summaryrefslogtreecommitdiffstats
path: root/webapp/django/contrib/gis/maps/google/zoom.py
diff options
context:
space:
mode:
Diffstat (limited to 'webapp/django/contrib/gis/maps/google/zoom.py')
-rw-r--r--webapp/django/contrib/gis/maps/google/zoom.py161
1 files changed, 161 insertions, 0 deletions
diff --git a/webapp/django/contrib/gis/maps/google/zoom.py b/webapp/django/contrib/gis/maps/google/zoom.py
new file mode 100644
index 0000000000..abc3fbf9d5
--- /dev/null
+++ b/webapp/django/contrib/gis/maps/google/zoom.py
@@ -0,0 +1,161 @@
+from django.contrib.gis.geos import GEOSGeometry, LinearRing, Polygon, Point
+from django.contrib.gis.maps.google.gmap import GoogleMapException
+from math import pi, sin, cos, log, exp, atan
+
+# Constants used for degree to radian conversion, and vice-versa.
+DTOR = pi / 180.
+RTOD = 180. / pi
+
+class GoogleZoom(object):
+ """
+ GoogleZoom is a utility for performing operations related to the zoom
+ levels on Google Maps.
+
+ This class is inspired by the OpenStreetMap Mapnik tile generation routine
+ `generate_tiles.py`, and the article "How Big Is the World" (Hack #16) in
+ "Google Maps Hacks" by Rich Gibson and Schuyler Erle.
+
+ `generate_tiles.py` may be found at:
+ http://trac.openstreetmap.org/browser/applications/rendering/mapnik/generate_tiles.py
+
+ "Google Maps Hacks" may be found at http://safari.oreilly.com/0596101619
+ """
+
+ def __init__(self, num_zoom=19, tilesize=256):
+ "Initializes the Google Zoom object."
+ # Google's tilesize is 256x256, square tiles are assumed.
+ self._tilesize = tilesize
+
+ # The number of zoom levels
+ self._nzoom = num_zoom
+
+ # Initializing arrays to hold the parameters for each one of the
+ # zoom levels.
+ self._degpp = [] # Degrees per pixel
+ self._radpp = [] # Radians per pixel
+ self._npix = [] # 1/2 the number of pixels for a tile at the given zoom level
+
+ # Incrementing through the zoom levels and populating the parameter arrays.
+ z = tilesize # The number of pixels per zoom level.
+ for i in xrange(num_zoom):
+ # Getting the degrees and radians per pixel, and the 1/2 the number of
+ # for every zoom level.
+ self._degpp.append(z / 360.) # degrees per pixel
+ self._radpp.append(z / (2 * pi)) # radians per pixl
+ self._npix.append(z / 2) # number of pixels to center of tile
+
+ # Multiplying `z` by 2 for the next iteration.
+ z *= 2
+
+ def __len__(self):
+ "Returns the number of zoom levels."
+ return self._nzoom
+
+ def get_lon_lat(self, lonlat):
+ "Unpacks longitude, latitude from GEOS Points and 2-tuples."
+ if isinstance(lonlat, Point):
+ lon, lat = lonlat.coords
+ else:
+ lon, lat = lonlat
+ return lon, lat
+
+ def lonlat_to_pixel(self, lonlat, zoom):
+ "Converts a longitude, latitude coordinate pair for the given zoom level."
+ # Setting up, unpacking the longitude, latitude values and getting the
+ # number of pixels for the given zoom level.
+ lon, lat = self.get_lon_lat(lonlat)
+ npix = self._npix[zoom]
+
+ # Calculating the pixel x coordinate by multiplying the longitude value
+ # with with the number of degrees/pixel at the given zoom level.
+ px_x = round(npix + (lon * self._degpp[zoom]))
+
+ # Creating the factor, and ensuring that 1 or -1 is not passed in as the
+ # base to the logarithm. Here's why:
+ # if fac = -1, we'll get log(0) which is undefined;
+ # if fac = 1, our logarithm base will be divided by 0, also undefined.
+ fac = min(max(sin(DTOR * lat), -0.9999), 0.9999)
+
+ # Calculating the pixel y coordinate.
+ px_y = round(npix + (0.5 * log((1 + fac)/(1 - fac)) * (-1.0 * self._radpp[zoom])))
+
+ # Returning the pixel x, y to the caller of the function.
+ return (px_x, px_y)
+
+ def pixel_to_lonlat(self, px, zoom):
+ "Converts a pixel to a longitude, latitude pair at the given zoom level."
+ if len(px) != 2:
+ raise TypeError('Pixel should be a sequence of two elements.')
+
+ # Getting the number of pixels for the given zoom level.
+ npix = self._npix[zoom]
+
+ # Calculating the longitude value, using the degrees per pixel.
+ lon = (px[0] - npix) / self._degpp[zoom]
+
+ # Calculating the latitude value.
+ lat = RTOD * ( 2 * atan(exp((px[1] - npix)/ (-1.0 * self._radpp[zoom]))) - 0.5 * pi)
+
+ # Returning the longitude, latitude coordinate pair.
+ return (lon, lat)
+
+ def tile(self, lonlat, zoom):
+ """
+ Returns a Polygon corresponding to the region represented by a fictional
+ Google Tile for the given longitude/latitude pair and zoom level. This
+ tile is used to determine the size of a tile at the given point.
+ """
+ # The given lonlat is the center of the tile.
+ delta = self._tilesize / 2
+
+ # Getting the pixel coordinates corresponding to the
+ # the longitude/latitude.
+ px = self.lonlat_to_pixel(lonlat, zoom)
+
+ # Getting the lower-left and upper-right lat/lon coordinates
+ # for the bounding box of the tile.
+ ll = self.pixel_to_lonlat((px[0]-delta, px[1]-delta), zoom)
+ ur = self.pixel_to_lonlat((px[0]+delta, px[1]+delta), zoom)
+
+ # Constructing the Polygon, representing the tile and returning.
+ return Polygon(LinearRing(ll, (ll[0], ur[1]), ur, (ur[0], ll[1]), ll), srid=4326)
+
+ def get_zoom(self, geom):
+ "Returns the optimal Zoom level for the given geometry."
+ # Checking the input type.
+ if not isinstance(geom, GEOSGeometry) or geom.srid != 4326:
+ raise TypeError('get_zoom() expects a GEOS Geometry with an SRID of 4326.')
+
+ # Getting the envelope for the geometry, and its associated width, height
+ # and centroid.
+ env = geom.envelope
+ env_w, env_h = self.get_width_height(env.extent)
+ center = env.centroid
+
+ for z in xrange(self._nzoom):
+ # Getting the tile at the zoom level.
+ tile_w, tile_h = self.get_width_height(self.tile(center, z).extent)
+
+ # When we span more than one tile, this is an approximately good
+ # zoom level.
+ if (env_w > tile_w) or (env_h > tile_h):
+ if z == 0:
+ raise GoogleMapException('Geometry width and height should not exceed that of the Earth.')
+ return z-1
+
+ # Otherwise, we've zoomed in to the max.
+ return self._nzoom-1
+
+ def get_width_height(self, extent):
+ """
+ Returns the width and height for the given extent.
+ """
+ # Getting the lower-left, upper-left, and upper-right
+ # coordinates from the extent.
+ ll = Point(extent[:2])
+ ul = Point(extent[0], extent[3])
+ ur = Point(extent[2:])
+ # Calculating the width and height.
+ height = ll.distance(ul)
+ width = ul.distance(ur)
+ return width, height