summaryrefslogtreecommitdiffstats
path: root/webapp/django/contrib/gis/gdal/geometries.py
blob: ee0ec17559a702818b3763aae2e72cb0e9a0304f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
"""
 The OGRGeometry is a wrapper for using the OGR Geometry class
 (see http://www.gdal.org/ogr/classOGRGeometry.html).  OGRGeometry
 may be instantiated when reading geometries from OGR Data Sources
 (e.g. SHP files), or when given OGC WKT (a string).

 While the 'full' API is not present yet, the API is "pythonic" unlike
 the traditional and "next-generation" OGR Python bindings.  One major
 advantage OGR Geometries have over their GEOS counterparts is support
 for spatial reference systems and their transformation.

 Example:
  >>> from django.contrib.gis.gdal import OGRGeometry, OGRGeomType, SpatialReference
  >>> wkt1, wkt2 = 'POINT(-90 30)', 'POLYGON((0 0, 5 0, 5 5, 0 5)'
  >>> pnt = OGRGeometry(wkt1)
  >>> print pnt
  POINT (-90 30)
  >>> mpnt = OGRGeometry(OGRGeomType('MultiPoint'), SpatialReference('WGS84'))
  >>> mpnt.add(wkt1)
  >>> mpnt.add(wkt1)
  >>> print mpnt
  MULTIPOINT (-90 30,-90 30)
  >>> print mpnt.srs.name
  WGS 84
  >>> print mpnt.srs.proj
  +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
  >>> mpnt.transform_to(SpatialReference('NAD27'))
  >>> print mpnt.proj
  +proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs
  >>> print mpnt
  MULTIPOINT (-89.999930378602485 29.999797886557641,-89.999930378602485 29.999797886557641)
  
  The OGRGeomType class is to make it easy to specify an OGR geometry type:
  >>> from django.contrib.gis.gdal import OGRGeomType
  >>> gt1 = OGRGeomType(3) # Using an integer for the type
  >>> gt2 = OGRGeomType('Polygon') # Using a string
  >>> gt3 = OGRGeomType('POLYGON') # It's case-insensitive
  >>> print gt1 == 3, gt1 == 'Polygon' # Equivalence works w/non-OGRGeomType objects
  True
"""
# Python library requisites.
import re, sys
from binascii import a2b_hex
from ctypes import byref, string_at, c_char_p, c_double, c_ubyte, c_void_p
from types import UnicodeType

# Getting GDAL prerequisites
from django.contrib.gis.gdal.envelope import Envelope, OGREnvelope
from django.contrib.gis.gdal.error import OGRException, OGRIndexError, SRSException
from django.contrib.gis.gdal.geomtype import OGRGeomType
from django.contrib.gis.gdal.srs import SpatialReference, CoordTransform

# Getting the ctypes prototype functions that interface w/the GDAL C library.
from django.contrib.gis.gdal.prototypes.geom import *
from django.contrib.gis.gdal.prototypes.srs import clone_srs

# For more information, see the OGR C API source code:
#  http://www.gdal.org/ogr/ogr__api_8h.html
#
# The OGR_G_* routines are relevant here.

# Regular expressions for recognizing HEXEWKB and WKT.
hex_regex = re.compile(r'^[0-9A-F]+$', re.I)
wkt_regex = re.compile(r'^(?P<type>POINT|LINESTRING|LINEARRING|POLYGON|MULTIPOINT|MULTILINESTRING|MULTIPOLYGON|GEOMETRYCOLLECTION)[ACEGIMLONPSRUTY\d,\.\-\(\) ]+$', re.I)
json_regex = re.compile(r'^\{[\s\w,\-\.\"\'\:\[\]]+\}$')

#### OGRGeometry Class ####
class OGRGeometry(object):
    "Generally encapsulates an OGR geometry."

    def __init__(self, geom_input, srs=None):
        "Initializes Geometry on either WKT or an OGR pointer as input."

        self._ptr = c_void_p(None) # Initially NULL
        str_instance = isinstance(geom_input, basestring)

        # If HEX, unpack input to to a binary buffer.
        if str_instance and hex_regex.match(geom_input):
            geom_input = buffer(a2b_hex(geom_input.upper()))
            str_instance = False

        # Constructing the geometry, 
        if str_instance:
            # Checking if unicode
            if isinstance(geom_input, UnicodeType):
                # Encoding to ASCII, WKT or HEX doesn't need any more.
                geo_input = geo_input.encode('ascii')

            wkt_m = wkt_regex.match(geom_input)
            json_m = json_regex.match(geom_input)
            if wkt_m:
                if wkt_m.group('type').upper() == 'LINEARRING':
                    # OGR_G_CreateFromWkt doesn't work with LINEARRING WKT.
                    #  See http://trac.osgeo.org/gdal/ticket/1992.
                    g = create_geom(OGRGeomType(wkt_m.group('type')).num)
                    import_wkt(g, byref(c_char_p(geom_input)))
                else:
                    g = from_wkt(byref(c_char_p(geom_input)), None, byref(c_void_p()))
            elif json_m:
                if GEOJSON:
                    g = from_json(geom_input)
                else:
                    raise NotImplementedError('GeoJSON input only supported on GDAL 1.5+.')
            else:
                # Seeing if the input is a valid short-hand string
                # (e.g., 'Point', 'POLYGON').
                ogr_t = OGRGeomType(geom_input)
                g = create_geom(OGRGeomType(geom_input).num)
        elif isinstance(geom_input, buffer):
            # WKB was passed in
            g = from_wkb(str(geom_input), None, byref(c_void_p()), len(geom_input))
        elif isinstance(geom_input, OGRGeomType):
            # OGRGeomType was passed in, an empty geometry will be created.
            g = create_geom(geom_input.num)
        elif isinstance(geom_input, c_void_p):
            # OGR pointer (c_void_p) was the input.
            g = geom_input
        else:
            raise OGRException('Invalid input type for OGR Geometry construction: %s' % type(geom_input))

        # Now checking the Geometry pointer before finishing initialization
        # by setting the pointer for the object.
        if not g:
            raise OGRException('Cannot create OGR Geometry from input: %s' % str(geom_input))
        self._ptr = g

        # Assigning the SpatialReference object to the geometry, if valid.
        if bool(srs): self.srs = srs

        # Setting the class depending upon the OGR Geometry Type
        self.__class__ = GEO_CLASSES[self.geom_type.num]

    def __del__(self):
        "Deletes this Geometry."
        if self._ptr: destroy_geom(self._ptr)

    ### Geometry set-like operations ###
    # g = g1 | g2
    def __or__(self, other):
        "Returns the union of the two geometries."
        return self.union(other)

    # g = g1 & g2
    def __and__(self, other):
        "Returns the intersection of this Geometry and the other."
        return self.intersection(other)

    # g = g1 - g2
    def __sub__(self, other):
        "Return the difference this Geometry and the other."
        return self.difference(other)

    # g = g1 ^ g2
    def __xor__(self, other):
        "Return the symmetric difference of this Geometry and the other."
        return self.sym_difference(other)

    def __eq__(self, other):
        "Is this Geometry equal to the other?"
        return self.equals(other)

    def __ne__(self, other):
        "Tests for inequality."
        return not self.equals(other)

    def __str__(self):
        "WKT is used for the string representation."
        return self.wkt

    #### Geometry Properties ####
    @property
    def dimension(self):
        "Returns 0 for points, 1 for lines, and 2 for surfaces."
        return get_dims(self._ptr)

    @property
    def coord_dim(self):
        "Returns the coordinate dimension of the Geometry."
        return get_coord_dims(self._ptr)

    @property
    def geom_count(self):
        "The number of elements in this Geometry."
        return get_geom_count(self._ptr)

    @property
    def point_count(self):
        "Returns the number of Points in this Geometry."
        return get_point_count(self._ptr)

    @property
    def num_points(self):
        "Alias for `point_count` (same name method in GEOS API.)"
        return self.point_count

    @property
    def num_coords(self):
        "Alais for `point_count`."
        return self.point_count

    @property
    def geom_type(self):
        "Returns the Type for this Geometry."
        try:
            return OGRGeomType(get_geom_type(self._ptr))
        except OGRException:
            # VRT datasources return an invalid geometry type
            # number, but a valid name -- we'll try that instead.
            # See: http://trac.osgeo.org/gdal/ticket/2491
            return OGRGeomType(get_geom_name(self._ptr))

    @property
    def geom_name(self):
        "Returns the Name of this Geometry."
        return get_geom_name(self._ptr)

    @property
    def area(self):
        "Returns the area for a LinearRing, Polygon, or MultiPolygon; 0 otherwise."
        return get_area(self._ptr)

    @property
    def envelope(self):
        "Returns the envelope for this Geometry."
        # TODO: Fix Envelope() for Point geometries.
        return Envelope(get_envelope(self._ptr, byref(OGREnvelope())))

    @property
    def extent(self):
        "Returns the envelope as a 4-tuple, instead of as an Envelope object."
        return self.envelope.tuple

    #### SpatialReference-related Properties ####
    
    # The SRS property
    def get_srs(self):
        "Returns the Spatial Reference for this Geometry."
        try:
            srs_ptr = get_geom_srs(self._ptr)
            return SpatialReference(clone_srs(srs_ptr))
        except SRSException:
            return None

    def set_srs(self, srs):
        "Sets the SpatialReference for this geometry."
        if isinstance(srs, SpatialReference):
            srs_ptr = clone_srs(srs._ptr)
        elif isinstance(srs, (int, long, basestring)):
            sr = SpatialReference(srs)
            srs_ptr = clone_srs(sr._ptr)
        else:
            raise TypeError('Cannot assign spatial reference with object of type: %s' % type(srs))
        assign_srs(self._ptr, srs_ptr)

    srs = property(get_srs, set_srs)

    # The SRID property
    def get_srid(self):
        if self.srs: return self.srs.srid
        else: return None

    def set_srid(self, srid):
        if isinstance(srid, (int, long)):
            self.srs = srid
        else:
            raise TypeError('SRID must be set with an integer.')

    srid = property(get_srid, set_srid)

    #### Output Methods ####
    @property
    def geos(self):
        "Returns a GEOSGeometry object from this OGRGeometry."
        from django.contrib.gis.geos import GEOSGeometry
        return GEOSGeometry(self.wkb, self.srid)

    @property
    def gml(self):
        "Returns the GML representation of the Geometry."
        return to_gml(self._ptr)

    @property
    def hex(self):
        "Returns the hexadecimal representation of the WKB (a string)."
        return str(self.wkb).encode('hex').upper()
        #return b2a_hex(self.wkb).upper()

    @property
    def json(self):
        if GEOJSON: 
            return to_json(self._ptr)
        else:
            raise NotImplementedError('GeoJSON output only supported on GDAL 1.5+.')
    geojson = json

    @property
    def wkb_size(self):
        "Returns the size of the WKB buffer."
        return get_wkbsize(self._ptr)

    @property
    def wkb(self):
        "Returns the WKB representation of the Geometry."
        if sys.byteorder == 'little':
            byteorder = 1 # wkbNDR (from ogr_core.h)
        else:
            byteorder = 0 # wkbXDR
        sz = self.wkb_size
        # Creating the unsigned character buffer, and passing it in by reference.
        buf = (c_ubyte * sz)()
        wkb = to_wkb(self._ptr, byteorder, byref(buf))
        # Returning a buffer of the string at the pointer.
        return buffer(string_at(buf, sz))

    @property
    def wkt(self):
        "Returns the WKT representation of the Geometry."
        return to_wkt(self._ptr, byref(c_char_p()))
    
    #### Geometry Methods ####
    def clone(self):
        "Clones this OGR Geometry."
        return OGRGeometry(clone_geom(self._ptr), self.srs)

    def close_rings(self):
        """
        If there are any rings within this geometry that have not been
        closed, this routine will do so by adding the starting point at the
        end.
        """
        # Closing the open rings.
        geom_close_rings(self._ptr)

    def transform(self, coord_trans, clone=False):
        """
        Transforms this geometry to a different spatial reference system.
        May take a CoordTransform object, a SpatialReference object, string
        WKT or PROJ.4, and/or an integer SRID.  By default nothing is returned
        and the geometry is transformed in-place.  However, if the `clone`
        keyword is set, then a transformed clone of this geometry will be
        returned.
        """
        if clone:
            klone = self.clone()
            klone.transform(coord_trans)
            return klone
        if isinstance(coord_trans, CoordTransform):
            geom_transform(self._ptr, coord_trans._ptr)
        elif isinstance(coord_trans, SpatialReference):
            geom_transform_to(self._ptr, coord_trans._ptr)
        elif isinstance(coord_trans, (int, long, basestring)):
            sr = SpatialReference(coord_trans)
            geom_transform_to(self._ptr, sr._ptr)
        else:
            raise TypeError('Transform only accepts CoordTransform, SpatialReference, string, and integer objects.')

    def transform_to(self, srs):
        "For backwards-compatibility."
        self.transform(srs)

    #### Topology Methods ####
    def _topology(self, func, other):
        """A generalized function for topology operations, takes a GDAL function and
        the other geometry to perform the operation on."""
        if not isinstance(other, OGRGeometry):
            raise TypeError('Must use another OGRGeometry object for topology operations!')

        # Returning the output of the given function with the other geometry's
        # pointer.
        return func(self._ptr, other._ptr)

    def intersects(self, other):
        "Returns True if this geometry intersects with the other."
        return self._topology(ogr_intersects, other)
    
    def equals(self, other):
        "Returns True if this geometry is equivalent to the other."
        return self._topology(ogr_equals, other)

    def disjoint(self, other):
        "Returns True if this geometry and the other are spatially disjoint."
        return self._topology(ogr_disjoint, other)

    def touches(self, other):
        "Returns True if this geometry touches the other."
        return self._topology(ogr_touches, other)

    def crosses(self, other):
        "Returns True if this geometry crosses the other."
        return self._topology(ogr_crosses, other)

    def within(self, other):
        "Returns True if this geometry is within the other."
        return self._topology(ogr_within, other)

    def contains(self, other):
        "Returns True if this geometry contains the other."
        return self._topology(ogr_contains, other)

    def overlaps(self, other):
        "Returns True if this geometry overlaps the other."
        return self._topology(ogr_overlaps, other)

    #### Geometry-generation Methods ####
    def _geomgen(self, gen_func, other=None):
        "A helper routine for the OGR routines that generate geometries."
        if isinstance(other, OGRGeometry):
            return OGRGeometry(gen_func(self._ptr, other._ptr), self.srs)
        else:
            return OGRGeometry(gen_func(self._ptr), self.srs)

    @property
    def boundary(self):
        "Returns the boundary of this geometry."
        return self._geomgen(get_boundary)

    @property
    def convex_hull(self):
        """
        Returns the smallest convex Polygon that contains all the points in 
        this Geometry.
        """
        return self._geomgen(geom_convex_hull)

    def difference(self, other):
        """
        Returns a new geometry consisting of the region which is the difference
        of this geometry and the other.
        """
        return self._geomgen(geom_diff, other)

    def intersection(self, other):
        """
        Returns a new geometry consisting of the region of intersection of this
        geometry and the other.
        """
        return self._geomgen(geom_intersection, other)

    def sym_difference(self, other):
        """                                                                                                                                                
        Returns a new geometry which is the symmetric difference of this
        geometry and the other.
        """
        return self._geomgen(geom_sym_diff, other)

    def union(self, other):
        """
        Returns a new geometry consisting of the region which is the union of
        this geometry and the other.
        """
        return self._geomgen(geom_union, other)

# The subclasses for OGR Geometry.
class Point(OGRGeometry):

    @property
    def x(self):
        "Returns the X coordinate for this Point."
        return getx(self._ptr, 0)

    @property
    def y(self):
        "Returns the Y coordinate for this Point."
        return gety(self._ptr, 0)

    @property
    def z(self):
        "Returns the Z coordinate for this Point."
        if self.coord_dim == 3:
            return getz(self._ptr, 0)

    @property
    def tuple(self):
        "Returns the tuple of this point."
        if self.coord_dim == 2:
            return (self.x, self.y)
        elif self.coord_dim == 3:
            return (self.x, self.y, self.z)
    coords = tuple

class LineString(OGRGeometry):

    def __getitem__(self, index):
        "Returns the Point at the given index."
        if index >= 0 and index < self.point_count:
            x, y, z = c_double(), c_double(), c_double()
            get_point(self._ptr, index, byref(x), byref(y), byref(z))
            dim = self.coord_dim
            if dim == 1:
                return (x.value,)
            elif dim == 2:
                return (x.value, y.value)
            elif dim == 3:
                return (x.value, y.value, z.value)
        else:
            raise OGRIndexError('index out of range: %s' % str(index))

    def __iter__(self):
        "Iterates over each point in the LineString."
        for i in xrange(self.point_count):
            yield self[i]

    def __len__(self):
        "The length returns the number of points in the LineString."
        return self.point_count

    @property
    def tuple(self):
        "Returns the tuple representation of this LineString."
        return tuple([self[i] for i in xrange(len(self))])
    coords = tuple

    def _listarr(self, func):
        """
        Internal routine that returns a sequence (list) corresponding with
        the given function.
        """
        return [func(self._ptr, i) for i in xrange(len(self))]

    @property
    def x(self):
        "Returns the X coordinates in a list."
        return self._listarr(getx)

    @property
    def y(self):
        "Returns the Y coordinates in a list."
        return self._listarr(gety)
    
    @property
    def z(self):
        "Returns the Z coordinates in a list."
        if self.coord_dim == 3:
            return self._listarr(getz)

# LinearRings are used in Polygons.
class LinearRing(LineString): pass

class Polygon(OGRGeometry):

    def __len__(self):
        "The number of interior rings in this Polygon."
        return self.geom_count

    def __iter__(self):
        "Iterates through each ring in the Polygon."
        for i in xrange(self.geom_count):
            yield self[i]

    def __getitem__(self, index):
        "Gets the ring at the specified index."
        if index < 0 or index >= self.geom_count:
            raise OGRIndexError('index out of range: %s' % index)
        else:
            return OGRGeometry(clone_geom(get_geom_ref(self._ptr, index)), self.srs)

    # Polygon Properties
    @property
    def shell(self):
        "Returns the shell of this Polygon."
        return self[0] # First ring is the shell
    exterior_ring = shell

    @property
    def tuple(self):
        "Returns a tuple of LinearRing coordinate tuples."
        return tuple([self[i].tuple for i in xrange(self.geom_count)])
    coords = tuple

    @property
    def point_count(self):
        "The number of Points in this Polygon."
        # Summing up the number of points in each ring of the Polygon.
        return sum([self[i].point_count for i in xrange(self.geom_count)])

    @property
    def centroid(self):
        "Returns the centroid (a Point) of this Polygon."
        # The centroid is a Point, create a geometry for this.
        p = OGRGeometry(OGRGeomType('Point'))
        get_centroid(self._ptr, p._ptr)
        return p

# Geometry Collection base class.
class GeometryCollection(OGRGeometry):
    "The Geometry Collection class."

    def __getitem__(self, index):
        "Gets the Geometry at the specified index."
        if index < 0 or index >= self.geom_count:
            raise OGRIndexError('index out of range: %s' % index)
        else:
            return OGRGeometry(clone_geom(get_geom_ref(self._ptr, index)), self.srs)
        
    def __iter__(self):
        "Iterates over each Geometry."
        for i in xrange(self.geom_count):
            yield self[i]

    def __len__(self):
        "The number of geometries in this Geometry Collection."
        return self.geom_count

    def add(self, geom):
        "Add the geometry to this Geometry Collection."
        if isinstance(geom, OGRGeometry):
            if isinstance(geom, self.__class__):
                for g in geom: add_geom(self._ptr, g._ptr)
            else:
                add_geom(self._ptr, geom._ptr)
        elif isinstance(geom, basestring):
            tmp = OGRGeometry(geom)
            add_geom(self._ptr, tmp._ptr)
        else:
            raise OGRException('Must add an OGRGeometry.')

    @property
    def point_count(self):
        "The number of Points in this Geometry Collection."
        # Summing up the number of points in each geometry in this collection
        return sum([self[i].point_count for i in xrange(self.geom_count)])

    @property
    def tuple(self):
        "Returns a tuple representation of this Geometry Collection."
        return tuple([self[i].tuple for i in xrange(self.geom_count)])
    coords = tuple

# Multiple Geometry types.
class MultiPoint(GeometryCollection): pass
class MultiLineString(GeometryCollection): pass
class MultiPolygon(GeometryCollection): pass

# Class mapping dictionary (using the OGRwkbGeometryType as the key)
GEO_CLASSES = {1 : Point,
               2 : LineString,
               3 : Polygon,
               4 : MultiPoint,
               5 : MultiLineString,
               6 : MultiPolygon,
               7 : GeometryCollection,
               101: LinearRing, 
               }