aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp')
-rw-r--r--src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp350
1 files changed, 350 insertions, 0 deletions
diff --git a/src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp b/src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp
new file mode 100644
index 0000000000..99d8927663
--- /dev/null
+++ b/src/libs/3rdparty/botan/src/lib/pubkey/pubkey.cpp
@@ -0,0 +1,350 @@
+/*
+* (C) 1999-2010,2015,2018 Jack Lloyd
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+#include <botan/pubkey.h>
+#include <botan/der_enc.h>
+#include <botan/ber_dec.h>
+#include <botan/bigint.h>
+#include <botan/pk_ops.h>
+#include <botan/internal/ct_utils.h>
+#include <botan/rng.h>
+
+namespace Botan {
+
+secure_vector<uint8_t> PK_Decryptor::decrypt(const uint8_t in[], size_t length) const
+ {
+ uint8_t valid_mask = 0;
+
+ secure_vector<uint8_t> decoded = do_decrypt(valid_mask, in, length);
+
+ if(valid_mask == 0)
+ throw Decoding_Error("Invalid public key ciphertext, cannot decrypt");
+
+ return decoded;
+ }
+
+secure_vector<uint8_t>
+PK_Decryptor::decrypt_or_random(const uint8_t in[],
+ size_t length,
+ size_t expected_pt_len,
+ RandomNumberGenerator& rng,
+ const uint8_t required_content_bytes[],
+ const uint8_t required_content_offsets[],
+ size_t required_contents_length) const
+ {
+ const secure_vector<uint8_t> fake_pms = rng.random_vec(expected_pt_len);
+
+ uint8_t valid_mask = 0;
+ secure_vector<uint8_t> decoded = do_decrypt(valid_mask, in, length);
+
+ valid_mask &= CT::is_equal(decoded.size(), expected_pt_len);
+
+ decoded.resize(expected_pt_len);
+
+ for(size_t i = 0; i != required_contents_length; ++i)
+ {
+ /*
+ These values are chosen by the application and for TLS are constants,
+ so this early failure via assert is fine since we know 0,1 < 48
+
+ If there is a protocol that has content checks on the key where
+ the expected offsets are controllable by the attacker this could
+ still leak.
+
+ Alternately could always reduce the offset modulo the length?
+ */
+
+ const uint8_t exp = required_content_bytes[i];
+ const uint8_t off = required_content_offsets[i];
+
+ BOTAN_ASSERT(off < expected_pt_len, "Offset in range of plaintext");
+
+ valid_mask &= CT::is_equal(decoded[off], exp);
+ }
+
+ CT::conditional_copy_mem(valid_mask,
+ /*output*/decoded.data(),
+ /*from0*/decoded.data(),
+ /*from1*/fake_pms.data(),
+ expected_pt_len);
+
+ return decoded;
+ }
+
+secure_vector<uint8_t>
+PK_Decryptor::decrypt_or_random(const uint8_t in[],
+ size_t length,
+ size_t expected_pt_len,
+ RandomNumberGenerator& rng) const
+ {
+ return decrypt_or_random(in, length, expected_pt_len, rng,
+ nullptr, nullptr, 0);
+ }
+
+PK_Encryptor_EME::PK_Encryptor_EME(const Public_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& padding,
+ const std::string& provider)
+ {
+ m_op = key.create_encryption_op(rng, padding, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support encryption");
+ }
+
+PK_Encryptor_EME::~PK_Encryptor_EME() { /* for unique_ptr */ }
+
+std::vector<uint8_t>
+PK_Encryptor_EME::enc(const uint8_t in[], size_t length, RandomNumberGenerator& rng) const
+ {
+ return unlock(m_op->encrypt(in, length, rng));
+ }
+
+size_t PK_Encryptor_EME::maximum_input_size() const
+ {
+ return m_op->max_input_bits() / 8;
+ }
+
+PK_Decryptor_EME::PK_Decryptor_EME(const Private_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& padding,
+ const std::string& provider)
+ {
+ m_op = key.create_decryption_op(rng, padding, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support decryption");
+ }
+
+PK_Decryptor_EME::~PK_Decryptor_EME() { /* for unique_ptr */ }
+
+secure_vector<uint8_t> PK_Decryptor_EME::do_decrypt(uint8_t& valid_mask,
+ const uint8_t in[], size_t in_len) const
+ {
+ return m_op->decrypt(valid_mask, in, in_len);
+ }
+
+PK_KEM_Encryptor::PK_KEM_Encryptor(const Public_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& param,
+ const std::string& provider)
+ {
+ m_op = key.create_kem_encryption_op(rng, param, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM encryption");
+ }
+
+PK_KEM_Encryptor::~PK_KEM_Encryptor() { /* for unique_ptr */ }
+
+void PK_KEM_Encryptor::encrypt(secure_vector<uint8_t>& out_encapsulated_key,
+ secure_vector<uint8_t>& out_shared_key,
+ size_t desired_shared_key_len,
+ Botan::RandomNumberGenerator& rng,
+ const uint8_t salt[],
+ size_t salt_len)
+ {
+ m_op->kem_encrypt(out_encapsulated_key,
+ out_shared_key,
+ desired_shared_key_len,
+ rng,
+ salt,
+ salt_len);
+ }
+
+PK_KEM_Decryptor::PK_KEM_Decryptor(const Private_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& param,
+ const std::string& provider)
+ {
+ m_op = key.create_kem_decryption_op(rng, param, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM decryption");
+ }
+
+PK_KEM_Decryptor::~PK_KEM_Decryptor() { /* for unique_ptr */ }
+
+secure_vector<uint8_t> PK_KEM_Decryptor::decrypt(const uint8_t encap_key[],
+ size_t encap_key_len,
+ size_t desired_shared_key_len,
+ const uint8_t salt[],
+ size_t salt_len)
+ {
+ return m_op->kem_decrypt(encap_key, encap_key_len,
+ desired_shared_key_len,
+ salt, salt_len);
+ }
+
+PK_Key_Agreement::PK_Key_Agreement(const Private_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& kdf,
+ const std::string& provider)
+ {
+ m_op = key.create_key_agreement_op(rng, kdf, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support key agreement");
+ }
+
+PK_Key_Agreement::~PK_Key_Agreement() { /* for unique_ptr */ }
+
+PK_Key_Agreement& PK_Key_Agreement::operator=(PK_Key_Agreement&& other)
+ {
+ if(this != &other)
+ {
+ m_op = std::move(other.m_op);
+ }
+ return (*this);
+ }
+
+PK_Key_Agreement::PK_Key_Agreement(PK_Key_Agreement&& other) :
+ m_op(std::move(other.m_op))
+ {}
+
+SymmetricKey PK_Key_Agreement::derive_key(size_t key_len,
+ const uint8_t in[], size_t in_len,
+ const uint8_t salt[],
+ size_t salt_len) const
+ {
+ return m_op->agree(key_len, in, in_len, salt, salt_len);
+ }
+
+PK_Signer::PK_Signer(const Private_Key& key,
+ RandomNumberGenerator& rng,
+ const std::string& emsa,
+ Signature_Format format,
+ const std::string& provider)
+ {
+ m_op = key.create_signature_op(rng, emsa, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature generation");
+ m_sig_format = format;
+ m_parts = key.message_parts();
+ m_part_size = key.message_part_size();
+ }
+
+PK_Signer::~PK_Signer() { /* for unique_ptr */ }
+
+void PK_Signer::update(const uint8_t in[], size_t length)
+ {
+ m_op->update(in, length);
+ }
+
+namespace {
+
+std::vector<uint8_t> der_encode_signature(const std::vector<uint8_t>& sig,
+ size_t parts,
+ size_t part_size)
+ {
+ if(sig.size() % parts != 0 || sig.size() != parts * part_size)
+ throw Encoding_Error("Unexpected size for DER signature");
+
+ std::vector<BigInt> sig_parts(parts);
+ for(size_t i = 0; i != sig_parts.size(); ++i)
+ sig_parts[i].binary_decode(&sig[part_size*i], part_size);
+
+ std::vector<uint8_t> output;
+ DER_Encoder(output)
+ .start_cons(SEQUENCE)
+ .encode_list(sig_parts)
+ .end_cons();
+ return output;
+ }
+
+}
+
+std::vector<uint8_t> PK_Signer::signature(RandomNumberGenerator& rng)
+ {
+ const std::vector<uint8_t> sig = unlock(m_op->sign(rng));
+
+ if(m_sig_format == IEEE_1363)
+ {
+ return sig;
+ }
+ else if(m_sig_format == DER_SEQUENCE)
+ {
+ return der_encode_signature(sig, m_parts, m_part_size);
+ }
+ else
+ throw Internal_Error("PK_Signer: Invalid signature format enum");
+ }
+
+PK_Verifier::PK_Verifier(const Public_Key& key,
+ const std::string& emsa,
+ Signature_Format format,
+ const std::string& provider)
+ {
+ m_op = key.create_verification_op(emsa, provider);
+ if(!m_op)
+ throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature verification");
+ m_sig_format = format;
+ m_parts = key.message_parts();
+ m_part_size = key.message_part_size();
+ }
+
+PK_Verifier::~PK_Verifier() { /* for unique_ptr */ }
+
+void PK_Verifier::set_input_format(Signature_Format format)
+ {
+ if(format != IEEE_1363 && m_parts == 1)
+ throw Invalid_Argument("PK_Verifier: This algorithm does not support DER encoding");
+ m_sig_format = format;
+ }
+
+bool PK_Verifier::verify_message(const uint8_t msg[], size_t msg_length,
+ const uint8_t sig[], size_t sig_length)
+ {
+ update(msg, msg_length);
+ return check_signature(sig, sig_length);
+ }
+
+void PK_Verifier::update(const uint8_t in[], size_t length)
+ {
+ m_op->update(in, length);
+ }
+
+bool PK_Verifier::check_signature(const uint8_t sig[], size_t length)
+ {
+ try {
+ if(m_sig_format == IEEE_1363)
+ {
+ return m_op->is_valid_signature(sig, length);
+ }
+ else if(m_sig_format == DER_SEQUENCE)
+ {
+ std::vector<uint8_t> real_sig;
+ BER_Decoder decoder(sig, length);
+ BER_Decoder ber_sig = decoder.start_cons(SEQUENCE);
+
+ BOTAN_ASSERT_NOMSG(m_parts != 0 && m_part_size != 0);
+
+ size_t count = 0;
+
+ while(ber_sig.more_items())
+ {
+ BigInt sig_part;
+ ber_sig.decode(sig_part);
+ real_sig += BigInt::encode_1363(sig_part, m_part_size);
+ ++count;
+ }
+
+ if(count != m_parts)
+ throw Decoding_Error("PK_Verifier: signature size invalid");
+
+ const std::vector<uint8_t> reencoded =
+ der_encode_signature(real_sig, m_parts, m_part_size);
+
+ if(reencoded.size() != length ||
+ same_mem(reencoded.data(), sig, reencoded.size()) == false)
+ {
+ throw Decoding_Error("PK_Verifier: signature is not the canonical DER encoding");
+ }
+
+ return m_op->is_valid_signature(real_sig.data(), real_sig.size());
+ }
+ else
+ throw Internal_Error("PK_Verifier: Invalid signature format enum");
+ }
+ catch(Invalid_Argument&) { return false; }
+ }
+
+}