summaryrefslogtreecommitdiffstats
path: root/src/Runtime/res/effectlib/screenSpaceDO.glsllib
blob: 2ccc69fc7a9081b066d0f8eb803e6a2bd3221558 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/****************************************************************************
**
** Copyright (C) 2014 NVIDIA Corporation.
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt 3D Studio.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef SCREEN_SPACE_DO_GLSLLIB
#define SCREEN_SPACE_DO_GLSLLIB 1

#include "depthpass.glsllib"

vec3 getViewSpacePos( sampler2D depthSampler, vec2 camProps, vec2 UV, vec4 UvToEye )
{
    float sampleDepth = getDepthValue( texture(depthSampler, UV), camProps );
    sampleDepth = depthValueToLinearDistance( sampleDepth, camProps );

    vec2 scaledUV = (UV * UvToEye.xy) + UvToEye.zw;
    return vec3(scaledUV * sampleDepth, sampleDepth);
}

float shadowOcclusion(sampler2D depthSampler, vec3 lightDir, vec3 worldPos, mat4 viewMat, mat4 viewProj, vec4 shadowParams, vec2 camProps, vec4 aoScreen, vec4 UvToEye)
{
    vec3 viewPos = getViewSpacePos( depthSampler, camProps, ( gl_FragCoord.xy * aoScreen.zw ), UvToEye );
    float depth = viewPos.z;

    // Get the screen-space UV
    vec2 centerUV = gl_FragCoord.xy * aoScreen.zw;

    float screenDist = shadowParams.y * 3.1415926535 * aoScreen.y / viewPos.z;
    if (screenDist < 1.0) { return 1.0; }

    vec3 viewL = normalize( (viewMat * vec4(lightDir, 0)).xyz );

    float steps = min( screenDist, 20.0 );
    int maxCt = int(steps);
    float step = 3.1415926535 * shadowParams.y / float(maxCt);
    float ret = float(maxCt);

    for( int i = 0; i < maxCt; ++i )
    {
        vec3 ray = lightDir * step * float(i);
        vec3 samplePos = worldPos - ray;

        vec4 smpUV = viewProj * vec4(samplePos, 1.0);
        smpUV /= smpUV.w;
        smpUV.xy = (smpUV.xy + 1.0) * 0.5;

        vec3 testPos = getViewSpacePos( depthSampler, camProps, smpUV.xy, UvToEye );
        testPos.z += shadowParams.w;
        vec3 testVec = normalize(viewPos - testPos);
        testVec -= viewL;
        float isBehind = clamp( testVec.z, 0.0, 1.0 );
    float diff = (testPos.z - depth) / shadowParams.y;
        ret -= isBehind * (1.0 / (1.0 + diff * diff));
    }

    ret /= float(maxCt);    // divide by number of samples;
    // Blend between soft and hard based on softness param
    // NOTE : the 0.72974 is actually an gamma-inverted 0.5 (assuming gamma 2.2)
    // Would not need this if we linearized color instead.
    float hardCut = (ret <= 0.72974) ? 0.0 : 1.0;
    ret = shadowParams.z * ret + (1.0 - shadowParams.z) * hardCut;

    // Blend between full and no occlusion based on strength param
    ret = shadowParams.x * ret + (1.0 - shadowParams.x);

    return ret;
}

// For reference
/*
float glossyOcclusionBasis(sampler2D depthSampler, mat3 tanFrame, vec3 worldPos, mat4 viewProj, vec3 viewDir, vec4 shadowParams, vec2 camProps, float roughness)
{
    float ret = 16.0;

    float kernel[16];
    kernel[0] = 0.5; kernel[1] = 0.25;
    kernel[2] = 0.75; kernel[3] = 0.125;
    kernel[4] = 0.625; kernel[5] = 0.375;
    kernel[6] = 0.875; kernel[7] = 0.0625;
    kernel[8] = 0.5625; kernel[9] = 0.3125;
    kernel[10] = 0.8125; kernel[11] = 0.1875;
    kernel[12] = 0.6875; kernel[13] = 0.4375;
    kernel[14] = 0.9375; kernel[15] = 0.03125;

    float rough = clamp(roughness, 0.0001, 1.0);
    float normFac = 1.0 / (rough);

    float phiShift = hashRot( gl_FragCoord.xy );
    ivec2 iCoords = ivec2( gl_FragCoord.xy );
    float depth = getDepthValue( texelFetch(depthSampler, iCoords, 0) );
    depth = depthValueToLinearDistance( depth, camProps );

    for( int i = 0; i < 16; ++i )
    {
        vec3 localDir;
        float phi = 6.28318530718 * (kernel[i] + phiShift);
        float cosTheta = sqrt( float(i+1) / 33.0);
        localDir.z = sqrt(1.0 - cosTheta*cosTheta) * normFac;
        localDir.x = cos(phi) * cosTheta;
        localDir.y = sin(phi) * cosTheta;

        localDir = normalize(localDir);

        vec3 halfDir = tanFrame[0]*localDir.x + tanFrame[1]*localDir.y + tanFrame[2]*localDir.z;
        vec3 ray = reflect( -viewDir, halfDir ) * shadowParams.x;

        vec4 samplePos = vec4( worldPos + ray, 1.0 );

        vec4 sampleProj = viewProj * samplePos;
        sampleProj /= sampleProj.w;
        sampleProj.xy = (sampleProj.xy + 1.0) * 0.5;
        float sampleDepth = getDepthValue( texture(depthSampler, sampleProj.xy) );

        sampleDepth = depthValueToLinearDistance( sampleDepth, camProps );

        // Occlusion is applied based on a Cauchy distribution filter
        // But with a "dead zone" for the very close samples. By subtracting it from 16,
        // which represents no occlusion (16/16 = 1), we let nearby occluders have a
        // lot of effect, but far away occluders do not.  Furthermore, the "dead zone"
        // in the filter means that the extremely near (which we assume to be part of the
        // same surface) are also excluded to try and limit self-occlusion.
        float occlDist = 4.0 * max(depth - sampleDepth - shadowParams.y, 0.0) / shadowParams.x;
        float occlFactor = 1.0 / ( 1.0 + occlDist*occlDist*0.04 );
        occlFactor -= 1.0 / ( 1.0 + occlDist*occlDist*4.0 );
    ret -= min(2.0 * occlFactor, 1.0);
    }

    ret /= 16.0;        // divide by number of samples;
    return ret;
}
*/

#endif