summaryrefslogtreecommitdiffstats
path: root/src/Runtime/ogl-runtime/res/effectlib/screenSpaceAO.glsllib
blob: 54204a1f2f701a0c3057ffd1aa742a67ea98eed4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/****************************************************************************
**
** Copyright (C) 2014 NVIDIA Corporation.
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt 3D Studio.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef SCREEN_SPACE_AO_GLSLLIB
#define SCREEN_SPACE_AO_GLSLLIB 1

#include "depthpass.glsllib"


float hashRot(vec2 pos)
{
    // Basically an odd-even hash.
    float px = 2.0 * fract(floor(pos.x) * 0.5);
    float py = fract(floor(pos.y) * 0.5);

    return px + py;
}

vec3 quatRotate( vec4 q, vec3 v )
{
    return v + 2.0 * cross( cross( v, q.xyz ) + q.w * v, q.xyz );
}

vec3 getViewSpacePos( sampler2D depthSampler, vec2 camProps, vec2 UV, vec4 UvToEye )
{
    float sampleDepth = getDepthValue( texture(depthSampler, UV), camProps );
    sampleDepth = depthValueToLinearDistance( sampleDepth, camProps );

    vec2 scaledUV = (UV * UvToEye.xy) + UvToEye.zw;
    return vec3(scaledUV * sampleDepth, sampleDepth);
}

vec2 computeDir( vec2 baseDir, int v )
{
    float ang = 3.1415926535 * hashRot( gl_FragCoord.xy ) + float(v - 1);
    vec2 vX = vec2(cos(ang), sin(ang));
    vec2 vY = vec2(-sin(ang), cos(ang));

    return vec2( dot(baseDir, vX), dot(baseDir, vY) );
}

vec2 offsetDir( vec2 baseDir, int v )
{
    float ang = float(v - 1);
    vec2 vX = vec2(cos(ang), sin(ang));
    vec2 vY = vec2(-sin(ang), cos(ang));

    return vec2( dot(baseDir, vX), dot(baseDir, vY) );
}

float SSambientOcclusion(sampler2D depthSampler, vec3 viewNorm, vec4 aoParams, vec4 aoParams2, vec2 camProps, vec4 aoScreen, vec4 UvToEye)
{
    float ret = 0.0;

    vec2 centerUV = gl_FragCoord.xy * aoScreen.zw;
    vec3 viewPos = getViewSpacePos( depthSampler, camProps, centerUV, UvToEye );
    viewPos += viewNorm * aoParams.w;

    float screenRadius = aoParams.y * aoScreen.y / viewPos.z;
    if (screenRadius < 1.0) { return 1.0; }

    vec3 kernel[9];

    // The X and Y are the 2d direction, while the Z is the height of the sphere at that point.
    // In essence, it normalizes the 3d vector, but we're really interested in the 2D offset.
    kernel[0] = vec3(-0.1376476, 0.2842022, 0.948832);
    kernel[1] = vec3(-0.626618, 0.4594115, 0.629516);
    kernel[2] = vec3(-0.8903138, -0.05865424, 0.451554);
    kernel[3] = vec3(0.2871419, 0.8511679, 0.439389);
    kernel[4] = vec3(-0.1525251, -0.3870117, 0.909372);
    kernel[5] = vec3(0.6978705, -0.2176773, 0.682344);
    kernel[6] = vec3(0.7343006, 0.3774331, 0.5642);
    kernel[7] = vec3(0.1408805, -0.88915, 0.4353);
    kernel[8] = vec3(-0.6642616, -0.543601, 0.5130);

    int radLevels = int(floor(aoParams2.x));
    float radStep = 1.0 / aoParams2.x;

    for (int j = 1; j <= radLevels; ++j)
    {
      for (int i = 0; i < 9; ++i)
      {
        float curRange = aoParams.y * radStep * float(j);
        float curRadius = curRange * kernel[i].z;

        vec3 smpDir;
        smpDir.xy = computeDir(kernel[i].xy, j) * aoParams2.y + (1.0 - aoParams2.y) * offsetDir(kernel[i].xy, j);
        smpDir.z = kernel[i].z;
        smpDir *= curRange;

        vec2 smpUV = centerUV.xy + smpDir.xy * aoScreen.zw;

        // First method is based on Horizon-Based AO
        vec3 samplePos = getViewSpacePos( depthSampler, camProps, smpUV, UvToEye );
        vec3 smpVec = samplePos - viewPos;

        float lenRad = dot(smpVec, smpVec);
        smpVec = normalize(smpVec);
        float lenDot = dot(smpVec, viewNorm);

        lenRad /= aoParams.y*aoParams.y;
        float falloff = smoothstep(8.0, 0.0, (lenRad - 1.0) * 0.125);
        float occl = 1.0 - clamp(lenDot * falloff, 0.0, 1.0);

        ret += occl * occl;
      }
    }

    ret = (ret) / (9.0 * float(radLevels));

    // Blend between soft and hard based on softness param
    // NOTE : the 0.72974 is actually an gamma-inverted 0.5 (assuming gamma 2.2)
    // Would not need this if we linearized color instead.
    float hardCut = (1.0 - aoParams.z) * 0.72974;
    ret = smoothstep(0.0, 1.0, (ret - hardCut) / (1.0 - hardCut));

    // Blend between full and no occlusion based on strength param
    ret = aoParams.x * ret + (1.0 - aoParams.x);

    return ret;
}

#endif