aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp')
-rw-r--r--src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp750
1 files changed, 750 insertions, 0 deletions
diff --git a/src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp b/src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp
new file mode 100644
index 0000000000..403945cc91
--- /dev/null
+++ b/src/libs/3rdparty/botan/src/lib/block/aes/aes.cpp
@@ -0,0 +1,750 @@
+/*
+* AES
+* (C) 1999-2010,2015,2017 Jack Lloyd
+*
+* Based on the public domain reference implementation by Paulo Baretto
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+#include <botan/aes.h>
+#include <botan/loadstor.h>
+#include <botan/cpuid.h>
+#include <type_traits>
+
+/*
+* This implementation is based on table lookups which are known to be
+* vulnerable to timing and cache based side channel attacks. Some
+* countermeasures are used which may be helpful in some situations:
+*
+* - Only a single 256-word T-table is used, with rotations applied.
+* Most implementations use 4 T-tables which leaks much more
+* information via cache usage.
+*
+* - The TE and TD tables are computed at runtime to avoid flush+reload
+* attacks using clflush. As different processes will not share the
+* same underlying table data, an attacker can't manipulate another
+* processes cache lines via their shared reference to the library
+* read only segment.
+*
+* - Each cache line of the lookup tables is accessed at the beginning
+* of each call to encrypt or decrypt. (See the Z variable below)
+*
+* If available SSSE3 or AES-NI are used instead of this version, as both
+* are faster and immune to side channel attacks.
+*
+* Some AES cache timing papers for reference:
+*
+* "Software mitigations to hedge AES against cache-based software side
+* channel vulnerabilities" https://eprint.iacr.org/2006/052.pdf
+*
+* "Cache Games - Bringing Access-Based Cache Attacks on AES to Practice"
+* http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper031.pdf
+*
+* "Cache-Collision Timing Attacks Against AES" Bonneau, Mironov
+* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4753
+*/
+
+namespace Botan {
+
+namespace {
+
+BOTAN_ALIGNAS(64)
+const uint8_t SE[256] = {
+ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
+ 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
+ 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
+ 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+ 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
+ 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
+ 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
+ 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+ 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
+ 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
+ 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
+ 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+ 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
+ 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
+ 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
+ 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+ 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
+ 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
+ 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
+ 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+ 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
+ 0xB0, 0x54, 0xBB, 0x16 };
+
+BOTAN_ALIGNAS(64)
+const uint8_t SD[256] = {
+ 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
+ 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
+ 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
+ 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
+ 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
+ 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
+ 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
+ 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
+ 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
+ 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
+ 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
+ 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
+ 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
+ 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
+ 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
+ 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
+ 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
+ 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
+ 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
+ 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
+ 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
+ 0x55, 0x21, 0x0C, 0x7D };
+
+inline uint8_t xtime(uint8_t s) { return static_cast<uint8_t>(s << 1) ^ ((s >> 7) * 0x1B); }
+inline uint8_t xtime4(uint8_t s) { return xtime(xtime(s)); }
+inline uint8_t xtime8(uint8_t s) { return xtime(xtime(xtime(s))); }
+
+inline uint8_t xtime3(uint8_t s) { return xtime(s) ^ s; }
+inline uint8_t xtime9(uint8_t s) { return xtime8(s) ^ s; }
+inline uint8_t xtime11(uint8_t s) { return xtime8(s) ^ xtime(s) ^ s; }
+inline uint8_t xtime13(uint8_t s) { return xtime8(s) ^ xtime4(s) ^ s; }
+inline uint8_t xtime14(uint8_t s) { return xtime8(s) ^ xtime4(s) ^ xtime(s); }
+
+inline uint32_t SE_word(uint32_t x)
+ {
+ return make_uint32(SE[get_byte(0, x)],
+ SE[get_byte(1, x)],
+ SE[get_byte(2, x)],
+ SE[get_byte(3, x)]);
+ }
+
+const uint32_t* AES_TE()
+ {
+ class TE_Table final
+ {
+ public:
+ TE_Table()
+ {
+ uint32_t* p = reinterpret_cast<uint32_t*>(&data);
+ for(size_t i = 0; i != 256; ++i)
+ {
+ const uint8_t s = SE[i];
+ p[i] = make_uint32(xtime(s), s, s, xtime3(s));
+ }
+ }
+
+ const uint32_t* ptr() const
+ {
+ return reinterpret_cast<const uint32_t*>(&data);
+ }
+ private:
+ std::aligned_storage<256*sizeof(uint32_t), 64>::type data;
+ };
+
+ static TE_Table table;
+ return table.ptr();
+ }
+
+const uint32_t* AES_TD()
+ {
+ class TD_Table final
+ {
+ public:
+ TD_Table()
+ {
+ uint32_t* p = reinterpret_cast<uint32_t*>(&data);
+ for(size_t i = 0; i != 256; ++i)
+ {
+ const uint8_t s = SD[i];
+ p[i] = make_uint32(xtime14(s), xtime9(s), xtime13(s), xtime11(s));
+ }
+ }
+
+ const uint32_t* ptr() const
+ {
+ return reinterpret_cast<const uint32_t*>(&data);
+ }
+ private:
+ std::aligned_storage<256*sizeof(uint32_t), 64>::type data;
+ };
+
+ static TD_Table table;
+ return table.ptr();
+ }
+
+#define AES_T(T, K, V0, V1, V2, V3) \
+ (K ^ T[get_byte(0, V0)] ^ \
+ rotr< 8>(T[get_byte(1, V1)]) ^ \
+ rotr<16>(T[get_byte(2, V2)]) ^ \
+ rotr<24>(T[get_byte(3, V3)]))
+
+/*
+* AES Encryption
+*/
+void aes_encrypt_n(const uint8_t in[], uint8_t out[],
+ size_t blocks,
+ const secure_vector<uint32_t>& EK,
+ const secure_vector<uint8_t>& ME)
+ {
+ BOTAN_ASSERT(EK.size() && ME.size() == 16, "Key was set");
+
+ const size_t cache_line_size = CPUID::cache_line_size();
+
+ const uint32_t* TE = AES_TE();
+
+ // Hit every cache line of TE
+ volatile uint32_t Z = 0;
+ for(size_t i = 0; i < 256; i += cache_line_size / sizeof(uint32_t))
+ {
+ Z |= TE[i];
+ }
+ Z &= TE[82]; // this is zero, which hopefully the compiler cannot deduce
+
+ for(size_t i = 0; i < blocks; ++i)
+ {
+ uint32_t T0, T1, T2, T3;
+ load_be(in + 16*i, T0, T1, T2, T3);
+
+ T0 ^= EK[0];
+ T1 ^= EK[1];
+ T2 ^= EK[2];
+ T3 ^= EK[3];
+
+ T0 ^= Z;
+
+ uint32_t B0 = AES_T(TE, EK[4], T0, T1, T2, T3);
+ uint32_t B1 = AES_T(TE, EK[5], T1, T2, T3, T0);
+ uint32_t B2 = AES_T(TE, EK[6], T2, T3, T0, T1);
+ uint32_t B3 = AES_T(TE, EK[7], T3, T0, T1, T2);
+
+ for(size_t r = 2*4; r < EK.size(); r += 2*4)
+ {
+ T0 = AES_T(TE, EK[r ], B0, B1, B2, B3);
+ T1 = AES_T(TE, EK[r+1], B1, B2, B3, B0);
+ T2 = AES_T(TE, EK[r+2], B2, B3, B0, B1);
+ T3 = AES_T(TE, EK[r+3], B3, B0, B1, B2);
+
+ B0 = AES_T(TE, EK[r+4], T0, T1, T2, T3);
+ B1 = AES_T(TE, EK[r+5], T1, T2, T3, T0);
+ B2 = AES_T(TE, EK[r+6], T2, T3, T0, T1);
+ B3 = AES_T(TE, EK[r+7], T3, T0, T1, T2);
+ }
+
+ /*
+ * Use TE[x] >> 8 instead of SE[] so encryption only references a single
+ * lookup table.
+ */
+ out[16*i+ 0] = static_cast<uint8_t>(TE[get_byte(0, B0)] >> 8) ^ ME[0];
+ out[16*i+ 1] = static_cast<uint8_t>(TE[get_byte(1, B1)] >> 8) ^ ME[1];
+ out[16*i+ 2] = static_cast<uint8_t>(TE[get_byte(2, B2)] >> 8) ^ ME[2];
+ out[16*i+ 3] = static_cast<uint8_t>(TE[get_byte(3, B3)] >> 8) ^ ME[3];
+ out[16*i+ 4] = static_cast<uint8_t>(TE[get_byte(0, B1)] >> 8) ^ ME[4];
+ out[16*i+ 5] = static_cast<uint8_t>(TE[get_byte(1, B2)] >> 8) ^ ME[5];
+ out[16*i+ 6] = static_cast<uint8_t>(TE[get_byte(2, B3)] >> 8) ^ ME[6];
+ out[16*i+ 7] = static_cast<uint8_t>(TE[get_byte(3, B0)] >> 8) ^ ME[7];
+ out[16*i+ 8] = static_cast<uint8_t>(TE[get_byte(0, B2)] >> 8) ^ ME[8];
+ out[16*i+ 9] = static_cast<uint8_t>(TE[get_byte(1, B3)] >> 8) ^ ME[9];
+ out[16*i+10] = static_cast<uint8_t>(TE[get_byte(2, B0)] >> 8) ^ ME[10];
+ out[16*i+11] = static_cast<uint8_t>(TE[get_byte(3, B1)] >> 8) ^ ME[11];
+ out[16*i+12] = static_cast<uint8_t>(TE[get_byte(0, B3)] >> 8) ^ ME[12];
+ out[16*i+13] = static_cast<uint8_t>(TE[get_byte(1, B0)] >> 8) ^ ME[13];
+ out[16*i+14] = static_cast<uint8_t>(TE[get_byte(2, B1)] >> 8) ^ ME[14];
+ out[16*i+15] = static_cast<uint8_t>(TE[get_byte(3, B2)] >> 8) ^ ME[15];
+ }
+ }
+
+/*
+* AES Decryption
+*/
+void aes_decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks,
+ const secure_vector<uint32_t>& DK,
+ const secure_vector<uint8_t>& MD)
+ {
+ BOTAN_ASSERT(DK.size() && MD.size() == 16, "Key was set");
+
+ const size_t cache_line_size = CPUID::cache_line_size();
+ const uint32_t* TD = AES_TD();
+
+ volatile uint32_t Z = 0;
+ for(size_t i = 0; i < 256; i += cache_line_size / sizeof(uint32_t))
+ {
+ Z |= TD[i];
+ }
+ Z &= TD[99]; // this is zero, which hopefully the compiler cannot deduce
+
+ for(size_t i = 0; i != blocks; ++i)
+ {
+ uint32_t T0 = load_be<uint32_t>(in, 0) ^ DK[0];
+ uint32_t T1 = load_be<uint32_t>(in, 1) ^ DK[1];
+ uint32_t T2 = load_be<uint32_t>(in, 2) ^ DK[2];
+ uint32_t T3 = load_be<uint32_t>(in, 3) ^ DK[3];
+
+ T0 ^= Z;
+
+ uint32_t B0 = AES_T(TD, DK[4], T0, T3, T2, T1);
+ uint32_t B1 = AES_T(TD, DK[5], T1, T0, T3, T2);
+ uint32_t B2 = AES_T(TD, DK[6], T2, T1, T0, T3);
+ uint32_t B3 = AES_T(TD, DK[7], T3, T2, T1, T0);
+
+ for(size_t r = 2*4; r < DK.size(); r += 2*4)
+ {
+ T0 = AES_T(TD, DK[r ], B0, B3, B2, B1);
+ T1 = AES_T(TD, DK[r+1], B1, B0, B3, B2);
+ T2 = AES_T(TD, DK[r+2], B2, B1, B0, B3);
+ T3 = AES_T(TD, DK[r+3], B3, B2, B1, B0);
+
+ B0 = AES_T(TD, DK[r+4], T0, T3, T2, T1);
+ B1 = AES_T(TD, DK[r+5], T1, T0, T3, T2);
+ B2 = AES_T(TD, DK[r+6], T2, T1, T0, T3);
+ B3 = AES_T(TD, DK[r+7], T3, T2, T1, T0);
+ }
+
+ out[ 0] = SD[get_byte(0, B0)] ^ MD[0];
+ out[ 1] = SD[get_byte(1, B3)] ^ MD[1];
+ out[ 2] = SD[get_byte(2, B2)] ^ MD[2];
+ out[ 3] = SD[get_byte(3, B1)] ^ MD[3];
+ out[ 4] = SD[get_byte(0, B1)] ^ MD[4];
+ out[ 5] = SD[get_byte(1, B0)] ^ MD[5];
+ out[ 6] = SD[get_byte(2, B3)] ^ MD[6];
+ out[ 7] = SD[get_byte(3, B2)] ^ MD[7];
+ out[ 8] = SD[get_byte(0, B2)] ^ MD[8];
+ out[ 9] = SD[get_byte(1, B1)] ^ MD[9];
+ out[10] = SD[get_byte(2, B0)] ^ MD[10];
+ out[11] = SD[get_byte(3, B3)] ^ MD[11];
+ out[12] = SD[get_byte(0, B3)] ^ MD[12];
+ out[13] = SD[get_byte(1, B2)] ^ MD[13];
+ out[14] = SD[get_byte(2, B1)] ^ MD[14];
+ out[15] = SD[get_byte(3, B0)] ^ MD[15];
+
+ in += 16;
+ out += 16;
+ }
+ }
+
+void aes_key_schedule(const uint8_t key[], size_t length,
+ secure_vector<uint32_t>& EK,
+ secure_vector<uint32_t>& DK,
+ secure_vector<uint8_t>& ME,
+ secure_vector<uint8_t>& MD)
+ {
+ static const uint32_t RC[10] = {
+ 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
+ 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
+
+ const size_t rounds = (length / 4) + 6;
+
+ secure_vector<uint32_t> XEK(length + 32), XDK(length + 32);
+
+ const size_t X = length / 4;
+
+ // Can't happen, but make static analyzers happy
+ BOTAN_ARG_CHECK(X == 4 || X == 6 || X == 8, "Invalid AES key size");
+
+ for(size_t i = 0; i != X; ++i)
+ XEK[i] = load_be<uint32_t>(key, i);
+
+ for(size_t i = X; i < 4*(rounds+1); i += X)
+ {
+ XEK[i] = XEK[i-X] ^ RC[(i-X)/X] ^ SE_word(rotl<8>(XEK[i-1]));
+
+ for(size_t j = 1; j != X; ++j)
+ {
+ XEK[i+j] = XEK[i+j-X];
+
+ if(X == 8 && j == 4)
+ XEK[i+j] ^= SE_word(XEK[i+j-1]);
+ else
+ XEK[i+j] ^= XEK[i+j-1];
+ }
+ }
+
+ for(size_t i = 0; i != 4*(rounds+1); i += 4)
+ {
+ XDK[i ] = XEK[4*rounds-i ];
+ XDK[i+1] = XEK[4*rounds-i+1];
+ XDK[i+2] = XEK[4*rounds-i+2];
+ XDK[i+3] = XEK[4*rounds-i+3];
+ }
+
+ for(size_t i = 4; i != length + 24; ++i)
+ {
+ XDK[i] = SE_word(XDK[i]);
+ XDK[i] = AES_T(AES_TD(), 0, XDK[i], XDK[i], XDK[i], XDK[i]);
+ }
+
+ ME.resize(16);
+ MD.resize(16);
+
+ for(size_t i = 0; i != 4; ++i)
+ {
+ store_be(XEK[i+4*rounds], &ME[4*i]);
+ store_be(XEK[i], &MD[4*i]);
+ }
+
+ EK.resize(length + 24);
+ DK.resize(length + 24);
+ copy_mem(EK.data(), XEK.data(), EK.size());
+ copy_mem(DK.data(), XDK.data(), DK.size());
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ // ARM needs the subkeys to be byte reversed
+
+ for(size_t i = 0; i != EK.size(); ++i)
+ EK[i] = reverse_bytes(EK[i]);
+ for(size_t i = 0; i != DK.size(); ++i)
+ DK[i] = reverse_bytes(DK[i]);
+ }
+#endif
+
+ }
+
+#undef AES_T
+
+size_t aes_parallelism()
+ {
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return 4;
+ }
+#endif
+
+ return 1;
+ }
+
+const char* aes_provider()
+ {
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return "aesni";
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return "ssse3";
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return "power8";
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return "armv8";
+ }
+#endif
+
+ return "base";
+ }
+
+}
+
+std::string AES_128::provider() const { return aes_provider(); }
+std::string AES_192::provider() const { return aes_provider(); }
+std::string AES_256::provider() const { return aes_provider(); }
+
+size_t AES_128::parallelism() const { return aes_parallelism(); }
+size_t AES_192::parallelism() const { return aes_parallelism(); }
+size_t AES_256::parallelism() const { return aes_parallelism(); }
+
+void AES_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_EK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_encrypt_n(in, out, blocks, m_EK, m_ME);
+ }
+
+void AES_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_DK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_decrypt_n(in, out, blocks, m_DK, m_MD);
+ }
+
+void AES_128::key_schedule(const uint8_t key[], size_t length)
+ {
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_key_schedule(key, length);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_key_schedule(key, length);
+ }
+#endif
+
+ aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
+ }
+
+void AES_128::clear()
+ {
+ zap(m_EK);
+ zap(m_DK);
+ zap(m_ME);
+ zap(m_MD);
+ }
+
+void AES_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_EK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_encrypt_n(in, out, blocks, m_EK, m_ME);
+ }
+
+void AES_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_DK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_decrypt_n(in, out, blocks, m_DK, m_MD);
+ }
+
+void AES_192::key_schedule(const uint8_t key[], size_t length)
+ {
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_key_schedule(key, length);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_key_schedule(key, length);
+ }
+#endif
+
+ aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
+ }
+
+void AES_192::clear()
+ {
+ zap(m_EK);
+ zap(m_DK);
+ zap(m_ME);
+ zap(m_MD);
+ }
+
+void AES_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_EK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_encrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_encrypt_n(in, out, blocks, m_EK, m_ME);
+ }
+
+void AES_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
+ {
+ verify_key_set(m_DK.empty() == false);
+
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_ARMV8)
+ if(CPUID::has_arm_aes())
+ {
+ return armv8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_POWER8)
+ if(CPUID::has_ppc_crypto())
+ {
+ return power8_decrypt_n(in, out, blocks);
+ }
+#endif
+
+ aes_decrypt_n(in, out, blocks, m_DK, m_MD);
+ }
+
+void AES_256::key_schedule(const uint8_t key[], size_t length)
+ {
+#if defined(BOTAN_HAS_AES_NI)
+ if(CPUID::has_aes_ni())
+ {
+ return aesni_key_schedule(key, length);
+ }
+#endif
+
+#if defined(BOTAN_HAS_AES_SSSE3)
+ if(CPUID::has_ssse3())
+ {
+ return ssse3_key_schedule(key, length);
+ }
+#endif
+
+ aes_key_schedule(key, length, m_EK, m_DK, m_ME, m_MD);
+ }
+
+void AES_256::clear()
+ {
+ zap(m_EK);
+ zap(m_DK);
+ zap(m_ME);
+ zap(m_MD);
+ }
+
+}