aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/botan/src/lib/pubkey/rsa/rsa.h
blob: ad4fceab9938802db8844378eb6ecbef6027eeac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
* RSA
* (C) 1999-2008,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_RSA_H_
#define BOTAN_RSA_H_

#include <botan/pk_keys.h>
#include <botan/bigint.h>

namespace Botan {

/**
* RSA Public Key
*/
class BOTAN_PUBLIC_API(2,0) RSA_PublicKey : public virtual Public_Key
   {
   public:
      /**
      * Load a public key.
      * @param alg_id the X.509 algorithm identifier
      * @param key_bits DER encoded public key bits
      */
      RSA_PublicKey(const AlgorithmIdentifier& alg_id,
                    const std::vector<uint8_t>& key_bits);

      /**
      * Create a public key.
      * @arg n the modulus
      * @arg e the exponent
      */
      RSA_PublicKey(const BigInt& n, const BigInt& e) :
         m_n(n), m_e(e) {}

      std::string algo_name() const override { return "RSA"; }

      bool check_key(RandomNumberGenerator& rng, bool) const override;

      AlgorithmIdentifier algorithm_identifier() const override;

      std::vector<uint8_t> public_key_bits() const override;

      /**
      * @return public modulus
      */
      const BigInt& get_n() const { return m_n; }

      /**
      * @return public exponent
      */
      const BigInt& get_e() const { return m_e; }

      size_t key_length() const override;
      size_t estimated_strength() const override;

      std::unique_ptr<PK_Ops::Encryption>
         create_encryption_op(RandomNumberGenerator& rng,
                              const std::string& params,
                              const std::string& provider) const override;

      std::unique_ptr<PK_Ops::KEM_Encryption>
         create_kem_encryption_op(RandomNumberGenerator& rng,
                                  const std::string& params,
                                  const std::string& provider) const override;

      std::unique_ptr<PK_Ops::Verification>
         create_verification_op(const std::string& params,
                                const std::string& provider) const override;

   protected:
      RSA_PublicKey() = default;

      BigInt m_n, m_e;
   };

/**
* RSA Private Key
*/
class BOTAN_PUBLIC_API(2,0) RSA_PrivateKey final : public Private_Key, public RSA_PublicKey
   {
   public:
      /**
      * Load a private key.
      * @param alg_id the X.509 algorithm identifier
      * @param key_bits PKCS#1 RSAPrivateKey bits
      */
      RSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                     const secure_vector<uint8_t>& key_bits);

      /**
      * Construct a private key from the specified parameters.
      * @param p the first prime
      * @param q the second prime
      * @param e the exponent
      * @param d if specified, this has to be d with
      * exp * d = 1 mod (p - 1, q - 1). Leave it as 0 if you wish to
      * the constructor to calculate it.
      * @param n if specified, this must be n = p * q. Leave it as 0
      * if you wish to the constructor to calculate it.
      */
      RSA_PrivateKey(const BigInt& p, const BigInt& q,
                     const BigInt& e, const BigInt& d = 0,
                     const BigInt& n = 0);

      /**
      * Create a new private key with the specified bit length
      * @param rng the random number generator to use
      * @param bits the desired bit length of the private key
      * @param exp the public exponent to be used
      */
      RSA_PrivateKey(RandomNumberGenerator& rng,
                     size_t bits, size_t exp = 65537);

      bool check_key(RandomNumberGenerator& rng, bool) const override;

      /**
      * Get the first prime p.
      * @return prime p
      */
      const BigInt& get_p() const { return m_p; }

      /**
      * Get the second prime q.
      * @return prime q
      */
      const BigInt& get_q() const { return m_q; }

      /**
      * Get d with exp * d = 1 mod (p - 1, q - 1).
      * @return d
      */
      const BigInt& get_d() const { return m_d; }

      const BigInt& get_c() const { return m_c; }
      const BigInt& get_d1() const { return m_d1; }
      const BigInt& get_d2() const { return m_d2; }

      secure_vector<uint8_t> private_key_bits() const override;

      std::unique_ptr<PK_Ops::Decryption>
         create_decryption_op(RandomNumberGenerator& rng,
                              const std::string& params,
                              const std::string& provider) const override;

      std::unique_ptr<PK_Ops::KEM_Decryption>
         create_kem_decryption_op(RandomNumberGenerator& rng,
                                  const std::string& params,
                                  const std::string& provider) const override;

      std::unique_ptr<PK_Ops::Signature>
         create_signature_op(RandomNumberGenerator& rng,
                             const std::string& params,
                             const std::string& provider) const override;

   private:
      BigInt m_d, m_p, m_q, m_d1, m_d2, m_c;
   };

}

#endif