 * performance.
 *
 * Range: [0, 0.5]
 *   0.1 is a reasonable value, and allows to catch most visible edges.
 *   0.05 is a rather overkill value, that allows to catch 'em all.
 *
 *   If temporal supersampling is used, 0.2 could be a reasonable value, as low
 *   contrast edges are properly filtered by just 2x.
 */
#ifndef SMAA_THRESHOLD
#define SMAA_THRESHOLD 0.1
#endif

/**
 * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
 *
 * Range: depends on the depth range of the scene.
 */
#ifndef SMAA_DEPTH_THRESHOLD
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
#endif

/**
 * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
 * horizontal/vertical pattern searches, at each side of the pixel.
 *
 * In number of pixels, it's actually the double. So the maximum line length
 * perfectly handled by, for example 16, is 64 (by perfectly, we meant that
 * longer lines won't look as good, but still antialiased).
 *
 * Range: [0, 98]
 */
#ifndef SMAA_MAX_SEARCH_STEPS
#define SMAA_MAX_SEARCH_STEPS 16
#endif

/**
 * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
 * diagonal pattern searches, at each side of the pixel. In this case we jump
 * one pixel at time, instead of two.
 *
 * Range: [0, 20]; set it to 0 to disable diagonal processing.
 *
 * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
 * steps), but it can have a significant impact on older machines.
 */
#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
#endif

/**
 * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
 *
 * Range: [0, 100]; set it to 100 to disable corner detection.
 */
#ifndef SMAA_CORNER_ROUNDING
#define SMAA_CORNER_ROUNDING 25
#endif

/**
 * Predicated thresholding allows to better preserve texture details and to
 * improve performance, by decreasing the number of detected edges using an
 * additional buffer like the light accumulation buffer, object ids or even the
 * depth buffer (the depth buffer usage may be limited to indoor or short range
 * scenes).
 *
 * It locally decreases the luma or color threshold if an edge is found in an
 * additional buffer (so the global threshold can be higher).
 *
 * This method was developed by Playstation EDGE MLAA team, and used in
 * Killzone 3, by using the light accumulation buffer. More information here:
 *     http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
 */
#ifndef SMAA_PREDICATION
#define SMAA_PREDICATION 0
#endif

/**
 * Threshold to be used in the additional predication buffer.
 *
 * Range: depends on the input, so you'll have to find the magic number that
 * works for you.
 */
#ifndef SMAA_PREDICATION_THRESHOLD
#define SMAA_PREDICATION_THRESHOLD 0.01
#endif

/**
 * How much to scale the global threshold used for luma or color edge
 * detection when using predication.
 *
 * Range: [1, 5]
 */
#ifndef SMAA_PREDICATION_SCALE
#define SMAA_PREDICATION_SCALE 2.0
#endif

/**
 * How much to locally decrease the threshold.
 *
 * Range: [0, 1]
 */
#ifndef SMAA_PREDICATION_STRENGTH
#define SMAA_PREDICATION_STRENGTH 0.4
#endif

/**
 * Temporal reprojection allows to remove ghosting artifacts when using
 * temporal supersampling. We use the CryEngine 3 method which also introduces
 * velocity weighting. This feature is of extreme importance for totally
 * removing ghosting. More information here:
 *    http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
 *
 * Note that you'll need to setup a velocity buffer for enabling reprojection.
 * For static geometry, saving the previous depth buffer is a viable
 * alternative.
 */
#ifndef SMAA_REPROJECTION
#define SMAA_REPROJECTION 0
#endif

/**
 * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
 * remove ghosting trails behind the moving object, which are not removed by
 * just using reprojection. Using low values will exhibit ghosting, while using
 * high values will disable temporal supersampling under motion.
 *
 * Behind the scenes, velocity weighting removes temporal supersampling when
 * the velocity of the subsamples differs (meaning they are different objects).
 *
 * Range: [0, 80]
 */
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0

/**
 * In the last pass we leverage bilinear filtering to avoid some lerps.
 * However, bilinear filtering is done in gamma space in DX9, under DX9
 * hardware (but not in DX9 code running on DX10 hardware), which gives
 * inaccurate results.
 *
 * So, if you are in DX9, under DX9 hardware, and do you want accurate linear
 * blending, you must set this flag to 1.
 *
 * It's ignored when using SMAA_HLSL_4, and of course, only has sense when
 * using sRGB read and writes on the last pass.
 */
#ifndef SMAA_DIRECTX9_LINEAR_BLEND
#define SMAA_DIRECTX9_LINEAR_BLEND 0
#endif

/**
 * On ATI compilers, discard cannot be used in vertex shaders. Thus, they need
 * to be compiled separately. These macros allow to easily accomplish it.
 */
#ifndef SMAA_ONLY_COMPILE_VS
#define SMAA_ONLY_COMPILE_VS 0
#endif
#ifndef SMAA_ONLY_COMPILE_PS
#define SMAA_ONLY_COMPILE_PS 0
#endif

//-----------------------------------------------------------------------------
// Non-Configurable Defines

#ifndef SMAA_AREATEX_MAX_DISTANCE
#define SMAA_AREATEX_MAX_DISTANCE 16
#endif
#ifndef SMAA_AREATEX_MAX_DISTANCE_DIAG
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
#endif
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0))
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)

//-----------------------------------------------------------------------------
// Porting Functions

#if SMAA_HLSL_3 == 1
#define SMAATexture2D sampler2D
#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
#define SMAASample(tex, coord) tex2D(tex, coord)
#define SMAASamplePoint(tex, coord) tex2D(tex, coord)
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_PIXEL_SIZE, 0.0, 0.0))
#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_PIXEL_SIZE)
#define SMAALerp(a, b, t) lerp(a, b, t)
#define SMAASaturate(a) saturate(a)
#define SMAAMad(a, b, c) mad(a, b, c)
#define SMAA_FLATTEN [flatten]
#define SMAA_BRANCH [branch]
#endif
#if SMAA_HLSL_4 == 1 || SMAA_HLSL_4_1 == 1
SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
#define SMAATexture2D Texture2D
#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
#define SMAASample(tex, coord) SMAASampleLevelZero(tex, coord)
#define SMAASamplePoint(tex, coord) SMAASampleLevelZeroPoint(tex, coord)
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
#define SMAASampleOffset(tex, coord, offset) SMAASampleLevelZeroOffset(tex, coord, offset)
#define SMAALerp(a, b, t) lerp(a, b, t)
#define SMAASaturate(a) saturate(a)
#define SMAAMad(a, b, c) mad(a, b, c)
#define SMAA_FLATTEN [flatten]
#define SMAA_BRANCH [branch]
#define SMAATexture2DMS2 Texture2DMS<float4, 2>
#define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
#endif
#if SMAA_HLSL_4_1 == 1
#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
#endif
#if SMAA_GLSL_3 == 1 || SMAA_GLSL_4 == 1
#define SMAATexture2D sampler2D
#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
#define SMAASample(tex, coord) texture(tex, coord)
#define SMAASamplePoint(tex, coord) texture(tex, coord)
#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
#define SMAALerp(a, b, t) mix(a, b, t)
#define SMAASaturate(a) clamp(a, 0.0, 1.0)
#define SMAA_FLATTEN
#define SMAA_BRANCH
#define float2 vec2
#define float3 vec3
#define float4 vec4
#define int2 ivec2
#define int3 ivec3
#define int4 ivec4
#endif
#if SMAA_GLSL_3 == 1
#define SMAAMad(a, b, c) (a * b + c)
#endif
#if SMAA_GLSL_4 == 1
#define SMAAMad(a, b, c) fma(a, b, c)
#define SMAAGather(tex, coord) textureGather(tex, coord)
#endif

//-----------------------------------------------------------------------------
// Misc functions

/**
 * Gathers current pixel, and the top-left neighbors.
 */
float3 SMAAGatherNeighbors(float2 texcoord,
                            float4 offset[3],
                            SMAATexture2D tex) {
    #if SMAA_HLSL_4_1 == 1 || SMAA_GLSL_4 == 1
    return SMAAGather(tex, texcoord + SMAA_PIXEL_SIZE * float2(-0.5, -0.5)).grb;
    #else
    float P = SMAASample(tex, texcoord).r;
    float Pleft = SMAASample(tex, offset[0].xy).r;
    float Ptop  = SMAASample(tex, offset[0].zw).r;
    return float3(P, Pleft, Ptop);
    #endif
}

/**
 * Adjusts the threshold by means of predication.
 */
float2 SMAACalculatePredicatedThreshold(float2 texcoord,
                                        float4 offset[3],
                                        SMAATexture2D colorTex,
                                        SMAATexture2D predicationTex) {
    float3 neighbors = SMAAGatherNeighbors(texcoord, offset, predicationTex);
    float2 delta = abs(neighbors.xx - neighbors.yz);
    float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
    return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
}

#if SMAA_ONLY_COMPILE_PS == 0
//-----------------------------------------------------------------------------
// Vertex Shaders

/**
 * Edge Detection Vertex Shader
 */
void SMAAEdgeDetectionVS(float4 position,
                         out float4 svPosition,
                         in float2 texcoord,
                         out float4 offset[3]) {
    svPosition = position;

    offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-1.0, 0.0, 0.0, -1.0);
    offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4( 1.0, 0.0, 0.0,  1.0);
    offset[2] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-2.0, 0.0, 0.0, -2.0);
}

/**
 * Blend Weight Calculation Vertex Shader
 */
void SMAABlendingWeightCalculationVS(float4 position,
                                     out float4 svPosition,
                                     inout float2 texcoord,
                                     out float2 pixcoord,
                                     out float4 offset[3]) {
    svPosition = position;

    pixcoord = texcoord / SMAA_PIXEL_SIZE;

    // We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
    offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-0.25, -0.125,  1.25, -0.125);
    offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-0.125, -0.25, -0.125,  1.25);

    // And these for the searches, they indicate the ends of the loops:
    offset[2] = float4(offset[0].xz, offset[1].yw) +
                float4(-2.0, 2.0, -2.0, 2.0) *
                SMAA_PIXEL_SIZE.xxyy * float(SMAA_MAX_SEARCH_STEPS);
}

/**
 * Neighborhood Blending Vertex Shader
 */
void SMAANeighborhoodBlendingVS(float4 position,
                                out float4 svPosition,
                                inout float2 texcoord,
                                out float4 offset[2]) {
    svPosition = position;

    offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-1.0, 0.0, 0.0, -1.0);
    offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4( 1.0, 0.0, 0.0,  1.0);
}

/**
 * Resolve Vertex Shader
 */
void SMAAResolveVS(float4 position,
                   out float4 svPosition,
                   inout float2 texcoord) {
    svPosition = position;
}

/**
 * Separate Vertex Shader
 */
void SMAASeparateVS(float4 position,
                    out float4 svPosition,
                    inout float2 texcoord) {
    svPosition = position;
}
#endif // SMAA_ONLY_COMPILE_PS == 0

#if SMAA_ONLY_COMPILE_VS == 0
//-----------------------------------------------------------------------------
// Edge Detection Pixel Shaders (First Pass)

/**
 * Luma Edge Detection
 *
 * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
 * thus 'colorTex' should be a non-sRGB texture.
 */
float4 SMAALumaEdgeDetectionPS(float2 texcoord,
                               float4 offset[3],
                               SMAATexture2D colorTex
                               #if SMAA_PREDICATION == 1
                               , SMAATexture2D predicationTex
                               #endif
                               ) {
    // Calculate the threshold:
    #if SMAA_PREDICATION == 1
    float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
    #else
    float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
    #endif

    // Calculate lumas:
    float3 weights = float3(0.2126, 0.7152, 0.0722);
    float L = dot(SMAASample(colorTex, texcoord).rgb, weights);
    float Lleft = dot(SMAASample(colorTex, offset[0].xy).rgb, weights);
    float Ltop  = dot(SMAASample(colorTex, offset[0].zw).rgb, weights);

    // We do the usual threshold:
    float4 delta;
    delta.xy = abs(L - float2(Lleft, Ltop));
    float2 edges = step(threshold, delta.xy);

    // Then discard if there is no edge:
    if (dot(edges, float2(1.0, 1.0)) == 0.0)
        discard;

    // Calculate right and bottom deltas:
    float Lright = dot(SMAASample(colorTex, offset[1].xy).rgb, weights);
    float Lbottom  = dot(SMAASample(colorTex, offset[1].zw).rgb, weights);
    delta.zw = abs(L - float2(Lright, Lbottom));

    // Calculate the maximum delta in the direct neighborhood:
    float2 maxDelta = max(delta.xy, delta.zw);
    maxDelta = max(maxDelta.xx, maxDelta.yy);

    // Calculate left-left and top-top deltas:
    float Lleftleft = dot(SMAASample(colorTex, offset[2].xy).rgb, weights);
    float Ltoptop = dot(SMAASample(colorTex, offset[2].zw).rgb, weights);
    delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));

    // Calculate the final maximum delta:
    maxDelta = max(maxDelta.xy, delta.zw);

    /**
     * Each edge with a delta in luma of less than 50% of the maximum luma
     * surrounding this pixel is discarded. This allows to eliminate spurious
     * crossing edges, and is based on the fact that, if there is too much
     * contrast in a direction, that will hide contrast in the other
     * neighbors.
     * This is done after the discard intentionally as this situation doesn't
     * happen too frequently (but it's important to do as it prevents some
     * edges from going undetected).
     */
    edges.xy *= step(0.5 * maxDelta, delta.xy);

    return float4(edges, 0.0, 0.0);
}

/**
 * Color Edge Detection
 *
 * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
 * thus 'colorTex' should be a non-sRGB texture.
 */
float4 SMAAColorEdgeDetectionPS(float2 texcoord,
                                float4 offset[3],
                                SMAATexture2D colorTex
                                #if SMAA_PREDICATION == 1
                                , SMAATexture2D predicationTex
                                #endif
                                ) {
    // Calculate the threshold:
    #if SMAA_PREDICATION == 1
    float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
    #else
    float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
    #endif

    // Calculate color deltas:
    float4 delta;
    float3 C = SMAASample(colorTex, texcoord).rgb;

    float3 Cleft = SMAASample(colorTex, offset[0].xy).rgb;
    float3 t = abs(C - Cleft);
    delta.x = max(max(t.r, t.g), t.b);

    float3 Ctop  = SMAASample(colorTex, offset[0].zw).rgb;
    t = abs(C - Ctop);
    delta.y = max(max(t.r, t.g), t.b);

    // We do the usual threshold:
    float2 edges = step(threshold, delta.xy);

    // Then discard if there is no edge:
    if (dot(edges, float2(1.0, 1.0)) == 0.0)
        discard;

    // Calculate right and bottom deltas:
    float3 Cright = SMAASample(colorTex, offset[1].xy).rgb;
    t = abs(C - Cright);
    delta.z = max(max(t.r, t.g), t.b);

    float3 Cbottom  = SMAASample(colorTex, offset[1].zw).rgb;
    t = abs(C - Cbottom);
    delta.w = max(max(t.r, t.g), t.b);

    // Calculate the maximum delta in the direct neighborhood:
    float maxDelta = max(max(max(delta.x, delta.y), delta.z), delta.w);

    // Calculate left-left and top-top deltas:
    float3 Cleftleft  = SMAASample(colorTex, offset[2].xy).rgb;
    t = abs(C - Cleftleft);
    delta.z = max(max(t.r, t.g), t.b);

    float3 Ctoptop = SMAASample(colorTex, offset[2].zw).rgb;
    t = abs(C - Ctoptop);
    delta.w = max(max(t.r, t.g), t.b);

    // Calculate the final maximum delta:
    maxDelta = max(max(maxDelta, delta.z), delta.w);

    // Local contrast adaptation in action:
    edges.xy *= step(0.5 * maxDelta, delta.xy);

    return float4(edges, 0.0, 0.0);
}

float4 SMAASingleChannelEdgeDetectionPS(float2 texcoord,
                               float4 offset[3],
                               SMAATexture2D colorTex
                               #if SMAA_PREDICATION == 1
                               , SMAATexture2D predicationTex
                               #endif
                               ) {
    // Calculate the threshold:
    #if SMAA_PREDICATION == 1
    float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
    #else
    float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
    #endif

    // Calculate lumas:
    float L = SMAASample(colorTex, texcoord).r;
    float Lleft = SMAASample(colorTex, offset[0].xy).r;
    float Ltop  = SMAASample(colorTex, offset[0].zw).r;

    // We do the usual threshold:
    float4 delta;
    delta.xy = abs(L - float2(Lleft, Ltop));
    float2 edges = step(threshold, delta.xy);

    // Then discard if there is no edge:
    if (dot(edges, float2(1.0, 1.0)) == 0.0)
        discard;

    // Calculate right and bottom deltas:
    float Lright = SMAASample(colorTex, offset[1].xy).r;
    float Lbottom  = SMAASample(colorTex, offset[1].zw).r;
    delta.zw = abs(L - float2(Lright, Lbottom));

    // Calculate the maximum delta in the direct neighborhood:
    float2 maxDelta = max(delta.xy, delta.zw);
    maxDelta = max(maxDelta.xx, maxDelta.yy);

    // Calculate left-left and top-top deltas:
    float Lleftleft = SMAASample(colorTex, offset[2].xy).r;
    float Ltoptop = SMAASample(colorTex, offset[2].zw).r;
    delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));

    // Calculate the final maximum delta:
    maxDelta = max(maxDelta.xy, delta.zw);

    /**
     * Each edge with a delta in luma of less than 50% of the maximum luma
     * surrounding this pixel is discarded. This allows to eliminate spurious
     * crossing edges, and is based on the fact that, if there is too much
     * contrast in a direction, that will hide contrast in the other
     * neighbors.
     * This is done after the discard intentionally as this situation doesn't
     * happen too frequently (but it's important to do as it prevents some
     * edges from going undetected).
     */
    edges.xy *= step(0.5 * maxDelta, delta.xy);

    return float4(edges, 0.0, 0.0);
}

/**
 * Depth Edge Detection
 */
float4 SMAADepthEdgeDetectionPS(float2 texcoord,
                                float4 offset[3],
                                SMAATexture2D depthTex) {
    float3 neighbors = SMAAGatherNeighbors(texcoord, offset, depthTex);
    float2 delta = abs(neighbors.xx - float2(neighbors.y, neighbors.z));
    float2 edges = step(SMAA_DEPTH_THRESHOLD, delta);

    if (dot(edges, float2(1.0, 1.0)) == 0.0)
        discard;

    return float4(edges, 0.0, 0.0);
}

//-----------------------------------------------------------------------------
// Diagonal Search Functions

#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1

/**
 * These functions allows to perform diagonal pattern searches.
 */
float SMAASearchDiag1(SMAATexture2D edgesTex, float2 texcoord, float2 dir, float c) {
    texcoord += dir * SMAA_PIXEL_SIZE;
    float2 e = float2(0.0, 0.0);
    float i;
    for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
        e.rg = SMAASampleLevelZero(edgesTex, texcoord).rg;
        SMAA_FLATTEN if (dot(e, float2(1.0, 1.0)) < 1.9) break;
        texcoord += dir * SMAA_PIXEL_SIZE;
    }
    return i + float(e.g > 0.9) * c;
}

float SMAASearchDiag2(SMAATexture2D edgesTex, float2 texcoord, float2 dir, float c) {
    texcoord += dir * SMAA_PIXEL_SIZE;
    float2 e = float2(0.0, 0.0);
    float i;
    for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
        e.g = SMAASampleLevelZero(edgesTex, texcoord).g;
        e.r = SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r;
        SMAA_FLATTEN if (dot(e, float2(1.0, 1.0)) < 1.9) break;
        texcoord += dir * SMAA_PIXEL_SIZE;
    }
    return i + float(e.g > 0.9) * c;
}

/**
 * Similar to SMAAArea, this calculates the area corresponding to a certain
 * diagonal distance and crossing edges 'e'.
 */
float2 SMAAAreaDiag(SMAATexture2D areaTex, float2 dist, float2 e, float offset) {
    float2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;

    // We do a scale and bias for mapping to texel space:
    texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);

    // Diagonal areas are on the second half of the texture:
    texcoord.x += 0.5;

    // Move to proper place, according to the subpixel offset:
    texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;

    // Do it!
    return SMAASampleLevelZero(areaTex, texcoord).ra;
}

/**
 * This searches for diagonal patterns and returns the corresponding weights.
 */
float2 SMAACalculateDiagWeights(SMAATexture2D edgesTex, SMAATexture2D areaTex, float2 texcoord, float2 e, int4 subsampleIndices) {
    float2 weights = float2(0.0, 0.0);

    float2 d;
    d.x = e.r > 0.0? SMAASearchDiag1(edgesTex, texcoord, float2(-1.0,  1.0), 1.0) : 0.0;
    d.y = SMAASearchDiag1(edgesTex, texcoord, float2(1.0, -1.0), 0.0);

    SMAA_BRANCH
    if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
        float4 coords = SMAAMad(float4(-d.r, d.r, d.g, -d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);

        float4 c;
        c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1,  0)).g;
        c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0,  0)).r;
        c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1,  0)).g;
        c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r;
        float2 e = 2.0 * c.xz + c.yw;
        float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
        e *= step(d.rg, float2(t, t));

        weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.z));
    }

    d.x = SMAASearchDiag2(edgesTex, texcoord, float2(-1.0, -1.0), 0.0);
    float right = SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r;
    d.y = right > 0.0? SMAASearchDiag2(edgesTex, texcoord, float2(1.0, 1.0), 1.0) : 0.0;

    SMAA_BRANCH
    if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
        float4 coords = SMAAMad(float4(-d.r, -d.r, d.g, d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);

        float4 c;
        c.x  = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1,  0)).g;
        c.y  = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, -1)).r;
        c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1,  0)).gr;
        float2 e = 2.0 * c.xz + c.yw;
        float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
        e *= step(d.rg, float2(t, t));

        weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.w)).gr;
    }

    return weights;
}
#endif

//-----------------------------------------------------------------------------
// Horizontal/Vertical Search Functions

/**
 * This allows to determine how much length should we add in the last step
 * of the searches. It takes the bilinearly interpolated edge (see
 * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
 * crossing edges are active.
 */
float SMAASearchLength(SMAATexture2D searchTex, float2 e, float bias, float scale) {
    // Not required if searchTex accesses are set to point:
    // float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0);
    // e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
    //     e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
    e.r = bias + e.r * scale;
    return 255.0 * SMAASampleLevelZeroPoint(searchTex, e).r;
}

/**
 * Horizontal/vertical search functions for the 2nd pass.
 */
float SMAASearchXLeft(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
    /**
     * @PSEUDO_GATHER4
     * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
     * sample between edge, thus fetching four edges in a row.
     * Sampling with different offsets in each direction allows to disambiguate
     * which edges are active from the four fetched ones.
     */
    float2 e = float2(0.0, 1.0);
    while (texcoord.x > end &&
           e.g > 0.8281 && // Is there some edge not activated?
           e.r == 0.0) { // Or is there a crossing edge that breaks the line?
        e = SMAASampleLevelZero(edgesTex, texcoord).rg;
        texcoord -= float2(2.0, 0.0) * SMAA_PIXEL_SIZE;
    }

    // We correct the previous (-0.25, -0.125) offset we applied:
    texcoord.x += 0.25 * SMAA_PIXEL_SIZE.x;

    // The searches are bias by 1, so adjust the coords accordingly:
    texcoord.x += SMAA_PIXEL_SIZE.x;

    // Disambiguate the length added by the last step:
    texcoord.x += 2.0 * SMAA_PIXEL_SIZE.x; // Undo last step
    texcoord.x -= SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.0, 0.5);

    return texcoord.x;
}

float SMAASearchXRight(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
    float2 e = float2(0.0, 1.0);
    while (texcoord.x < end &&
           e.g > 0.8281 && // Is there some edge not activated?
           e.r == 0.0) { // Or is there a crossing edge that breaks the line?
        e = SMAASampleLevelZero(edgesTex, texcoord).rg;
        texcoord += float2(2.0, 0.0) * SMAA_PIXEL_SIZE;
    }

    texcoord.x -= 0.25 * SMAA_PIXEL_SIZE.x;
    texcoord.x -= SMAA_PIXEL_SIZE.x;
    texcoord.x -= 2.0 * SMAA_PIXEL_SIZE.x;
    texcoord.x += SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.5, 0.5);
    return texcoord.x;
}

float SMAASearchYUp(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
    float2 e = float2(1.0, 0.0);
    while (texcoord.y > end &&
           e.r > 0.8281 && // Is there some edge not activated?
           e.g == 0.0) { // Or is there a crossing edge that breaks the line?
        e = SMAASampleLevelZero(edgesTex, texcoord).rg;
        texcoord -= float2(0.0, 2.0) * SMAA_PIXEL_SIZE;
    }

    texcoord.y += 0.25 * SMAA_PIXEL_SIZE.y;
    texcoord.y += SMAA_PIXEL_SIZE.y;
    texcoord.y += 2.0 * SMAA_PIXEL_SIZE.y;
    texcoord.y -= SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.0, 0.5);
    return texcoord.y;
}

float SMAASearchYDown(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
    float2 e = float2(1.0, 0.0);
    while (texcoord.y < end &&
           e.r > 0.8281 && // Is there some edge not activated?
           e.g == 0.0) { // Or is there a crossing edge that breaks the line?
        e = SMAASampleLevelZero(edgesTex, texcoord).rg;
        texcoord += float2(0.0, 2.0) * SMAA_PIXEL_SIZE;
    }

    texcoord.y -= 0.25 * SMAA_PIXEL_SIZE.y;
    texcoord.y -= SMAA_PIXEL_SIZE.y;
    texcoord.y -= 2.0 * SMAA_PIXEL_SIZE.y;
    texcoord.y += SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.5, 0.5);
    return texcoord.y;
}

/**
 * Ok, we have the distance and both crossing edges. So, what are the areas
 * at each side of current edge?
 */
float2 SMAAArea(SMAATexture2D areaTex, float2 dist, float e1, float e2, float offset) {
    // Rounding prevents precision errors of bilinear filtering:
    float2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * round(4.0 * float2(e1, e2)) + dist;

    // We do a scale and bias for mapping to texel space:
    texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);

    // Move to proper place, according to the subpixel offset:
    texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;

    // Do it!
    return SMAASampleLevelZero(areaTex, texcoord).ra;
}

//-----------------------------------------------------------------------------
// Corner Detection Functions

void SMAADetectHorizontalCornerPattern(SMAATexture2D edgesTex, inout float2 weights, float2 texcoord, float2 d) {
    #if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
    float4 coords = SMAAMad(float4(d.x, 0.0, d.y, 0.0),
                            SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
    float2 e;
    e.r = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0.0,  1.0)).r;
    bool left = abs(d.x) < abs(d.y);
    e.g = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0.0, -2.0)).r;
    if (left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);

    e.r = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1.0,  1.0)).r;
    e.g = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1.0, -2.0)).r;
    if (!left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
    #endif
}

void SMAADetectVerticalCornerPattern(SMAATexture2D edgesTex, inout float2 weights, float2 texcoord, float2 d) {
    #if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
    float4 coords = SMAAMad(float4(0.0, d.x, 0.0, d.y),
                            SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
    float2 e;
    e.r = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 1.0, 0.0)).g;
    bool left = abs(d.x) < abs(d.y);
    e.g = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-2.0, 0.0)).g;
    if (left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);

    e.r = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1.0, 1.0)).g;
    e.g = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(-2.0, 1.0)).g;
    if (!left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
    #endif
}

//-----------------------------------------------------------------------------
// Blending Weight Calculation Pixel Shader (Second Pass)

float4 SMAABlendingWeightCalculationPS(float2 texcoord,
                                       float2 pixcoord,
                                       float4 offset[3],
                                       SMAATexture2D edgesTex,
                                       SMAATexture2D areaTex,
                                       SMAATexture2D searchTex,
                                       int4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
    float4 weights = float4(0.0, 0.0, 0.0, 0.0);

    float2 e = SMAASample(edgesTex, texcoord).rg;

    SMAA_BRANCH
    if (e.g > 0.0) { // Edge at north
        #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
        // Diagonals have both north and west edges, so searching for them in
        // one of the boundaries is enough.
        weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);

        // We give priority to diagonals, so if we find a diagonal we skip
        // horizontal/vertical processing.
        SMAA_BRANCH
        if (dot(weights.rg, float2(1.0, 1.0)) == 0.0) {
        #endif

        float2 d;

        // Find the distance to the left:
        float2 coords;
        coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
        coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_PIXEL_SIZE.y (@CROSSING_OFFSET)
        d.x = coords.x;

        // Now fetch the left crossing edges, two at a time using bilinear
        // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
        // discern what value each edge has:
        float e1 = SMAASampleLevelZero(edgesTex, coords).r;

        // Find the distance to the right:
        coords.x = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
        d.y = coords.x;

        // We want the distances to be in pixel units (doing this here allow to
        // better interleave arithmetic and memory accesses):
        d = d / SMAA_PIXEL_SIZE.x - pixcoord.x;

        // SMAAArea below needs a sqrt, as the areas texture is compressed
        // quadratically:
        float2 sqrt_d = sqrt(abs(d));

        // Fetch the right crossing edges:
        float e2 = SMAASampleLevelZeroOffset(edgesTex, coords, int2(1, 0)).r;

        // Ok, we know how this pattern looks like, now it is time for getting
        // the actual area:
        weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.y));

        // Fix corners:
        SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, texcoord, d);

        #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
        } else
            e.r = 0.0; // Skip vertical processing.
        #endif
    }

    SMAA_BRANCH
    if (e.r > 0.0) { // Edge at west
        float2 d;

        // Find the distance to the top:
        float2 coords;
        coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
        coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_PIXEL_SIZE.x;
        d.x = coords.y;

        // Fetch the top crossing edges:
        float e1 = SMAASampleLevelZero(edgesTex, coords).g;

        // Find the distance to the bottom:
        coords.y = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
        d.y = coords.y;

        // We want the distances to be in pixel units:
        d = d / SMAA_PIXEL_SIZE.y - pixcoord.y;

        // SMAAArea below needs a sqrt, as the areas texture is compressed
        // quadratically:
        float2 sqrt_d = sqrt(abs(d));

        // Fetch the bottom crossing edges:
        float e2 = SMAASampleLevelZeroOffset(edgesTex, coords, int2(0, 1)).g;

        // Get the area for this direction:
        weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.x));

        // Fix corners:
        SMAADetectVerticalCornerPattern(edgesTex, weights.ba, texcoord, d);
    }

    return weights;
}

//-----------------------------------------------------------------------------
// Neighborhood Blending Pixel Shader (Third Pass)

float4 SMAANeighborhoodBlendingPS(float2 texcoord,
                                  float4 offset[2],
                                  SMAATexture2D colorTex,
                                  SMAATexture2D blendTex) {
    // Fetch the blending weights for current pixel:
    float4 a;
    a.xz = SMAASample(blendTex, texcoord).xz;
    a.y = SMAASample(blendTex, offset[1].zw).g;
    a.w = SMAASample(blendTex, offset[1].xy).a;

    // Is there any blending weight with a value greater than 0.0?
    SMAA_BRANCH
    if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5)
        return SMAASampleLevelZero(colorTex, texcoord);
    else {
        float4 color = float4(0.0, 0.0, 0.0, 0.0);

        // Up to 4 lines can be crossing a pixel (one through each edge). We
        // favor blending by choosing the line with the maximum weight for each
        // direction:
        float2 offset;
        offset.x = a.a > a.b? a.a : -a.b; // left vs. right
        offset.y = a.g > a.r? a.g : -a.r; // top vs. bottom

        // Then we go in the direction that has the maximum weight:
        if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical
            offset.y = 0.0;
        else
            offset.x = 0.0;

        #if SMAA_REPROJECTION == 1
        // Fetch the opposite color and lerp by hand:
        float4 C = SMAASampleLevelZero(colorTex, texcoord);
        texcoord += sign(offset) * SMAA_PIXEL_SIZE;
        float4 Cop = SMAASampleLevelZero(colorTex, texcoord);
        float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);

        // Unpack the velocity values:
        C.a *= C.a;
        Cop.a *= Cop.a;

        // Lerp the colors:
        float4 Caa = SMAALerp(C, Cop, s);

        // Unpack velocity and return the resulting value:
        Caa.a = sqrt(Caa.a);
        return Caa;
        #elif SMAA_HLSL_4 == 1 || SMAA_DIRECTX9_LINEAR_BLEND == 0
        // We exploit bilinear filtering to mix current pixel with the chosen
        // neighbor:
        texcoord += offset * SMAA_PIXEL_SIZE;
        return SMAASampleLevelZero(colorTex, texcoord);
        #else
        // Fetch the opposite color and lerp by hand:
        float4 C = SMAASampleLevelZero(colorTex, texcoord);
        texcoord += sign(offset) * SMAA_PIXEL_SIZE;
        float4 Cop = SMAASampleLevelZero(colorTex, texcoord);
        float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
        return SMAALerp(C, Cop, s);
        #endif
    }
}

float4 SMAASampleLevelZeroResolve( SMAATexture2D currentTex,
                                    SMAATexture2D previousTex,
                                    float2 texcoord )
{
    return SMAALerp( SMAASampleLevelZero( currentTex, texcoord ), SMAASampleLevelZero( previousTex, texcoord ), .5 );
}

float4 SMAANeighborhoodBlendingTemporalPS(float2 texcoord,
                                  float4 offset[2],
                                  SMAATexture2D colorTex,
                                  SMAATexture2D previousTex,
                                  SMAATexture2D blendTex) {
    // Fetch the blending weights for current pixel:
    float4 a;
    a.xz = SMAASample(blendTex, texcoord).xz;
    a.y = SMAASample(blendTex, offset[1].zw).g;
    a.w = SMAASample(blendTex, offset[1].xy).a;

    // Is there any blending weight with a value greater than 0.0?
    SMAA_BRANCH
    if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5)
        return SMAASampleLevelZero(colorTex, texcoord);
    else {
        float4 color = float4(0.0, 0.0, 0.0, 0.0);

        // Up to 4 lines can be crossing a pixel (one through each edge). We
        // favor blending by choosing the line with the maximum weight for each
        // direction:
        float2 offset;
        offset.x = a.a > a.b? a.a : -a.b; // left vs. right
        offset.y = a.g > a.r? a.g : -a.r; // top vs. bottom

        // Then we go in the direction that has the maximum weight:
        if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical
            offset.y = 0.0;
        else
            offset.x = 0.0;

        #if SMAA_REPROJECTION == 1
        // Fetch the opposite color and lerp by hand:
        return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
        texcoord += sign(offset) * SMAA_PIXEL_SIZE;
        return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
        float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);

        // Unpack the velocity values:
        C.a *= C.a;
        Cop.a *= Cop.a;

        // Lerp the colors:
        float4 Caa = SMAALerp(C, Cop, s);

        // Unpack velocity and return the resulting value:
        Caa.a = sqrt(Caa.a);
        return Caa;
        #elif SMAA_HLSL_4 == 1 || SMAA_DIRECTX9_LINEAR_BLEND == 0
        // We exploit bilinear filtering to mix current pixel with the chosen
        // neighbor:
        texcoord += offset * SMAA_PIXEL_SIZE;
        return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
        #else
        // Fetch the opposite color and lerp by hand:
        float4 C = SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
        texcoord += sign(offset) * SMAA_PIXEL_SIZE;
        float4 Cop = SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
        float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
        return SMAALerp(C, Cop, s);
        #endif
    }
}

//-----------------------------------------------------------------------------
// Temporal Resolve Pixel Shader (Optional Pass)

float4 SMAAResolvePS(float2 texcoord,
                     SMAATexture2D colorTexCurr,
                     SMAATexture2D colorTexPrev
                     #if SMAA_REPROJECTION == 1
                     , SMAATexture2D velocityTex
                     #endif
                     ) {
    #if SMAA_REPROJECTION == 1
    // Velocity is calculated from previous to current position, so we need to
    // inverse it:
    float2 velocity = -SMAASample(velocityTex, texcoord).rg;

    // Fetch current pixel:
    float4 current = SMAASample(colorTexCurr, texcoord);

    // Reproject current coordinates and fetch previous pixel:
    float4 previous = SMAASample(colorTexPrev, texcoord + velocity);

    // Attenuate the previous pixel if the velocity is different:
    float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0;
    float weight = 0.5 * SMAASaturate(1.0 - (sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE));

    // Blend the pixels according to the calculated weight:
    return SMAALerp(current, previous, weight);
    #else
    // Just blend the pixels:
    float4 current = SMAASample(colorTexCurr, texcoord);
    float4 previous = SMAASample(colorTexPrev, texcoord);
    return SMAALerp(current, previous, 0.5);
    #endif
}

//-----------------------------------------------------------------------------
// Separate Multisamples Pixel Shader (Optional Pass)

#if SMAA_HLSL_4 == 1 || SMAA_HLSL_4_1 == 1
void SMAASeparatePS(float4 position : SV_POSITION,
                    float2 texcoord : TEXCOORD0,
                    out float4 target0,
                    out float4 target1,
                    uniform SMAATexture2DMS2 colorTexMS) {
    int2 pos = int2(position.xy);
    target0 = SMAALoad(colorTexMS, pos, 0);
    target1 = SMAALoad(colorTexMS, pos, 1);
}
#endif

//-----------------------------------------------------------------------------
#endif // SMAA_ONLY_COMPILE_VS == 0