aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/lua/src/lstate.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/libs/3rdparty/lua/src/lstate.h')
-rw-r--r--src/libs/3rdparty/lua/src/lstate.h409
1 files changed, 409 insertions, 0 deletions
diff --git a/src/libs/3rdparty/lua/src/lstate.h b/src/libs/3rdparty/lua/src/lstate.h
new file mode 100644
index 0000000000..8bf6600e34
--- /dev/null
+++ b/src/libs/3rdparty/lua/src/lstate.h
@@ -0,0 +1,409 @@
+/*
+** $Id: lstate.h $
+** Global State
+** See Copyright Notice in lua.h
+*/
+
+#ifndef lstate_h
+#define lstate_h
+
+#include "lua.h"
+
+
+/* Some header files included here need this definition */
+typedef struct CallInfo CallInfo;
+
+
+#include "lobject.h"
+#include "ltm.h"
+#include "lzio.h"
+
+
+/*
+** Some notes about garbage-collected objects: All objects in Lua must
+** be kept somehow accessible until being freed, so all objects always
+** belong to one (and only one) of these lists, using field 'next' of
+** the 'CommonHeader' for the link:
+**
+** 'allgc': all objects not marked for finalization;
+** 'finobj': all objects marked for finalization;
+** 'tobefnz': all objects ready to be finalized;
+** 'fixedgc': all objects that are not to be collected (currently
+** only small strings, such as reserved words).
+**
+** For the generational collector, some of these lists have marks for
+** generations. Each mark points to the first element in the list for
+** that particular generation; that generation goes until the next mark.
+**
+** 'allgc' -> 'survival': new objects;
+** 'survival' -> 'old': objects that survived one collection;
+** 'old1' -> 'reallyold': objects that became old in last collection;
+** 'reallyold' -> NULL: objects old for more than one cycle.
+**
+** 'finobj' -> 'finobjsur': new objects marked for finalization;
+** 'finobjsur' -> 'finobjold1': survived """";
+** 'finobjold1' -> 'finobjrold': just old """";
+** 'finobjrold' -> NULL: really old """".
+**
+** All lists can contain elements older than their main ages, due
+** to 'luaC_checkfinalizer' and 'udata2finalize', which move
+** objects between the normal lists and the "marked for finalization"
+** lists. Moreover, barriers can age young objects in young lists as
+** OLD0, which then become OLD1. However, a list never contains
+** elements younger than their main ages.
+**
+** The generational collector also uses a pointer 'firstold1', which
+** points to the first OLD1 object in the list. It is used to optimize
+** 'markold'. (Potentially OLD1 objects can be anywhere between 'allgc'
+** and 'reallyold', but often the list has no OLD1 objects or they are
+** after 'old1'.) Note the difference between it and 'old1':
+** 'firstold1': no OLD1 objects before this point; there can be all
+** ages after it.
+** 'old1': no objects younger than OLD1 after this point.
+*/
+
+/*
+** Moreover, there is another set of lists that control gray objects.
+** These lists are linked by fields 'gclist'. (All objects that
+** can become gray have such a field. The field is not the same
+** in all objects, but it always has this name.) Any gray object
+** must belong to one of these lists, and all objects in these lists
+** must be gray (with two exceptions explained below):
+**
+** 'gray': regular gray objects, still waiting to be visited.
+** 'grayagain': objects that must be revisited at the atomic phase.
+** That includes
+** - black objects got in a write barrier;
+** - all kinds of weak tables during propagation phase;
+** - all threads.
+** 'weak': tables with weak values to be cleared;
+** 'ephemeron': ephemeron tables with white->white entries;
+** 'allweak': tables with weak keys and/or weak values to be cleared.
+**
+** The exceptions to that "gray rule" are:
+** - TOUCHED2 objects in generational mode stay in a gray list (because
+** they must be visited again at the end of the cycle), but they are
+** marked black because assignments to them must activate barriers (to
+** move them back to TOUCHED1).
+** - Open upvales are kept gray to avoid barriers, but they stay out
+** of gray lists. (They don't even have a 'gclist' field.)
+*/
+
+
+
+/*
+** About 'nCcalls': This count has two parts: the lower 16 bits counts
+** the number of recursive invocations in the C stack; the higher
+** 16 bits counts the number of non-yieldable calls in the stack.
+** (They are together so that we can change and save both with one
+** instruction.)
+*/
+
+
+/* true if this thread does not have non-yieldable calls in the stack */
+#define yieldable(L) (((L)->nCcalls & 0xffff0000) == 0)
+
+/* real number of C calls */
+#define getCcalls(L) ((L)->nCcalls & 0xffff)
+
+
+/* Increment the number of non-yieldable calls */
+#define incnny(L) ((L)->nCcalls += 0x10000)
+
+/* Decrement the number of non-yieldable calls */
+#define decnny(L) ((L)->nCcalls -= 0x10000)
+
+/* Non-yieldable call increment */
+#define nyci (0x10000 | 1)
+
+
+
+
+struct lua_longjmp; /* defined in ldo.c */
+
+
+/*
+** Atomic type (relative to signals) to better ensure that 'lua_sethook'
+** is thread safe
+*/
+#if !defined(l_signalT)
+#include <signal.h>
+#define l_signalT sig_atomic_t
+#endif
+
+
+/*
+** Extra stack space to handle TM calls and some other extras. This
+** space is not included in 'stack_last'. It is used only to avoid stack
+** checks, either because the element will be promptly popped or because
+** there will be a stack check soon after the push. Function frames
+** never use this extra space, so it does not need to be kept clean.
+*/
+#define EXTRA_STACK 5
+
+
+#define BASIC_STACK_SIZE (2*LUA_MINSTACK)
+
+#define stacksize(th) cast_int((th)->stack_last.p - (th)->stack.p)
+
+
+/* kinds of Garbage Collection */
+#define KGC_INC 0 /* incremental gc */
+#define KGC_GEN 1 /* generational gc */
+
+
+typedef struct stringtable {
+ TString **hash;
+ int nuse; /* number of elements */
+ int size;
+} stringtable;
+
+
+/*
+** Information about a call.
+** About union 'u':
+** - field 'l' is used only for Lua functions;
+** - field 'c' is used only for C functions.
+** About union 'u2':
+** - field 'funcidx' is used only by C functions while doing a
+** protected call;
+** - field 'nyield' is used only while a function is "doing" an
+** yield (from the yield until the next resume);
+** - field 'nres' is used only while closing tbc variables when
+** returning from a function;
+** - field 'transferinfo' is used only during call/returnhooks,
+** before the function starts or after it ends.
+*/
+struct CallInfo {
+ StkIdRel func; /* function index in the stack */
+ StkIdRel top; /* top for this function */
+ struct CallInfo *previous, *next; /* dynamic call link */
+ union {
+ struct { /* only for Lua functions */
+ const Instruction *savedpc;
+ volatile l_signalT trap;
+ int nextraargs; /* # of extra arguments in vararg functions */
+ } l;
+ struct { /* only for C functions */
+ lua_KFunction k; /* continuation in case of yields */
+ ptrdiff_t old_errfunc;
+ lua_KContext ctx; /* context info. in case of yields */
+ } c;
+ } u;
+ union {
+ int funcidx; /* called-function index */
+ int nyield; /* number of values yielded */
+ int nres; /* number of values returned */
+ struct { /* info about transferred values (for call/return hooks) */
+ unsigned short ftransfer; /* offset of first value transferred */
+ unsigned short ntransfer; /* number of values transferred */
+ } transferinfo;
+ } u2;
+ short nresults; /* expected number of results from this function */
+ unsigned short callstatus;
+};
+
+
+/*
+** Bits in CallInfo status
+*/
+#define CIST_OAH (1<<0) /* original value of 'allowhook' */
+#define CIST_C (1<<1) /* call is running a C function */
+#define CIST_FRESH (1<<2) /* call is on a fresh "luaV_execute" frame */
+#define CIST_HOOKED (1<<3) /* call is running a debug hook */
+#define CIST_YPCALL (1<<4) /* doing a yieldable protected call */
+#define CIST_TAIL (1<<5) /* call was tail called */
+#define CIST_HOOKYIELD (1<<6) /* last hook called yielded */
+#define CIST_FIN (1<<7) /* function "called" a finalizer */
+#define CIST_TRAN (1<<8) /* 'ci' has transfer information */
+#define CIST_CLSRET (1<<9) /* function is closing tbc variables */
+/* Bits 10-12 are used for CIST_RECST (see below) */
+#define CIST_RECST 10
+#if defined(LUA_COMPAT_LT_LE)
+#define CIST_LEQ (1<<13) /* using __lt for __le */
+#endif
+
+
+/*
+** Field CIST_RECST stores the "recover status", used to keep the error
+** status while closing to-be-closed variables in coroutines, so that
+** Lua can correctly resume after an yield from a __close method called
+** because of an error. (Three bits are enough for error status.)
+*/
+#define getcistrecst(ci) (((ci)->callstatus >> CIST_RECST) & 7)
+#define setcistrecst(ci,st) \
+ check_exp(((st) & 7) == (st), /* status must fit in three bits */ \
+ ((ci)->callstatus = ((ci)->callstatus & ~(7 << CIST_RECST)) \
+ | ((st) << CIST_RECST)))
+
+
+/* active function is a Lua function */
+#define isLua(ci) (!((ci)->callstatus & CIST_C))
+
+/* call is running Lua code (not a hook) */
+#define isLuacode(ci) (!((ci)->callstatus & (CIST_C | CIST_HOOKED)))
+
+/* assume that CIST_OAH has offset 0 and that 'v' is strictly 0/1 */
+#define setoah(st,v) ((st) = ((st) & ~CIST_OAH) | (v))
+#define getoah(st) ((st) & CIST_OAH)
+
+
+/*
+** 'global state', shared by all threads of this state
+*/
+typedef struct global_State {
+ lua_Alloc frealloc; /* function to reallocate memory */
+ void *ud; /* auxiliary data to 'frealloc' */
+ l_mem totalbytes; /* number of bytes currently allocated - GCdebt */
+ l_mem GCdebt; /* bytes allocated not yet compensated by the collector */
+ lu_mem GCestimate; /* an estimate of the non-garbage memory in use */
+ lu_mem lastatomic; /* see function 'genstep' in file 'lgc.c' */
+ stringtable strt; /* hash table for strings */
+ TValue l_registry;
+ TValue nilvalue; /* a nil value */
+ unsigned int seed; /* randomized seed for hashes */
+ lu_byte currentwhite;
+ lu_byte gcstate; /* state of garbage collector */
+ lu_byte gckind; /* kind of GC running */
+ lu_byte gcstopem; /* stops emergency collections */
+ lu_byte genminormul; /* control for minor generational collections */
+ lu_byte genmajormul; /* control for major generational collections */
+ lu_byte gcstp; /* control whether GC is running */
+ lu_byte gcemergency; /* true if this is an emergency collection */
+ lu_byte gcpause; /* size of pause between successive GCs */
+ lu_byte gcstepmul; /* GC "speed" */
+ lu_byte gcstepsize; /* (log2 of) GC granularity */
+ GCObject *allgc; /* list of all collectable objects */
+ GCObject **sweepgc; /* current position of sweep in list */
+ GCObject *finobj; /* list of collectable objects with finalizers */
+ GCObject *gray; /* list of gray objects */
+ GCObject *grayagain; /* list of objects to be traversed atomically */
+ GCObject *weak; /* list of tables with weak values */
+ GCObject *ephemeron; /* list of ephemeron tables (weak keys) */
+ GCObject *allweak; /* list of all-weak tables */
+ GCObject *tobefnz; /* list of userdata to be GC */
+ GCObject *fixedgc; /* list of objects not to be collected */
+ /* fields for generational collector */
+ GCObject *survival; /* start of objects that survived one GC cycle */
+ GCObject *old1; /* start of old1 objects */
+ GCObject *reallyold; /* objects more than one cycle old ("really old") */
+ GCObject *firstold1; /* first OLD1 object in the list (if any) */
+ GCObject *finobjsur; /* list of survival objects with finalizers */
+ GCObject *finobjold1; /* list of old1 objects with finalizers */
+ GCObject *finobjrold; /* list of really old objects with finalizers */
+ struct lua_State *twups; /* list of threads with open upvalues */
+ lua_CFunction panic; /* to be called in unprotected errors */
+ struct lua_State *mainthread;
+ TString *memerrmsg; /* message for memory-allocation errors */
+ TString *tmname[TM_N]; /* array with tag-method names */
+ struct Table *mt[LUA_NUMTYPES]; /* metatables for basic types */
+ TString *strcache[STRCACHE_N][STRCACHE_M]; /* cache for strings in API */
+ lua_WarnFunction warnf; /* warning function */
+ void *ud_warn; /* auxiliary data to 'warnf' */
+} global_State;
+
+
+/*
+** 'per thread' state
+*/
+struct lua_State {
+ CommonHeader;
+ lu_byte status;
+ lu_byte allowhook;
+ unsigned short nci; /* number of items in 'ci' list */
+ StkIdRel top; /* first free slot in the stack */
+ global_State *l_G;
+ CallInfo *ci; /* call info for current function */
+ StkIdRel stack_last; /* end of stack (last element + 1) */
+ StkIdRel stack; /* stack base */
+ UpVal *openupval; /* list of open upvalues in this stack */
+ StkIdRel tbclist; /* list of to-be-closed variables */
+ GCObject *gclist;
+ struct lua_State *twups; /* list of threads with open upvalues */
+ struct lua_longjmp *errorJmp; /* current error recover point */
+ CallInfo base_ci; /* CallInfo for first level (C calling Lua) */
+ volatile lua_Hook hook;
+ ptrdiff_t errfunc; /* current error handling function (stack index) */
+ l_uint32 nCcalls; /* number of nested (non-yieldable | C) calls */
+ int oldpc; /* last pc traced */
+ int basehookcount;
+ int hookcount;
+ volatile l_signalT hookmask;
+};
+
+
+#define G(L) (L->l_G)
+
+/*
+** 'g->nilvalue' being a nil value flags that the state was completely
+** build.
+*/
+#define completestate(g) ttisnil(&g->nilvalue)
+
+
+/*
+** Union of all collectable objects (only for conversions)
+** ISO C99, 6.5.2.3 p.5:
+** "if a union contains several structures that share a common initial
+** sequence [...], and if the union object currently contains one
+** of these structures, it is permitted to inspect the common initial
+** part of any of them anywhere that a declaration of the complete type
+** of the union is visible."
+*/
+union GCUnion {
+ GCObject gc; /* common header */
+ struct TString ts;
+ struct Udata u;
+ union Closure cl;
+ struct Table h;
+ struct Proto p;
+ struct lua_State th; /* thread */
+ struct UpVal upv;
+};
+
+
+/*
+** ISO C99, 6.7.2.1 p.14:
+** "A pointer to a union object, suitably converted, points to each of
+** its members [...], and vice versa."
+*/
+#define cast_u(o) cast(union GCUnion *, (o))
+
+/* macros to convert a GCObject into a specific value */
+#define gco2ts(o) \
+ check_exp(novariant((o)->tt) == LUA_TSTRING, &((cast_u(o))->ts))
+#define gco2u(o) check_exp((o)->tt == LUA_VUSERDATA, &((cast_u(o))->u))
+#define gco2lcl(o) check_exp((o)->tt == LUA_VLCL, &((cast_u(o))->cl.l))
+#define gco2ccl(o) check_exp((o)->tt == LUA_VCCL, &((cast_u(o))->cl.c))
+#define gco2cl(o) \
+ check_exp(novariant((o)->tt) == LUA_TFUNCTION, &((cast_u(o))->cl))
+#define gco2t(o) check_exp((o)->tt == LUA_VTABLE, &((cast_u(o))->h))
+#define gco2p(o) check_exp((o)->tt == LUA_VPROTO, &((cast_u(o))->p))
+#define gco2th(o) check_exp((o)->tt == LUA_VTHREAD, &((cast_u(o))->th))
+#define gco2upv(o) check_exp((o)->tt == LUA_VUPVAL, &((cast_u(o))->upv))
+
+
+/*
+** macro to convert a Lua object into a GCObject
+** (The access to 'tt' tries to ensure that 'v' is actually a Lua object.)
+*/
+#define obj2gco(v) check_exp((v)->tt >= LUA_TSTRING, &(cast_u(v)->gc))
+
+
+/* actual number of total bytes allocated */
+#define gettotalbytes(g) cast(lu_mem, (g)->totalbytes + (g)->GCdebt)
+
+LUAI_FUNC void luaE_setdebt (global_State *g, l_mem debt);
+LUAI_FUNC void luaE_freethread (lua_State *L, lua_State *L1);
+LUAI_FUNC CallInfo *luaE_extendCI (lua_State *L);
+LUAI_FUNC void luaE_freeCI (lua_State *L);
+LUAI_FUNC void luaE_shrinkCI (lua_State *L);
+LUAI_FUNC void luaE_checkcstack (lua_State *L);
+LUAI_FUNC void luaE_incCstack (lua_State *L);
+LUAI_FUNC void luaE_warning (lua_State *L, const char *msg, int tocont);
+LUAI_FUNC void luaE_warnerror (lua_State *L, const char *where);
+LUAI_FUNC int luaE_resetthread (lua_State *L, int status);
+
+
+#endif
+