summaryrefslogtreecommitdiffstats
path: root/UnknownVersion/include/EABase/int128.h
blob: 62e2bc574c8228062519bfb258ebdabc13185ed1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
/*-----------------------------------------------------------------------------
 * eaint128_t.h
 *
 * Copyright (c) Electronic Arts Inc. All rights reserved.
 *---------------------------------------------------------------------------*/


#ifndef INCLUDED_int128_h
#define INCLUDED_int128_h


///////////////////////////////////////////////////////////////////////////////////////////////////////
// EA_INT128_INTRINSIC_AVAILABLE
//
#if (EA_COMPILER_INTMAX_SIZE >= 16) && (defined(EA_COMPILER_GNUC) || defined(EA_COMPILER_CLANG))
// __int128_t/__uint128_t is supported
#define EA_INT128_INTRINSIC_AVAILABLE 1
#else
#define EA_INT128_INTRINSIC_AVAILABLE 0
#endif

///////////////////////////////////////////////////////////////////////////////////////////////////////
// EA_INT128_ALIGNAS
//
#if EA_INT128_INTRINSIC_AVAILABLE && !defined(EA_COMPILER_NO_ALIGNAS)
#define EA_INT128_ALIGNAS alignas(unsigned __int128)
#else
#define EA_INT128_ALIGNAS
#endif


///////////////////////////////////////////////////////////////////////////////////////////////////////
// EA_HAVE_INT128
//
// Indicates that EABase implements 128-bit integer types
//
#define EA_HAVE_INT128 1


///////////////////////////////////////////////////////////////////////////////////////////////////////
// uint128_t_base
//
struct EA_INT128_ALIGNAS int128_t_base
{
    // Constructors / destructors
    int128_t_base() = default;
    int128_t_base(uint32_t nPart0, uint32_t nPart1, uint32_t nPart2, uint32_t nPart3);
    int128_t_base(uint64_t nPart0, uint64_t nPart1);
    int128_t_base(uint8_t value);
    int128_t_base(uint16_t value);
    int128_t_base(uint32_t value);
    int128_t_base(uint64_t value);
    int128_t_base(const int128_t_base& value) = default;

    // Assignment operator
    int128_t_base& operator=(const int128_t_base& value) = default;

    // Explicit operators to convert back to basic types
    EA_CONSTEXPR explicit operator bool() const;
    EA_CONSTEXPR explicit operator char() const;
    EA_CONSTEXPR explicit operator int() const;
    EA_CONSTEXPR explicit operator long() const;
    EA_CONSTEXPR explicit operator long long() const;
    EA_CONSTEXPR explicit operator short() const;
    EA_CONSTEXPR explicit operator signed char() const;
    EA_CONSTEXPR explicit operator unsigned char() const;
    EA_CONSTEXPR explicit operator unsigned int() const;
    EA_CONSTEXPR explicit operator unsigned long long() const;
    EA_CONSTEXPR explicit operator unsigned long() const;
    EA_CONSTEXPR explicit operator unsigned short() const;
#if EA_WCHAR_UNIQUE
    // EA_CONSTEXPR explicit operator char16_t() const;
    // EA_CONSTEXPR explicit operator char32_t() const;
    // EA_CONSTEXPR explicit operator wchar_t() const;
#endif
    EA_CONSTEXPR explicit operator float() const;
    EA_CONSTEXPR explicit operator double() const;
    EA_CONSTEXPR explicit operator long double() const;
#if EA_INT128_INTRINSIC_AVAILABLE
    EA_CONSTEXPR explicit operator __int128() const;
    EA_CONSTEXPR explicit operator unsigned __int128() const;
#endif

    // Math operators
    static void OperatorPlus (const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);
    static void OperatorMinus(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);
    static void OperatorMul  (const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);

    // Shift operators
    static void OperatorShiftRight(const int128_t_base& value, int nShift, int128_t_base& result);
    static void OperatorShiftLeft (const int128_t_base& value, int nShift, int128_t_base& result);

    // Unary arithmetic/logic operators
    bool operator!() const;

    // Logical operators
    static void OperatorXOR(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);
    static void OperatorOR (const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);
    static void OperatorAND(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result);

    bool     IsZero() const;
    void     SetZero();
    void     TwosComplement();
    void     InverseTwosComplement();

    int      GetBit(int nIndex) const;
    void     SetBit(int nIndex, int value);

protected:
    void DoubleToUint128(double value);

    EA_CONSTEXPR uint64_t Low() const
    {
        return mPart0;
    }

    EA_CONSTEXPR uint64_t High() const
    {
        return mPart1;
    }

protected:
#ifdef EA_SYSTEM_BIG_ENDIAN
    uint64_t mPart1;  // Most significant byte.
    uint64_t mPart0;  // Least significant byte.
#else
    uint64_t mPart0;  // Most significant byte.
    uint64_t mPart1;  // Least significant byte.
#endif
};

///////////////////////////////////////////////////////////////////////////////////////////////////////
// int128_t
//
// Implements signed 128 bit integer.
//
struct int128_t : public int128_t_base
{
    // Constructors / destructors
    using int128_t_base::int128_t_base;

    // Assignment operator
    using int128_t_base::operator=;

    // Unary arithmetic/logic operators
    int128_t  operator-() const;
    int128_t& operator++();
    int128_t& operator--();
    int128_t  operator++(int);
    int128_t  operator--(int);
    int128_t  operator~() const;
    int128_t  operator+() const;

    // Math operators
    int128_t  operator+ (const int128_t& other);
    int128_t  operator- (const int128_t& other);
    int128_t  operator* (const int128_t& other);
    int128_t  operator/ (const int128_t& other);
    int128_t  operator% (const int128_t& other);
    int128_t& operator+=(const int128_t& other);
    int128_t& operator-=(const int128_t& other);
    int128_t& operator*=(const int128_t& other);
    int128_t& operator/=(const int128_t& other);
    int128_t& operator%=(const int128_t& other);

    // Shift operators
    int128_t  operator>> (int nShift) const;
    int128_t  operator<< (int nShift) const;
    int128_t& operator>>=(int nShift);
    int128_t& operator<<=(int nShift);

    // Logical operators
    int128_t  operator^ (const int128_t& other) const;
    int128_t  operator| (const int128_t& other) const;
    int128_t  operator& (const int128_t& other) const;
    int128_t& operator^=(const int128_t& other);
    int128_t& operator|=(const int128_t& other);
    int128_t& operator&=(const int128_t& other);

    // Equality operators
    bool operator==(const int128_t& other) const;
    bool operator!=(const int128_t& other) const;
    bool operator> (const int128_t& other) const;
    bool operator>=(const int128_t& other) const;
    bool operator< (const int128_t& other) const;
    bool operator<=(const int128_t& other) const;

protected:
    int compare(const int128_t& other) const;
    void Negate();
    void Modulus(const int128_t& divisor, int128_t& quotient, int128_t& remainder) const;
    bool IsNegative() const;    // Returns true for value <  0
    bool IsPositive() const;    // Returns true for value >= 0
};


///////////////////////////////////////////////////////////////////////////////////////////////////////
// uint128_t
//
// Implements unsigned 128 bit integer.
//
struct uint128_t : public int128_t_base
{
    // Constructors / destructors
    using int128_t_base::int128_t_base;

    // Assignment operator
    using int128_t_base::operator=;

    // Unary arithmetic/logic operators
    uint128_t  operator-() const;
    uint128_t& operator++();
    uint128_t& operator--();
    uint128_t  operator++(int);
    uint128_t  operator--(int);
    uint128_t  operator~() const;
    uint128_t  operator+() const;

    // Math operators
    uint128_t  operator+ (const uint128_t& other);
    uint128_t  operator- (const uint128_t& other);
    uint128_t  operator* (const uint128_t& other);
    uint128_t  operator/ (const uint128_t& other);
    uint128_t  operator% (const uint128_t& other);
    uint128_t& operator+=(const uint128_t& other);
    uint128_t& operator-=(const uint128_t& other);
    uint128_t& operator*=(const uint128_t& other);
    uint128_t& operator/=(const uint128_t& other);
    uint128_t& operator%=(const uint128_t& other);

    // Shift operators
    uint128_t  operator>> (int nShift) const;
    uint128_t  operator<< (int nShift) const;
    uint128_t& operator>>=(int nShift);
    uint128_t& operator<<=(int nShift);

    // Logical operators
    uint128_t  operator^ (const uint128_t& other) const;
    uint128_t  operator| (const uint128_t& other) const;
    uint128_t  operator& (const uint128_t& other) const;
    uint128_t& operator^=(const uint128_t& other);
    uint128_t& operator|=(const uint128_t& other);
    uint128_t& operator&=(const uint128_t& other);

    // Equality operators
    bool operator==(const uint128_t& other) const;
    bool operator!=(const uint128_t& other) const;
    bool operator> (const uint128_t& other) const;
    bool operator>=(const uint128_t& other) const;
    bool operator< (const uint128_t& other) const;
    bool operator<=(const uint128_t& other) const;

protected:
    int  compare(const uint128_t& other) const;
    void Negate();
    void Modulus(const uint128_t& divisor, uint128_t& quotient, uint128_t& remainder) const;
    bool IsNegative() const;    // Returns true for value <  0
    bool IsPositive() const;    // Returns true for value >= 0
};



///////////////////////////////////////////////////////////////////////////////////////////////////////
// uint128_t_base implementation
///////////////////////////////////////////////////////////////////////////////////////////////////////
EA_CONSTEXPR inline int128_t_base::operator bool() const               { return mPart0 || mPart1; }
EA_CONSTEXPR inline int128_t_base::operator char() const               { return static_cast<char>(Low()); }
#if EA_WCHAR_UNIQUE
// EA_CONSTEXPR inline int128_t_base::operator char16_t() const           { return static_cast<char16_t>(Low()); }
// EA_CONSTEXPR inline int128_t_base::operator char32_t() const           { return static_cast<char32_t>(Low()); }
// EA_CONSTEXPR inline int128_t_base::operator wchar_t() const            { return static_cast<wchar_t>(Low()); }
#endif
EA_CONSTEXPR inline int128_t_base::operator int() const                { return static_cast<int>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator long() const               { return static_cast<long>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator long long() const          { return static_cast<long long>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator short() const              { return static_cast<short>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator signed char() const        { return static_cast<signed char>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned char() const      { return static_cast<unsigned char>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned int() const       { return static_cast<unsigned int>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned long long() const { return static_cast<unsigned long long>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned long() const	   { return static_cast<unsigned long>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned short() const     { return static_cast<unsigned short>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator float() const              { return static_cast<float>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator double() const             { return static_cast<double>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator long double() const        { return static_cast<long double>(Low()); }
#if EA_INT128_INTRINSIC_AVAILABLE
EA_CONSTEXPR inline int128_t_base::operator __int128() const           { return static_cast<__int128>(Low()); }
EA_CONSTEXPR inline int128_t_base::operator unsigned __int128() const  { return static_cast<unsigned __int128>(Low()); }
#endif

inline void int128_t_base::SetBit(int nIndex, int value)
{
    // EA_ASSERT((nIndex >= 0) && (nIndex < 128));

    const uint64_t nBitMask = ((uint64_t)1 << (nIndex % 64));

    if(nIndex < 64)
    {
        if(value)
            mPart0 = mPart0 |  nBitMask;
        else
            mPart0 = mPart0 & ~nBitMask;
    }
    else if(nIndex < 128)
    {
        if(value)
            mPart1 = mPart1 |  nBitMask;
        else
            mPart1 = mPart1 & ~nBitMask;
    }
}

inline int int128_t_base::GetBit(int nIndex) const
{
    // EA_ASSERT((nIndex >= 0) && (nIndex < 128));

    const uint64_t nBitMask = ((uint64_t)1 << (nIndex % 64));

    if(nIndex < 64)
        return ((mPart0 & nBitMask) ? 1 : 0);
    else if(nIndex < 128)
        return ((mPart1 & nBitMask) ? 1 : 0);
    return 0;
}

inline int128_t_base::int128_t_base(uint32_t nPart0, uint32_t nPart1, uint32_t nPart2, uint32_t nPart3)
{
    mPart1 = ((uint64_t)nPart3 << 32) + nPart2;
    mPart0 = ((uint64_t)nPart1 << 32) + nPart0;
}

inline int128_t_base::int128_t_base(uint64_t nPart0, uint64_t nPart1)
{
    mPart1 = nPart1;
    mPart0 = nPart0;
}

inline int128_t_base::int128_t_base(uint8_t value)
{
    mPart1 = 0;
    mPart0 = value;
}

inline int128_t_base::int128_t_base(uint16_t value)
{
    mPart1 = 0;
    mPart0 = value;
}

inline int128_t_base::int128_t_base(uint32_t value)
{
    mPart1 = 0;
    mPart0 = value;
}

inline int128_t_base::int128_t_base(uint64_t value)
{
    mPart1 = 0;
    mPart0 = value;
}

///////////////////////////////////////////////////////////////////////////////
// OperatorPlus
//
// Returns: (value1 + value2) into result.
// The output 'result' *is* allowed to point to the same memory as one of the inputs.
// To consider: Fix 'defect' of this function whereby it doesn't implement overflow wraparound.
//
inline void int128_t_base::OperatorPlus(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result)
{
    uint64_t t      = value1.mPart0 + value2.mPart0;
    uint64_t nCarry = (t < value1.mPart0) && (t < value2.mPart0);
    result.mPart0   = t;
    result.mPart1   = value1.mPart1 + value2.mPart1 + nCarry;
}

///////////////////////////////////////////////////////////////////////////////
// OperatorMinus
//
// Returns: (value1 - value2) into result.
// The output 'result' *is* allowed to point to the same memory as one of the inputs.
// To consider: Fix 'defect' of this function whereby it doesn't implement overflow wraparound.
//
inline void int128_t_base::OperatorMinus(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result)
{
    uint64_t t      = (value1.mPart0 - value2.mPart0);
    uint64_t nCarry = (value1.mPart0 < value2.mPart0) ? 1u : 0u;
    result.mPart0   = t;
    result.mPart1   = (value1.mPart1 - value2.mPart1) - nCarry;
}

///////////////////////////////////////////////////////////////////////////////
// OperatorMul
//
// 64 bit systems:
//    This is how it would be able to work if we could get a 128 bit result from
//    two 64 bit values. None of the 64 bit systems that we are currently working
//    with have C language support for multiplying two 64 bit numbers and retrieving
//    the 128 bit result. However, many 64 bit platforms have support at the asm
//    level for doing such a thing.
//                                                      Part 1            Part 0
//                                            0000000000000002  0000000000000001
//                                         x  0000000000000002  0000000000000001
//                                   -------------------------------------------
//                                          | 0000000000000002  0000000000000001
//                      +  0000000000000004 | 0000000000000002 (0000000000000000)
//     -------------------------------------------------------------------------
//
inline void int128_t_base::OperatorMul(const int128_t_base& a, const int128_t_base& b, int128_t_base& result)
{
    // To consider: Use compiler or OS-provided custom functionality here, such as
    //              Windows UnsignedMultiply128 and GCC's built-in int128_t.

#if defined(DISABLED_PLATFORM_WIN64)
    // To do: Implement x86-64 asm here.

#else
    // Else we are stuck doing something less efficient. In this case we
    // fall back to doing 32 bit multiplies as with 32 bit platforms.
    result       = (a.mPart0 & 0xffffffff) *  (b.mPart0 & 0xffffffff);
    int128_t v01 = (a.mPart0 & 0xffffffff) * ((b.mPart0 >> 32) & 0xffffffff);
    int128_t v02 = (a.mPart0 & 0xffffffff) *  (b.mPart1 & 0xffffffff);
    int128_t v03 = (a.mPart0 & 0xffffffff) * ((b.mPart1 >> 32) & 0xffffffff);

    int128_t v10 = ((a.mPart0 >> 32) & 0xffffffff) *  (b.mPart0 & 0xffffffff);
    int128_t v11 = ((a.mPart0 >> 32) & 0xffffffff) * ((b.mPart0 >> 32) & 0xffffffff);
    int128_t v12 = ((a.mPart0 >> 32) & 0xffffffff) *  (b.mPart1 & 0xffffffff);

    int128_t v20 = (a.mPart1 & 0xffffffff) *  (b.mPart0 & 0xffffffff);
    int128_t v21 = (a.mPart1 & 0xffffffff) * ((b.mPart0 >> 32) & 0xffffffff);

    int128_t v30 = ((a.mPart1 >> 32) & 0xffffffff) * (b.mPart0 & 0xffffffff);

    // Do row addition, shifting as needed.
    OperatorPlus(result, v01 << 32, result);
    OperatorPlus(result, v02 << 64, result);
    OperatorPlus(result, v03 << 96, result);

    OperatorPlus(result, v10 << 32, result);
    OperatorPlus(result, v11 << 64, result);
    OperatorPlus(result, v12 << 96, result);

    OperatorPlus(result, v20 << 64, result);
    OperatorPlus(result, v21 << 96, result);

    OperatorPlus(result, v30 << 96, result);
#endif
}

///////////////////////////////////////////////////////////////////////////////
// OperatorShiftRight
//
// Returns: value >> nShift into result
// The output 'result' may *not* be the same as one the input.
// With rightward shifts of negative numbers, shift in zero from the left side.
//
inline void int128_t_base::OperatorShiftRight(const int128_t_base& value, int nShift, int128_t_base& result)
{
    if(nShift >= 0)
    {
        if(nShift < 64)
        {   // 0 - 63
            result.mPart1 = (value.mPart1 >> nShift);

            if(nShift == 0)
                result.mPart0 = (value.mPart0 >> nShift);
            else
                result.mPart0 = (value.mPart0 >> nShift) | (value.mPart1 << (64 - nShift));
        }
        else
        {   // 64+
            result.mPart1 = 0;
            result.mPart0 = (value.mPart1 >> (nShift - 64));
        }
    }
    else // (nShift < 0)
        OperatorShiftLeft(value, -nShift, result);
}


///////////////////////////////////////////////////////////////////////////////
// OperatorShiftRight
//
// Returns: value << nShift into result
// The output 'result' may *not* be the same as one the input.
// With rightward shifts of negative numbers, shift in zero from the left side.
//
inline void int128_t_base::OperatorShiftLeft(const int128_t_base& value, int nShift, int128_t_base& result)
{
    if(nShift >= 0)
    {
        if(nShift < 64)
        {
            if(nShift) // We need to have a special case because CPUs convert a shift by 64 to a no-op.
            {
                // 1 - 63
                result.mPart0 = (value.mPart0 << nShift);
                result.mPart1 = (value.mPart1 << nShift) | (value.mPart0 >> (64 - nShift));
            }
            else
            {
                result.mPart0 = value.mPart0;
                result.mPart1 = value.mPart1;
            }
        }
        else
        {   // 64+
            result.mPart0 = 0;
            result.mPart1 = (value.mPart0 << (nShift - 64));
        }
    }
    else // (nShift < 0)
        OperatorShiftRight(value, -nShift, result);
}


inline bool int128_t_base::operator!() const
{
    return (mPart0 == 0) && (mPart1 == 0);
}


///////////////////////////////////////////////////////////////////////////////
// OperatorXOR
//
// Returns: value1 ^ value2 into result
// The output 'result' may be the same as one the input.
//
inline void int128_t_base::OperatorXOR(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result)
{
    result.mPart0 = (value1.mPart0 ^ value2.mPart0);
    result.mPart1 = (value1.mPart1 ^ value2.mPart1);
}


///////////////////////////////////////////////////////////////////////////////
// OperatorOR
//
// Returns: value1 | value2 into result
// The output 'result' may be the same as one the input.
//
inline void int128_t_base::OperatorOR(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result)
{
    result.mPart0 = (value1.mPart0 | value2.mPart0);
    result.mPart1 = (value1.mPart1 | value2.mPart1);
}


///////////////////////////////////////////////////////////////////////////////
// OperatorAND
//
// Returns: value1 & value2 into result
// The output 'result' may be the same as one the input.
//
inline void int128_t_base::OperatorAND(const int128_t_base& value1, const int128_t_base& value2, int128_t_base& result)
{
    result.mPart0 = (value1.mPart0 & value2.mPart0);
    result.mPart1 = (value1.mPart1 & value2.mPart1);
}


inline bool int128_t_base::IsZero() const
{
    return (mPart0 == 0) && // Check mPart0 first as this will likely yield faster execution.
            (mPart1 == 0);
}


inline void int128_t_base::SetZero()
{
    mPart1 = 0;
    mPart0 = 0;
}


inline void int128_t_base::TwosComplement()
{
    mPart1 = ~mPart1;
    mPart0 = ~mPart0;

    // What we want to do, but isn't available at this level:
    // operator++();
    // Alternative:
    int128_t_base one((uint32_t)1);
    OperatorPlus(*this, one, *this);
}


inline void int128_t_base::InverseTwosComplement()
{
    // What we want to do, but isn't available at this level:
    // operator--();
    // Alternative:
    int128_t_base one((uint32_t)1);
    OperatorMinus(*this, one, *this);

    mPart1 = ~mPart1;
    mPart0 = ~mPart0;
}


inline void int128_t_base::DoubleToUint128(double value)
{
    // Currently this function is limited to 64 bits of integer input.
    // We need to make a better version of this function. Perhaps we should implement
    // it via dissecting the IEEE floating point format (sign, exponent, matissa).
    // EA_ASSERT(fabs(value) < 18446744073709551616.0); // Assert that the input is <= 64 bits of integer.

    mPart1 = 0;
    mPart0 = (value >= 0 ? (uint64_t)value : (uint64_t)-value);
}





///////////////////////////////////////////////////////////////////////////////////////////////////////
// uint128_t implementation
///////////////////////////////////////////////////////////////////////////////////////////////////////

inline uint128_t uint128_t::operator^(const uint128_t& other) const
{
    uint128_t temp;
    uint128_t::OperatorXOR(*this, other, temp);
    return temp;
}

inline uint128_t uint128_t::operator|(const uint128_t& other) const
{
    uint128_t temp;
    uint128_t::OperatorOR(*this, other, temp);
    return temp;
}

inline uint128_t uint128_t::operator&(const uint128_t& other) const
{
    uint128_t temp;
    uint128_t::OperatorAND(*this, other, temp);
    return temp;
}

inline uint128_t& uint128_t::operator^=(const uint128_t& value)
{
    OperatorXOR(*this, value, *this);
    return *this;
}

inline uint128_t& uint128_t::operator|=(const uint128_t& value)
{
    OperatorOR(*this, value, *this);
    return *this;
}

inline uint128_t& uint128_t::operator&=(const uint128_t& value)
{
    OperatorAND(*this, value, *this);
    return *this;
}

// With rightward shifts of negative numbers, shift in zero from the left side.
inline uint128_t uint128_t::operator>>(int nShift) const
{
    uint128_t temp;
    OperatorShiftRight(*this, nShift, temp);
    return temp;
}

// With rightward shifts of negative numbers, shift in zero from the left side.
inline uint128_t uint128_t::operator<<(int nShift) const
{
    uint128_t temp;
    OperatorShiftLeft(*this, nShift, temp);
    return temp;
}

inline uint128_t& uint128_t::operator>>=(int nShift)
{
    uint128_t temp;
    OperatorShiftRight(*this, nShift, temp);
    *this = temp;
    return *this;
}

inline uint128_t& uint128_t::operator<<=(int nShift)
{
    uint128_t temp;
    OperatorShiftLeft(*this, nShift, temp);
    *this = temp;
    return *this;
}

inline uint128_t& uint128_t::operator+=(const uint128_t& value)
{
    OperatorPlus(*this, value, *this);
    return *this;
}

inline uint128_t& uint128_t::operator-=(const uint128_t& value)
{
    OperatorMinus(*this, value, *this);
    return *this;
}

inline uint128_t& uint128_t::operator*=(const uint128_t& value)
{
    *this = *this * value;
    return *this;
}

inline uint128_t& uint128_t::operator/=(const uint128_t& value)
{
    *this = *this / value;
    return *this;
}

inline uint128_t& uint128_t::operator%=(const uint128_t& value)
{
    *this = *this % value;
    return *this;
}

inline uint128_t uint128_t::operator+(const uint128_t& other)
{
    uint128_t temp;
    uint128_t::OperatorPlus(*this, other, temp);
    return temp;
}

inline uint128_t uint128_t::operator-(const uint128_t& other)
{
    uint128_t temp;
    uint128_t::OperatorMinus(*this, other, temp);
    return temp;
}

inline uint128_t uint128_t::operator*(const uint128_t& other)
{
    uint128_t returnValue;
    int128_t_base::OperatorMul(*this, other, returnValue);
    return returnValue;
}

inline uint128_t uint128_t::operator/(const uint128_t& other)
{
    uint128_t remainder;
    uint128_t quotient;
    this->Modulus(other, quotient, remainder);
    return quotient;
}

inline uint128_t uint128_t::operator%(const uint128_t& other)
{
    uint128_t remainder;
    uint128_t quotient;
    this->Modulus(other, quotient, remainder);
    return remainder;
}

inline uint128_t uint128_t::operator+() const
{
    return *this;
}

inline uint128_t uint128_t::operator~() const
{
    return uint128_t(~mPart0, ~mPart1);
}

inline uint128_t& uint128_t::operator--()
{
    int128_t_base one((uint32_t)1);
    OperatorMinus(*this, one, *this);
    return *this;
}

inline uint128_t uint128_t::operator--(int)
{
    uint128_t temp((uint32_t)1);
    OperatorMinus(*this, temp, temp);
    return temp;
}

inline uint128_t uint128_t::operator++(int)
{
    uint128_t prev = *this;
    uint128_t temp((uint32_t)1);
    OperatorPlus(*this, temp, *this);
    return prev;
}

inline uint128_t& uint128_t::operator++()
{
    int128_t_base one((uint32_t)1);
    OperatorPlus(*this, one, *this);
    return *this;
}

inline void uint128_t::Negate()
{
    TwosComplement();
}

inline uint128_t uint128_t::operator-() const
{
    uint128_t returnValue(*this);
    returnValue.Negate();
    return returnValue;
}

// This function forms the basis of all logical comparison functions.
// If value1 <  value2, the return value is -1.
// If value1 == value2, the return value is 0.
// If value1 >  value2, the return value is 1.
inline int uint128_t::compare(const uint128_t& other) const
{
    // Compare individual parts. At this point, the two numbers have the same sign.
    if(mPart1 == other.mPart1)
    {
        if(mPart0 == other.mPart0)
            return 0;
        else if(mPart0 > other.mPart0)
            return 1;
        // return -1; //Just fall through to the end.
    }
    else if(mPart1 > other.mPart1)
        return 1;
    return -1;
}

EA_DISABLE_VC_WARNING(4723) // warning C4723: potential divide by 0
inline void uint128_t::Modulus(const uint128_t& divisor, uint128_t& quotient, uint128_t& remainder) const
{
    uint128_t tempDividend(*this);
    uint128_t tempDivisor(divisor);

    if(tempDivisor.IsZero())
    {
        // Force a divide by zero exception.
        // We know that tempDivisor.mPart0 is zero.
        quotient.mPart0 /= tempDivisor.mPart0;
    }
    else if(tempDividend.IsZero())
    {
        quotient  = uint128_t((uint32_t)0);
        remainder = uint128_t((uint32_t)0);
    }
    else
    {
        remainder.SetZero();

        for(int i(0); i < 128; i++)
        {
            remainder += (uint32_t)tempDividend.GetBit(127 - i);
            const bool bBit(remainder >= tempDivisor);
            quotient.SetBit(127 - i, bBit);

            if(bBit)
                remainder -= tempDivisor;

            if((i != 127) && !remainder.IsZero())
                remainder <<= 1;
        }
    }
}
EA_RESTORE_VC_WARNING()

inline bool uint128_t::operator==(const uint128_t& other) const
{
    return (mPart0 == other.mPart0) && // Check mPart0 first as this will likely yield faster execution.
            (mPart1 == other.mPart1);
}

inline bool uint128_t::operator< (const uint128_t& other) const { return (compare(other) < 0); }
inline bool uint128_t::operator!=(const uint128_t& other) const { return !(*this == other); }
inline bool uint128_t::operator> (const uint128_t& other) const { return other < *this; }
inline bool uint128_t::operator>=(const uint128_t& other) const { return !(*this < other); }
inline bool uint128_t::operator<=(const uint128_t& other) const { return !(other < *this); }

inline bool uint128_t::IsNegative() const
{   // True if value < 0
    return false;
}

inline bool uint128_t::IsPositive() const
{
    // True of value >= 0
    return true;
}






///////////////////////////////////////////////////////////////////////////////////////////////////////
// int128_t implementation
///////////////////////////////////////////////////////////////////////////////////////////////////////

inline void int128_t::Negate()
{
    if (IsPositive())
        TwosComplement();
    else
        InverseTwosComplement();
}

inline int128_t int128_t::operator-() const
{
    int128_t returnValue(*this);
    returnValue.Negate();
    return returnValue;
}

inline int128_t& int128_t::operator++()
{
    int128_t_base one((uint32_t)1);
    OperatorPlus(*this, one, *this);
    return *this;
}

inline int128_t& int128_t::operator--()
{
    int128_t_base one((uint32_t)1);
    OperatorMinus(*this, one, *this);
    return *this;
}

inline int128_t int128_t::operator++(int)
{
    int128_t prev = *this;
    int128_t temp((uint32_t)1);
    OperatorPlus(*this, temp, *this);
    return prev;
}

inline int128_t int128_t::operator--(int)
{
    int128_t temp((uint32_t)1);
    OperatorMinus(*this, temp, temp);
    return temp;
}

inline int128_t int128_t::operator+() const
{
    return *this;
}

inline int128_t int128_t::operator~() const
{
    return int128_t(~mPart0, ~mPart1);
}

inline int128_t int128_t::operator+(const int128_t& other)
{
    int128_t temp;
    int128_t::OperatorPlus(*this, other, temp);
    return temp;
}

inline int128_t int128_t::operator-(const int128_t& other)
{
    int128_t temp;
    int128_t::OperatorMinus(*this, other, temp);
    return temp;
}

// This function forms the basis of all logical comparison functions.
// If value1 <  value2, the return value is -1.
// If value1 == value2, the return value is 0.
// If value1 >  value2, the return value is 1.
inline int int128_t::compare(const int128_t& other) const
{
    // Cache some values. Positive means >= 0. Negative means < 0 and thus means '!positive'.
    const bool bValue1IsPositive(      IsPositive());
    const bool bValue2IsPositive(other.IsPositive());

    // Do positive/negative tests.
    if(bValue1IsPositive != bValue2IsPositive)
        return bValue1IsPositive ? 1 : -1;

    // Compare individual parts. At this point, the two numbers have the same sign.
    if(mPart1 == other.mPart1)
    {
        if(mPart0 == other.mPart0)
            return 0;
        else if(mPart0 > other.mPart0)
            return 1;
        // return -1; //Just fall through to the end.
    }
    else if(mPart1 > other.mPart1)
        return 1;
    return -1;
}

inline bool int128_t::operator==(const int128_t& other) const
{
    return (mPart0 == other.mPart0) && // Check mPart0 first as this will likely yield faster execution.
            (mPart1 == other.mPart1);
}

inline bool int128_t::operator!=(const int128_t& other) const
{
    return (mPart0 != other.mPart0) ||  // Check mPart0 first as this will likely yield faster execution.
            (mPart1 != other.mPart1);
}

inline bool int128_t::operator>(const int128_t& other) const
{
    return (compare(other) > 0);
}

inline bool int128_t::operator>=(const int128_t& other) const
{
    return (compare(other) >= 0);
}

inline bool int128_t::operator<(const int128_t& other) const
{
    return (compare(other) < 0);
}

inline bool int128_t::operator<=(const int128_t& other) const
{
    return (compare(other) <= 0);
}

inline bool int128_t::IsNegative() const
{   // True if value < 0
    return ((mPart1 & UINT64_C(0x8000000000000000)) != 0);
}

inline bool int128_t::IsPositive() const
{   // True of value >= 0
    return ((mPart1 & UINT64_C(0x8000000000000000)) == 0);
}

inline int128_t int128_t::operator*(const int128_t& other)
{
    int128_t a(*this);
    int128_t b(other);
    int128_t returnValue;

    // Correctly handle negative values
    bool bANegative(false);
    bool bBNegative(false);

    if(a.IsNegative())
    {
        bANegative = true;
        a.Negate();
    }

    if(b.IsNegative())
    {
        bBNegative = true;
        b.Negate();
    }

    int128_t_base::OperatorMul(a, b, returnValue);

    // Do negation as needed.
    if(bANegative != bBNegative)
        returnValue.Negate();

    return returnValue;
}

inline int128_t int128_t::operator/(const int128_t& other)
{
    int128_t remainder;
    int128_t quotient;
    this->Modulus(other, quotient, remainder);
    return quotient;
}

inline int128_t int128_t::operator<<(int nShift) const
{
    int128_t temp;
    OperatorShiftLeft(*this, nShift, temp);
    return temp;
}

inline int128_t& int128_t::operator+=(const int128_t& value)
{
    OperatorPlus(*this, value, *this);
    return *this;
}

inline int128_t& int128_t::operator-=(const int128_t& value)
{
    OperatorMinus(*this, value, *this);
    return *this;
}

inline int128_t& int128_t::operator<<=(int nShift)
{
    int128_t temp;
    OperatorShiftLeft(*this, nShift, temp);
    *this = temp;
    return *this;
}

inline int128_t& int128_t::operator*=(const int128_t& value)
{
    *this = *this * value;
    return *this;
}

inline int128_t& int128_t::operator%=(const int128_t& value)
{
    *this = *this % value;
    return *this;
}

inline int128_t int128_t::operator%(const int128_t& other)
{
    int128_t remainder;
    int128_t quotient;
    this->Modulus(other, quotient, remainder);
    return remainder;
}

inline int128_t& int128_t::operator/=(const int128_t& value)
{
    *this = *this / value;
    return *this;
}

// With rightward shifts of negative numbers, shift in zero from the left side.
inline int128_t int128_t::operator>>(int nShift) const
{
    int128_t temp;
    OperatorShiftRight(*this, nShift, temp);
    return temp;
}

inline int128_t& int128_t::operator>>=(int nShift)
{
    int128_t temp;
    OperatorShiftRight(*this, nShift, temp);
    *this = temp;
    return *this;
}

inline int128_t int128_t::operator^(const int128_t& other) const
{
    int128_t temp;
    int128_t::OperatorXOR(*this, other, temp);
    return temp;
}

inline int128_t int128_t::operator|(const int128_t& other) const
{
    int128_t temp;
    int128_t::OperatorOR(*this, other, temp);
    return temp;
}


inline int128_t int128_t::operator&(const int128_t& other) const
{
    int128_t temp;
    int128_t::OperatorAND(*this, other, temp);
    return temp;
}

inline int128_t& int128_t::operator^=(const int128_t& value)
{
    OperatorXOR(*this, value, *this);
    return *this;
}

inline int128_t& int128_t::operator|=(const int128_t& value)
{
    OperatorOR(*this, value, *this);
    return *this;
}

inline int128_t& int128_t::operator&=(const int128_t& value)
{
    OperatorAND(*this, value, *this);
    return *this;
}

EA_DISABLE_VC_WARNING(4723) // warning C4723: potential divide by 0
inline void int128_t::Modulus(const int128_t& divisor, int128_t& quotient, int128_t& remainder) const
{
    int128_t tempDividend(*this);
    int128_t tempDivisor(divisor);

    bool bDividendNegative = false;
    bool bDivisorNegative = false;

    if(tempDividend.IsNegative())
    {
        bDividendNegative = true;
        tempDividend.Negate();
    }
    if(tempDivisor.IsNegative())
    {
        bDivisorNegative = true;
        tempDivisor.Negate();
    }

    // Handle the special cases
    if(tempDivisor.IsZero())
    {
        // Force a divide by zero exception.
        // We know that tempDivisor.mPart0 is zero.
        quotient.mPart0 /= tempDivisor.mPart0;
    }
    else if(tempDividend.IsZero())
    {
        quotient  = int128_t((uint32_t)0);
        remainder = int128_t((uint32_t)0);
    }
    else
    {
        remainder.SetZero();

        for(int i(0); i < 128; i++)
        {
            remainder += (uint32_t)tempDividend.GetBit(127 - i);
            const bool bBit(remainder >= tempDivisor);
            quotient.SetBit(127 - i, bBit);

            if(bBit)
                remainder -= tempDivisor;

            if((i != 127) && !remainder.IsZero())
                remainder <<= 1;
        }
    }

    if((bDividendNegative && !bDivisorNegative) || (!bDividendNegative && bDivisorNegative))
    {
        // Ensure the following formula applies for negative dividends
        // dividend = divisor * quotient + remainder
        quotient.Negate();
    }
}
EA_RESTORE_VC_WARNING()






///////////////////////////////////////////////////////////////////////////////////////////////////////
// INT128_C / UINT128_C
//
// The C99 language defines macros for portably defining constants of
// sized numeric types. For example, there might be:
//     #define UINT64_C(x) x##ULL
// Since our int128 data type is not a built-in type, we can't define a
// UINT128_C macro as something that pastes ULLL at the end of the digits.
// Instead we define it to create a temporary that is constructed from a
// string of the digits. This will work in most cases that suffix pasting
// would work.
//
/* EA_CONSTEXPR */ inline uint128_t UINT128_C(uint64_t nPart1, uint64_t nPart0) { return uint128_t(nPart0, nPart1); }
/* EA_CONSTEXPR */ inline int128_t INT128_C(int64_t nPart1, int64_t nPart0) { return int128_t(static_cast<uint64_t>(nPart0), static_cast<uint64_t>(nPart1)); }




#endif // INCLUDED_int128_h