aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/sol2/include/sol/sol.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/libs/3rdparty/sol2/include/sol/sol.hpp')
-rw-r--r--src/libs/3rdparty/sol2/include/sol/sol.hpp29202
1 files changed, 29202 insertions, 0 deletions
diff --git a/src/libs/3rdparty/sol2/include/sol/sol.hpp b/src/libs/3rdparty/sol2/include/sol/sol.hpp
new file mode 100644
index 0000000000..063ea72165
--- /dev/null
+++ b/src/libs/3rdparty/sol2/include/sol/sol.hpp
@@ -0,0 +1,29202 @@
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2020 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+// This file was generated with a script.
+// Generated 2024-01-13 14:25:56.532275 UTC
+// This header was generated with sol v3.3.1 (revision 9c882a28)
+// https://github.com/ThePhD/sol2
+
+#ifndef SOL_SINGLE_INCLUDE_SOL_HPP
+#define SOL_SINGLE_INCLUDE_SOL_HPP
+
+// beginning of sol/sol.hpp
+
+#ifndef SOL_HPP
+#define SOL_HPP
+
+// beginning of sol/version.hpp
+
+#include "config.hpp"
+
+#define SOL_VERSION_MAJOR 3
+#define SOL_VERSION_MINOR 2
+#define SOL_VERSION_PATCH 3
+#define SOL_VERSION_STRING "3.2.3"
+#define SOL_VERSION ((SOL_VERSION_MAJOR * 100000) + (SOL_VERSION_MINOR * 100) + (SOL_VERSION_PATCH))
+
+#define SOL_TOKEN_TO_STRING_POST_EXPANSION_I_(_TOKEN) #_TOKEN
+#define SOL_TOKEN_TO_STRING_I_(_TOKEN) SOL_TOKEN_TO_STRING_POST_EXPANSION_I_(_TOKEN)
+
+#define SOL_CONCAT_TOKENS_POST_EXPANSION_I_(_LEFT, _RIGHT) _LEFT##_RIGHT
+#define SOL_CONCAT_TOKENS_I_(_LEFT, _RIGHT) SOL_CONCAT_TOKENS_POST_EXPANSION_I_(_LEFT, _RIGHT)
+
+#define SOL_RAW_IS_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) != 0)
+#define SOL_RAW_IS_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3) == 0)
+#define SOL_RAW_IS_DEFAULT_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) > 3)
+#define SOL_RAW_IS_DEFAULT_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3 OP_SYMBOL 3) < 0)
+
+#define SOL_IS_ON(OP_SYMBOL) SOL_RAW_IS_ON(OP_SYMBOL ## _I_)
+#define SOL_IS_OFF(OP_SYMBOL) SOL_RAW_IS_OFF(OP_SYMBOL ## _I_)
+#define SOL_IS_DEFAULT_ON(OP_SYMBOL) SOL_RAW_IS_DEFAULT_ON(OP_SYMBOL ## _I_)
+#define SOL_IS_DEFAULT_OFF(OP_SYMBOL) SOL_RAW_IS_DEFAULT_OFF(OP_SYMBOL ## _I_)
+
+#define SOL_ON |
+#define SOL_OFF ^
+#define SOL_DEFAULT_ON +
+#define SOL_DEFAULT_OFF -
+
+#if defined(SOL_BUILD_CXX_MODE)
+ #if (SOL_BUILD_CXX_MODE != 0)
+ #define SOL_BUILD_CXX_MODE_I_ SOL_ON
+ #else
+ #define SOL_BUILD_CXX_MODE_I_ SOL_OFF
+ #endif
+#elif defined(__cplusplus)
+ #define SOL_BUILD_CXX_MODE_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_BUILD_CXX_MODE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_BUILD_C_MODE)
+ #if (SOL_BUILD_C_MODE != 0)
+ #define SOL_BUILD_C_MODE_I_ SOL_ON
+ #else
+ #define SOL_BUILD_C_MODE_I_ SOL_OFF
+ #endif
+#elif defined(__STDC__)
+ #define SOL_BUILD_C_MODE_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_BUILD_C_MODE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if SOL_IS_ON(SOL_BUILD_C_MODE)
+ #include <stddef.h>
+ #include <stdint.h>
+ #include <limits.h>
+#else
+ #include <cstddef>
+ #include <cstdint>
+ #include <climits>
+#endif
+
+#if defined(SOL_HAS_BUILTIN)
+ #define SOL_HAS_BUILTIN_I_(...) SOL_HAS_BUILTIN(__VA_ARGS__)
+#elif defined(__has_builtin)
+ #define SOL_HAS_BUILTIN_I_(...) __has_builtin(__VA_ARGS__)
+#else
+ #define SOL_HAS_BUILTIN_I_(...) 0
+#endif
+
+#if defined(SOL_COMPILER_VCXX)
+ #if defined(SOL_COMPILER_VCXX != 0)
+ #define SOL_COMPILER_VCXX_I_ SOL_ON
+ #else
+ #define SOL_COMPILER_VCXX_I_ SOL_OFF
+ #endif
+#elif defined(_MSC_VER)
+ #define SOL_COMPILER_VCXX_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_COMPILER_VCXX_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_COMPILER_GCC)
+ #if defined(SOL_COMPILER_GCC != 0)
+ #define SOL_COMPILER_GCC_I_ SOL_ON
+ #else
+ #define SOL_COMPILER_GCC_I_ SOL_OFF
+ #endif
+#elif defined(__GNUC__)
+ #define SOL_COMPILER_GCC_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_COMPILER_GCC_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_COMPILER_CLANG)
+ #if defined(SOL_COMPILER_CLANG != 0)
+ #define SOL_COMPILER_CLANG_I_ SOL_ON
+ #else
+ #define SOL_COMPILER_CLANG_I_ SOL_OFF
+ #endif
+#elif defined(__clang__)
+ #define SOL_COMPILER_CLANG_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_COMPILER_CLANG_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_COMPILER_EDG)
+ #if defined(SOL_COMPILER_EDG != 0)
+ #define SOL_COMPILER_EDG_I_ SOL_ON
+ #else
+ #define SOL_COMPILER_EDG_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_COMPILER_EDG_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_COMPILER_MINGW)
+ #if (SOL_COMPILER_MINGW != 0)
+ #define SOL_COMPILER_MINGW_I_ SOL_ON
+ #else
+ #define SOL_COMPILER_MINGW_I_ SOL_OFF
+ #endif
+#elif defined(__MINGW32__)
+ #define SOL_COMPILER_MINGW_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_COMPILER_MINGW_I_ SOL_DEFAULT_OFF
+#endif
+
+#if SIZE_MAX <= 0xFFFFULL
+ #define SOL_PLATFORM_X16_I_ SOL_ON
+ #define SOL_PLATFORM_X86_I_ SOL_OFF
+ #define SOL_PLATFORM_X64_I_ SOL_OFF
+#elif SIZE_MAX <= 0xFFFFFFFFULL
+ #define SOL_PLATFORM_X16_I_ SOL_OFF
+ #define SOL_PLATFORM_X86_I_ SOL_ON
+ #define SOL_PLATFORM_X64_I_ SOL_OFF
+#else
+ #define SOL_PLATFORM_X16_I_ SOL_OFF
+ #define SOL_PLATFORM_X86_I_ SOL_OFF
+ #define SOL_PLATFORM_X64_I_ SOL_ON
+#endif
+
+#define SOL_PLATFORM_ARM32_I_ SOL_OFF
+#define SOL_PLATFORM_ARM64_I_ SOL_OFF
+
+#if defined(SOL_PLATFORM_WINDOWS)
+ #if (SOL_PLATFORM_WINDOWS != 0)
+ #define SOL_PLATFORM_WINDOWS_I_ SOL_ON
+ #else
+ #define SOL_PLATFORM_WINDOWS_I_ SOL_OFF
+ #endif
+#elif defined(_WIN32)
+ #define SOL_PLATFORM_WINDOWS_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_PLATFORM_WINDOWS_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_PLATFORM_CYGWIN)
+ #if (SOL_PLATFORM_CYGWIN != 0)
+ #define SOL_PLATFORM_CYGWIN_I_ SOL_ON
+ #else
+ #define SOL_PLATFORM_CYGWIN_I_ SOL_ON
+ #endif
+#elif defined(__CYGWIN__)
+ #define SOL_PLATFORM_CYGWIN_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_PLATFORM_CYGWIN_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_PLATFORM_APPLE)
+ #if (SOL_PLATFORM_APPLE != 0)
+ #define SOL_PLATFORM_APPLE_I_ SOL_ON
+ #else
+ #define SOL_PLATFORM_APPLE_I_ SOL_OFF
+ #endif
+#elif defined(__APPLE__)
+ #define SOL_PLATFORM_APPLE_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_PLATFORM_APPLE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_PLATFORM_UNIX)
+ #if (SOL_PLATFORM_UNIX != 0)
+ #define SOL_PLATFORM_UNIXLIKE_I_ SOL_ON
+ #else
+ #define SOL_PLATFORM_UNIXLIKE_I_ SOL_OFF
+ #endif
+#elif defined(__unix__)
+ #define SOL_PLATFORM_UNIXLIKE_I_ SOL_DEFAUKT_ON
+#else
+ #define SOL_PLATFORM_UNIXLIKE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_PLATFORM_LINUX)
+ #if (SOL_PLATFORM_LINUX != 0)
+ #define SOL_PLATFORM_LINUXLIKE_I_ SOL_ON
+ #else
+ #define SOL_PLATFORM_LINUXLIKE_I_ SOL_OFF
+ #endif
+#elif defined(__LINUX__)
+ #define SOL_PLATFORM_LINUXLIKE_I_ SOL_DEFAUKT_ON
+#else
+ #define SOL_PLATFORM_LINUXLIKE_I_ SOL_DEFAULT_OFF
+#endif
+
+#define SOL_PLATFORM_APPLE_IPHONE_I_ SOL_OFF
+#define SOL_PLATFORM_BSDLIKE_I_ SOL_OFF
+
+#if defined(SOL_IN_DEBUG_DETECTED)
+ #if SOL_IN_DEBUG_DETECTED != 0
+ #define SOL_DEBUG_BUILD_I_ SOL_ON
+ #else
+ #define SOL_DEBUG_BUILD_I_ SOL_OFF
+ #endif
+#elif !defined(NDEBUG)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX) && defined(_DEBUG)
+ #define SOL_DEBUG_BUILD_I_ SOL_ON
+ #elif (SOL_IS_ON(SOL_COMPILER_CLANG) || SOL_IS_ON(SOL_COMPILER_GCC)) && !defined(__OPTIMIZE__)
+ #define SOL_DEBUG_BUILD_I_ SOL_ON
+ #else
+ #define SOL_DEBUG_BUILD_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_DEBUG_BUILD_I_ SOL_DEFAULT_OFF
+#endif // We are in a debug mode of some sort
+
+#if defined(SOL_NO_EXCEPTIONS)
+ #if (SOL_NO_EXCEPTIONS != 0)
+ #define SOL_EXCEPTIONS_I_ SOL_OFF
+ #else
+ #define SOL_EXCEPTIONS_I_ SOL_ON
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if !defined(_CPPUNWIND)
+ #define SOL_EXCEPTIONS_I_ SOL_OFF
+ #else
+ #define SOL_EXCEPTIONS_I_ SOL_ON
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_CLANG) || SOL_IS_ON(SOL_COMPILER_GCC)
+ #if !defined(__EXCEPTIONS)
+ #define SOL_EXCEPTIONS_I_ SOL_OFF
+ #else
+ #define SOL_EXCEPTIONS_I_ SOL_ON
+ #endif
+#else
+ #define SOL_EXCEPTIONS_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_NO_RTTI)
+ #if (SOL_NO_RTTI != 0)
+ #define SOL_RTTI_I_ SOL_OFF
+ #else
+ #define SOL_RTTI_I_ SOL_ON
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if !defined(_CPPRTTI)
+ #define SOL_RTTI_I_ SOL_OFF
+ #else
+ #define SOL_RTTI_I_ SOL_ON
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_CLANG) || SOL_IS_ON(SOL_COMPILER_GCC)
+ #if !defined(__GXX_RTTI)
+ #define SOL_RTTI_I_ SOL_OFF
+ #else
+ #define SOL_RTTI_I_ SOL_ON
+ #endif
+#else
+ #define SOL_RTTI_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_NO_THREAD_LOCAL)
+ #if SOL_NO_THREAD_LOCAL != 0
+ #define SOL_USE_THREAD_LOCAL_I_ SOL_OFF
+ #else
+ #define SOL_USE_THREAD_LOCAL_I_ SOL_ON
+ #endif
+#else
+ #define SOL_USE_THREAD_LOCAL_I_ SOL_DEFAULT_ON
+#endif // thread_local keyword is bjorked on some platforms
+
+#if defined(SOL_ALL_SAFETIES_ON)
+ #if SOL_ALL_SAFETIES_ON != 0
+ #define SOL_ALL_SAFETIES_ON_I_ SOL_ON
+ #else
+ #define SOL_ALL_SAFETIES_ON_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_ALL_SAFETIES_ON_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_SAFE_GETTER)
+ #if SOL_SAFE_GETTER != 0
+ #define SOL_SAFE_GETTER_I_ SOL_ON
+ #else
+ #define SOL_SAFE_GETTER_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_GETTER_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_GETTER_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_GETTER_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_USERTYPE)
+ #if SOL_SAFE_USERTYPE != 0
+ #define SOL_SAFE_USERTYPE_I_ SOL_ON
+ #else
+ #define SOL_SAFE_USERTYPE_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_USERTYPE_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_REFERENCES)
+ #if SOL_SAFE_REFERENCES != 0
+ #define SOL_SAFE_REFERENCES_I_ SOL_ON
+ #else
+ #define SOL_SAFE_REFERENCES_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_REFERENCES_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_FUNCTIONS)
+ #if SOL_SAFE_FUNCTIONS != 0
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
+ #else
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_OFF
+ #endif
+#elif defined (SOL_SAFE_FUNCTION_OBJECTS)
+ #if SOL_SAFE_FUNCTION_OBJECTS != 0
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
+ #else
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_FUNCTION_CALLS)
+ #if SOL_SAFE_FUNCTION_CALLS != 0
+ #define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
+ #else
+ #define SOL_SAFE_FUNCTION_CALLS_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_PROXIES)
+ #if SOL_SAFE_PROXIES != 0
+ #define SOL_SAFE_PROXIES_I_ SOL_ON
+ #else
+ #define SOL_SAFE_PROXIES_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_PROXIES_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_SAFE_NUMERICS)
+ #if SOL_SAFE_NUMERICS != 0
+ #define SOL_SAFE_NUMERICS_I_ SOL_ON
+ #else
+ #define SOL_SAFE_NUMERICS_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_NUMERICS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_ALL_INTEGER_VALUES_FIT)
+ #if (SOL_ALL_INTEGER_VALUES_FIT != 0)
+ #define SOL_ALL_INTEGER_VALUES_FIT_I_ SOL_ON
+ #else
+ #define SOL_ALL_INTEGER_VALUES_FIT_I_ SOL_OFF
+ #endif
+#elif !SOL_IS_DEFAULT_OFF(SOL_SAFE_NUMERICS) && SOL_IS_OFF(SOL_SAFE_NUMERICS)
+ // if numerics is intentionally turned off, flip this on
+ #define SOL_ALL_INTEGER_VALUES_FIT_I_ SOL_DEFAULT_ON
+#else
+ // default to off
+ #define SOL_ALL_INTEGER_VALUES_FIT_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_SAFE_STACK_CHECK)
+ #if SOL_SAFE_STACK_CHECK != 0
+ #define SOL_SAFE_STACK_CHECK_I_ SOL_ON
+ #else
+ #define SOL_SAFE_STACK_CHECK_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_SAFE_STACK_CHECK_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_NO_CHECK_NUMBER_PRECISION)
+ #if SOL_NO_CHECK_NUMBER_PRECISION != 0
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_OFF
+ #else
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
+ #endif
+#elif defined(SOL_NO_CHECKING_NUMBER_PRECISION)
+ #if SOL_NO_CHECKING_NUMBER_PRECISION != 0
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_OFF
+ #else
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_SAFE_NUMERICS)
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_STRINGS_ARE_NUMBERS)
+ #if (SOL_STRINGS_ARE_NUMBERS != 0)
+ #define SOL_STRINGS_ARE_NUMBERS_I_ SOL_ON
+ #else
+ #define SOL_STRINGS_ARE_NUMBERS_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_STRINGS_ARE_NUMBERS_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_ENABLE_INTEROP)
+ #if SOL_ENABLE_INTEROP != 0
+ #define SOL_USE_INTEROP_I_ SOL_ON
+ #else
+ #define SOL_USE_INTEROP_I_ SOL_OFF
+ #endif
+#elif defined(SOL_USE_INTEROP)
+ #if SOL_USE_INTEROP != 0
+ #define SOL_USE_INTEROP_I_ SOL_ON
+ #else
+ #define SOL_USE_INTEROP_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USE_INTEROP_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_NO_NIL)
+ #if (SOL_NO_NIL != 0)
+ #define SOL_NIL_I_ SOL_OFF
+ #else
+ #define SOL_NIL_I_ SOL_ON
+ #endif
+#elif defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil)
+ #define SOL_NIL_I_ SOL_DEFAULT_OFF
+#else
+ #define SOL_NIL_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_USERTYPE_TYPE_BINDING_INFO)
+ #if (SOL_USERTYPE_TYPE_BINDING_INFO != 0)
+ #define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_ON
+ #else
+ #define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_DEFAULT_ON
+#endif // We should generate a my_type.__type table with lots of class information for usertypes
+
+#if defined(SOL_AUTOMAGICAL_TYPES_BY_DEFAULT)
+ #if (SOL_AUTOMAGICAL_TYPES_BY_DEFAULT != 0)
+ #define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
+ #else
+ #define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
+ #endif
+#elif defined(SOL_DEFAULT_AUTOMAGICAL_USERTYPES)
+ #if (SOL_DEFAULT_AUTOMAGICAL_USERTYPES != 0)
+ #define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
+ #else
+ #define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_DEFAULT_ON
+#endif // make is_automagical on/off by default
+
+#if defined(SOL_STD_VARIANT)
+ #if (SOL_STD_VARIANT != 0)
+ #define SOL_STD_VARIANT_I_ SOL_ON
+ #else
+ #define SOL_STD_VARIANT_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_COMPILER_CLANG) && SOL_IS_ON(SOL_PLATFORM_APPLE)
+ #if defined(__has_include)
+ #if __has_include(<variant>)
+ #define SOL_STD_VARIANT_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_STD_VARIANT_I_ SOL_DEFAULT_OFF
+ #endif
+ #else
+ #define SOL_STD_VARIANT_I_ SOL_DEFAULT_OFF
+ #endif
+ #else
+ #define SOL_STD_VARIANT_I_ SOL_DEFAULT_ON
+ #endif
+#endif // make is_automagical on/off by default
+
+#if defined(SOL_NOEXCEPT_FUNCTION_TYPE)
+ #if (SOL_NOEXCEPT_FUNCTION_TYPE != 0)
+ #define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
+ #else
+ #define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
+ #endif
+#else
+ #if defined(__cpp_noexcept_function_type)
+ #define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_COMPILER_VCXX) && (defined(_MSVC_LANG) && (_MSVC_LANG < 201403L))
+ // There is a bug in the VC++ compiler??
+ // on /std:c++latest under x86 conditions (VS 15.5.2),
+ // compiler errors are tossed for noexcept markings being on function types
+ // that are identical in every other way to their non-noexcept marked types function types...
+ // VS 2019: There is absolutely a bug.
+ #define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
+ #else
+ #define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_DEFAULT_ON
+ #endif
+#endif // noexcept is part of a function's type
+
+#if defined(SOL_STACK_STRING_OPTIMIZATION_SIZE) && SOL_STACK_STRING_OPTIMIZATION_SIZE > 0
+ #define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ SOL_STACK_STRING_OPTIMIZATION_SIZE
+#else
+ #define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ 1024
+#endif
+
+#if defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
+ #define SOL_ID_SIZE_I_ SOL_ID_SIZE
+#else
+ #define SOL_ID_SIZE_I_ 512
+#endif
+
+#if defined(LUA_IDSIZE) && LUA_IDSIZE > 0
+ #define SOL_FILE_ID_SIZE_I_ LUA_IDSIZE
+#elif defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
+ #define SOL_FILE_ID_SIZE_I_ SOL_FILE_ID_SIZE
+#else
+ #define SOL_FILE_ID_SIZE_I_ 2048
+#endif
+
+#if defined(SOL_PRINT_ERRORS)
+ #if (SOL_PRINT_ERRORS != 0)
+ #define SOL_PRINT_ERRORS_I_ SOL_ON
+ #else
+ #define SOL_PRINT_ERRORS_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_ALL_SAFETIES_ON)
+ #define SOL_PRINT_ERRORS_I_ SOL_ON
+ #elif SOL_IS_ON(SOL_DEBUG_BUILD)
+ #define SOL_PRINT_ERRORS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_PRINT_ERRORS_I_ SOL_OFF
+ #endif
+#endif
+
+#if defined(SOL_DEFAULT_PASS_ON_ERROR)
+ #if (SOL_DEFAULT_PASS_ON_ERROR != 0)
+ #define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_ON
+ #else
+ #define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_USING_CXX_LUA)
+ #if (SOL_USING_CXX_LUA != 0)
+ #define SOL_USING_CXX_LUA_I_ SOL_ON
+ #else
+ #define SOL_USING_CXX_LUA_I_ SOL_OFF
+ #endif
+#elif defined(SOL_USE_CXX_LUA)
+ // alternative spelling
+ #if (SOL_USE_CXX_LUA != 0)
+ #define SOL_USING_CXX_LUA_I_ SOL_ON
+ #else
+ #define SOL_USING_CXX_LUA_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USING_CXX_LUA_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_USING_CXX_LUAJIT)
+ #if (SOL_USING_CXX_LUAJIT != 0)
+ #define SOL_USING_CXX_LUAJIT_I_ SOL_ON
+ #else
+ #define SOL_USING_CXX_LUAJIT_I_ SOL_OFF
+ #endif
+#elif defined(SOL_USE_CXX_LUAJIT)
+ #if (SOL_USE_CXX_LUAJIT != 0)
+ #define SOL_USING_CXX_LUAJIT_I_ SOL_ON
+ #else
+ #define SOL_USING_CXX_LUAJIT_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USING_CXX_LUAJIT_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_NO_LUA_HPP)
+ #if (SOL_NO_LUA_HPP != 0)
+ #define SOL_USE_LUA_HPP_I_ SOL_OFF
+ #else
+ #define SOL_USE_LUA_HPP_I_ SOL_ON
+ #endif
+#elif SOL_IS_ON(SOL_USING_CXX_LUA)
+ #define SOL_USE_LUA_HPP_I_ SOL_OFF
+#elif defined(__has_include)
+ #if __has_include(<lua.hpp>)
+ #define SOL_USE_LUA_HPP_I_ SOL_ON
+ #else
+ #define SOL_USE_LUA_HPP_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USE_LUA_HPP_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_CONTAINERS_START)
+ #define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START
+#elif defined(SOL_CONTAINERS_START_INDEX)
+ #define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START_INDEX
+#elif defined(SOL_CONTAINER_START_INDEX)
+ #define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINER_START_INDEX
+#else
+ #define SOL_CONTAINER_START_INDEX_I_ 1
+#endif
+
+#if defined (SOL_NO_MEMORY_ALIGNMENT)
+ #if (SOL_NO_MEMORY_ALIGNMENT != 0)
+ #define SOL_ALIGN_MEMORY_I_ SOL_OFF
+ #else
+ #define SOL_ALIGN_MEMORY_I_ SOL_ON
+ #endif
+#else
+ #define SOL_ALIGN_MEMORY_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_USE_BOOST)
+ #if (SOL_USE_BOOST != 0)
+ #define SOL_USE_BOOST_I_ SOL_ON
+ #else
+ #define SOL_USE_BOOST_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USE_BOOST_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_USE_UNSAFE_BASE_LOOKUP)
+ #if (SOL_USE_UNSAFE_BASE_LOOKUP != 0)
+ #define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_ON
+ #else
+ #define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_INSIDE_UNREAL)
+ #if (SOL_INSIDE_UNREAL != 0)
+ #define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_ON
+ #else
+ #define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_OFF
+ #endif
+#else
+ #if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
+ #define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_NO_COMPAT)
+ #if (SOL_NO_COMPAT != 0)
+ #define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_OFF
+ #else
+ #define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_ON
+ #endif
+#else
+ #define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ #if (SOL_GET_FUNCTION_POINTER_UNSAFE != 0)
+ #define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_ON
+ #else
+ #define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_CONTAINER_CHECK_IS_EXHAUSTIVE)
+ #if (SOL_CONTAINER_CHECK_IS_EXHAUSTIVE != 0)
+ #define SOL_CONTAINER_CHECK_IS_EXHAUSTIVE_I_ SOL_ON
+ #else
+ #define SOL_CONTAINER_CHECK_IS_EXHAUSTIVE_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_CONTAINER_CHECK_IS_EXHAUSTIVE_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_FUNCTION_CALL_VALUE_SEMANTICS)
+ #if (SOL_FUNCTION_CALL_VALUE_SEMANTICS != 0)
+ #define SOL_FUNCTION_CALL_VALUE_SEMANTICS_I_ SOL_ON
+ #else
+ #define SOL_FUNCTION_CALL_VALUE_SEMANTICS_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_FUNCTION_CALL_VALUE_SEMANTICS_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_MINGW_CCTYPE_IS_POISONED)
+ #if (SOL_MINGW_CCTYPE_IS_POISONED != 0)
+ #define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_ON
+ #else
+ #define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_OFF
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_MINGW) && defined(__GNUC__) && (__GNUC__ < 6)
+ // MinGW is off its rocker in some places...
+ #define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_CHAR8_T)
+ #if (SOL_CHAR8_T != 0)
+ #define SOL_CHAR8_T_I_ SOL_ON
+ #else
+ #define SOL_CHAR8_T_I_ SOL_OFF
+ #endif
+#else
+ #if defined(__cpp_char8_t)
+ #define SOL_CHAR8_T_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_CHAR8_T_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+ #include <boost/version.hpp>
+
+ #if BOOST_VERSION >= 107500 // Since Boost 1.75.0 boost::none is constexpr
+ #define SOL_BOOST_NONE_CONSTEXPR_I_ constexpr
+ #else
+ #define SOL_BOOST_NONE_CONSTEXPR_I_ const
+ #endif // BOOST_VERSION
+#else
+ // assume boost isn't using a garbage version
+ #define SOL_BOOST_NONE_CONSTEXPR_I_ constexpr
+#endif
+
+#if defined(SOL2_CI)
+ #if (SOL2_CI != 0)
+ #define SOL2_CI_I_ SOL_ON
+ #else
+ #define SOL2_CI_I_ SOL_OFF
+ #endif
+#else
+ #define SOL2_CI_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_ASSERT)
+ #define SOL_USER_ASSERT_I_ SOL_ON
+#else
+ #define SOL_USER_ASSERT_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_ASSERT_MSG)
+ #define SOL_USER_ASSERT_MSG_I_ SOL_ON
+#else
+ #define SOL_USER_ASSERT_MSG_I_ SOL_DEFAULT_OFF
+#endif
+
+// beginning of sol/prologue.hpp
+
+#if defined(SOL_PROLOGUE_I_)
+ #error "[sol2] Library Prologue was already included in translation unit and not properly ended with an epilogue."
+#endif
+
+#define SOL_PROLOGUE_I_ 1
+
+#if SOL_IS_ON(SOL_BUILD_CXX_MODE)
+ #define _FWD(...) static_cast<decltype( __VA_ARGS__ )&&>( __VA_ARGS__ )
+
+ #if SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ #define _MOVE(...) static_cast<__typeof( __VA_ARGS__ )&&>( __VA_ARGS__ )
+ #else
+ #include <type_traits>
+
+ #define _MOVE(...) static_cast<::std::remove_reference_t<( __VA_ARGS__ )>&&>( __VA_OPT__(,) )
+ #endif
+#endif
+
+// end of sol/prologue.hpp
+
+// beginning of sol/epilogue.hpp
+
+#if !defined(SOL_PROLOGUE_I_)
+ #error "[sol2] Library Prologue is missing from this translation unit."
+#else
+ #undef SOL_PROLOGUE_I_
+#endif
+
+#if SOL_IS_ON(SOL_BUILD_CXX_MODE)
+ #undef _FWD
+ #undef _MOVE
+#endif
+
+// end of sol/epilogue.hpp
+
+// beginning of sol/detail/build_version.hpp
+
+#if defined(SOL_DLL)
+ #if (SOL_DLL != 0)
+ #define SOL_DLL_I_ SOL_ON
+ #else
+ #define SOL_DLL_I_ SOL_OFF
+ #endif
+#elif SOL_IS_ON(SOL_COMPILER_VCXX) && (defined(DLL_) || defined(_DLL))
+ #define SOL_DLL_I_ SOL_DEFAULT_ON
+#else
+ #define SOL_DLL_I_ SOL_DEFAULT_OFF
+#endif // DLL definition
+
+#if defined(SOL_HEADER_ONLY)
+ #if (SOL_HEADER_ONLY != 0)
+ #define SOL_HEADER_ONLY_I_ SOL_ON
+ #else
+ #define SOL_HEADER_ONLY_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_HEADER_ONLY_I_ SOL_DEFAULT_OFF
+#endif // Header only library
+
+#if defined(SOL_BUILD)
+ #if (SOL_BUILD != 0)
+ #define SOL_BUILD_I_ SOL_ON
+ #else
+ #define SOL_BUILD_I_ SOL_OFF
+ #endif
+#elif SOL_IS_ON(SOL_HEADER_ONLY)
+ #define SOL_BUILD_I_ SOL_DEFAULT_OFF
+#else
+ #define SOL_BUILD_I_ SOL_DEFAULT_ON
+#endif
+
+#if defined(SOL_UNITY_BUILD)
+ #if (SOL_UNITY_BUILD != 0)
+ #define SOL_UNITY_BUILD_I_ SOL_ON
+ #else
+ #define SOL_UNITY_BUILD_I_ SOL_OFF
+ #endif
+#else
+ #define SOL_UNITY_BUILD_I_ SOL_DEFAULT_OFF
+#endif // Header only library
+
+#if defined(SOL_C_FUNCTION_LINKAGE)
+ #define SOL_C_FUNCTION_LINKAGE_I_ SOL_C_FUNCTION_LINKAGE
+#else
+ #if SOL_IS_ON(SOL_BUILD_CXX_MODE)
+ // C++
+ #define SOL_C_FUNCTION_LINKAGE_I_ extern "C"
+ #else
+ // normal
+ #define SOL_C_FUNCTION_LINKAGE_I_
+ #endif // C++ or not
+#endif // Linkage specification for C functions
+
+#if defined(SOL_API_LINKAGE)
+ #define SOL_API_LINKAGE_I_ SOL_API_LINKAGE
+#else
+ #if SOL_IS_ON(SOL_DLL)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX) || SOL_IS_ON(SOL_PLATFORM_WINDOWS) || SOL_IS_ON(SOL_PLATFORM_CYGWIN)
+ // MSVC Compiler; or, Windows, or Cygwin platforms
+ #if SOL_IS_ON(SOL_BUILD)
+ // Building the library
+ #if SOL_IS_ON(SOL_COMPILER_GCC)
+ // Using GCC
+ #define SOL_API_LINKAGE_I_ __attribute__((dllexport))
+ #else
+ // Using Clang, MSVC, etc...
+ #define SOL_API_LINKAGE_I_ __declspec(dllexport)
+ #endif
+ #else
+ #if SOL_IS_ON(SOL_COMPILER_GCC)
+ #define SOL_API_LINKAGE_I_ __attribute__((dllimport))
+ #else
+ #define SOL_API_LINKAGE_I_ __declspec(dllimport)
+ #endif
+ #endif
+ #else
+ // extern if building normally on non-MSVC
+ #define SOL_API_LINKAGE_I_ extern
+ #endif
+ #elif SOL_IS_ON(SOL_UNITY_BUILD)
+ // Built-in library, like how stb typical works
+ #if SOL_IS_ON(SOL_HEADER_ONLY)
+ // Header only, so functions are defined "inline"
+ #define SOL_API_LINKAGE_I_ inline
+ #else
+ // Not header only, so seperately compiled files
+ #define SOL_API_LINKAGE_I_ extern
+ #endif
+ #else
+ // Normal static library
+ #if SOL_IS_ON(SOL_BUILD_CXX_MODE)
+ #define SOL_API_LINKAGE_I_
+ #else
+ #define SOL_API_LINKAGE_I_ extern
+ #endif
+ #endif // DLL or not
+#endif // Build definitions
+
+#if defined(SOL_PUBLIC_FUNC_DECL)
+ #define SOL_PUBLIC_FUNC_DECL_I_ SOL_PUBLIC_FUNC_DECL
+#else
+ #define SOL_PUBLIC_FUNC_DECL_I_ SOL_API_LINKAGE_I_
+#endif
+
+#if defined(SOL_INTERNAL_FUNC_DECL_)
+ #define SOL_INTERNAL_FUNC_DECL_I_ SOL_INTERNAL_FUNC_DECL_
+#else
+ #define SOL_INTERNAL_FUNC_DECL_I_ SOL_API_LINKAGE_I_
+#endif
+
+#if defined(SOL_PUBLIC_FUNC_DEF)
+ #define SOL_PUBLIC_FUNC_DEF_I_ SOL_PUBLIC_FUNC_DEF
+#else
+ #define SOL_PUBLIC_FUNC_DEF_I_ SOL_API_LINKAGE_I_
+#endif
+
+#if defined(SOL_INTERNAL_FUNC_DEF)
+ #define SOL_INTERNAL_FUNC_DEF_I_ SOL_INTERNAL_FUNC_DEF
+#else
+ #define SOL_INTERNAL_FUNC_DEF_I_ SOL_API_LINKAGE_I_
+#endif
+
+#if defined(SOL_FUNC_DECL)
+ #define SOL_FUNC_DECL_I_ SOL_FUNC_DECL
+#elif SOL_IS_ON(SOL_HEADER_ONLY)
+ #define SOL_FUNC_DECL_I_
+#elif SOL_IS_ON(SOL_DLL)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if SOL_IS_ON(SOL_BUILD)
+ #define SOL_FUNC_DECL_I_ extern __declspec(dllexport)
+ #else
+ #define SOL_FUNC_DECL_I_ extern __declspec(dllimport)
+ #endif
+ #elif SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ #define SOL_FUNC_DECL_I_ extern __attribute__((visibility("default")))
+ #else
+ #define SOL_FUNC_DECL_I_ extern
+ #endif
+#endif
+
+#if defined(SOL_FUNC_DEFN)
+ #define SOL_FUNC_DEFN_I_ SOL_FUNC_DEFN
+#elif SOL_IS_ON(SOL_HEADER_ONLY)
+ #define SOL_FUNC_DEFN_I_ inline
+#elif SOL_IS_ON(SOL_DLL)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if SOL_IS_ON(SOL_BUILD)
+ #define SOL_FUNC_DEFN_I_ __declspec(dllexport)
+ #else
+ #define SOL_FUNC_DEFN_I_ __declspec(dllimport)
+ #endif
+ #elif SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ #define SOL_FUNC_DEFN_I_ __attribute__((visibility("default")))
+ #else
+ #define SOL_FUNC_DEFN_I_
+ #endif
+#endif
+
+#if defined(SOL_HIDDEN_FUNC_DECL)
+ #define SOL_HIDDEN_FUNC_DECL_I_ SOL_HIDDEN_FUNC_DECL
+#elif SOL_IS_ON(SOL_HEADER_ONLY)
+ #define SOL_HIDDEN_FUNC_DECL_I_
+#elif SOL_IS_ON(SOL_DLL)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if SOL_IS_ON(SOL_BUILD)
+ #define SOL_HIDDEN_FUNC_DECL_I_ extern __declspec(dllexport)
+ #else
+ #define SOL_HIDDEN_FUNC_DECL_I_ extern __declspec(dllimport)
+ #endif
+ #elif SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ #define SOL_HIDDEN_FUNC_DECL_I_ extern __attribute__((visibility("default")))
+ #else
+ #define SOL_HIDDEN_FUNC_DECL_I_ extern
+ #endif
+#endif
+
+#if defined(SOL_HIDDEN_FUNC_DEFN)
+ #define SOL_HIDDEN_FUNC_DEFN_I_ SOL_HIDDEN_FUNC_DEFN
+#elif SOL_IS_ON(SOL_HEADER_ONLY)
+ #define SOL_HIDDEN_FUNC_DEFN_I_ inline
+#elif SOL_IS_ON(SOL_DLL)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX)
+ #if SOL_IS_ON(SOL_BUILD)
+ #define SOL_HIDDEN_FUNC_DEFN_I_
+ #else
+ #define SOL_HIDDEN_FUNC_DEFN_I_
+ #endif
+ #elif SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ #define SOL_HIDDEN_FUNC_DEFN_I_ __attribute__((visibility("hidden")))
+ #else
+ #define SOL_HIDDEN_FUNC_DEFN_I_
+ #endif
+#endif
+
+// end of sol/detail/build_version.hpp
+
+// end of sol/version.hpp
+
+#if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE)
+#ifdef check
+#pragma push_macro("check")
+#undef check
+#endif
+#endif // Unreal Engine 4 Bullshit
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wshadow"
+#pragma GCC diagnostic ignored "-Wconversion"
+#if __GNUC__ > 6
+#pragma GCC diagnostic ignored "-Wnoexcept-type"
+#endif
+#elif SOL_IS_ON(SOL_COMPILER_CLANG)
+#elif SOL_IS_ON(SOL_COMPILER_VCXX)
+#pragma warning(push)
+#pragma warning(disable : 4505) // unreferenced local function has been removed GEE THANKS
+#endif // clang++ vs. g++ vs. VC++
+
+// beginning of sol/forward.hpp
+
+#ifndef SOL_FORWARD_HPP
+#define SOL_FORWARD_HPP
+
+#include <utility>
+#include <type_traits>
+#include <string_view>
+
+#if SOL_IS_ON(SOL_USING_CXX_LUA) || SOL_IS_ON(SOL_USING_CXX_LUAJIT)
+struct lua_State;
+#else
+extern "C" {
+struct lua_State;
+}
+#endif // C++ Mangling for Lua vs. Not
+
+namespace sol {
+
+ enum class type;
+
+ class stateless_reference;
+ template <bool b>
+ class basic_reference;
+ using reference = basic_reference<false>;
+ using main_reference = basic_reference<true>;
+ class stateless_stack_reference;
+ class stack_reference;
+
+ template <typename A>
+ class basic_bytecode;
+
+ struct lua_value;
+
+ struct proxy_base_tag;
+ template <typename>
+ struct proxy_base;
+ template <typename, typename>
+ struct table_proxy;
+
+ template <bool, typename>
+ class basic_table_core;
+ template <bool b>
+ using table_core = basic_table_core<b, reference>;
+ template <bool b>
+ using main_table_core = basic_table_core<b, main_reference>;
+ template <bool b>
+ using stack_table_core = basic_table_core<b, stack_reference>;
+ template <typename base_type>
+ using basic_table = basic_table_core<false, base_type>;
+ using table = table_core<false>;
+ using global_table = table_core<true>;
+ using main_table = main_table_core<false>;
+ using main_global_table = main_table_core<true>;
+ using stack_table = stack_table_core<false>;
+ using stack_global_table = stack_table_core<true>;
+
+ template <typename>
+ struct basic_lua_table;
+ using lua_table = basic_lua_table<reference>;
+ using stack_lua_table = basic_lua_table<stack_reference>;
+
+ template <typename T, typename base_type>
+ class basic_usertype;
+ template <typename T>
+ using usertype = basic_usertype<T, reference>;
+ template <typename T>
+ using stack_usertype = basic_usertype<T, stack_reference>;
+
+ template <typename base_type>
+ class basic_metatable;
+ using metatable = basic_metatable<reference>;
+ using stack_metatable = basic_metatable<stack_reference>;
+
+ template <typename base_t>
+ struct basic_environment;
+ using environment = basic_environment<reference>;
+ using main_environment = basic_environment<main_reference>;
+ using stack_environment = basic_environment<stack_reference>;
+
+ template <typename T, bool>
+ class basic_function;
+ template <typename T, bool, typename H>
+ class basic_protected_function;
+ using unsafe_function = basic_function<reference, false>;
+ using safe_function = basic_protected_function<reference, false, reference>;
+ using main_unsafe_function = basic_function<main_reference, false>;
+ using main_safe_function = basic_protected_function<main_reference, false, reference>;
+ using stack_unsafe_function = basic_function<stack_reference, false>;
+ using stack_safe_function = basic_protected_function<stack_reference, false, reference>;
+ using stack_aligned_unsafe_function = basic_function<stack_reference, true>;
+ using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>;
+ using protected_function = safe_function;
+ using main_protected_function = main_safe_function;
+ using stack_protected_function = stack_safe_function;
+ using stack_aligned_protected_function = stack_aligned_safe_function;
+#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS)
+ using function = protected_function;
+ using main_function = main_protected_function;
+ using stack_function = stack_protected_function;
+ using stack_aligned_function = stack_aligned_safe_function;
+#else
+ using function = unsafe_function;
+ using main_function = main_unsafe_function;
+ using stack_function = stack_unsafe_function;
+ using stack_aligned_function = stack_aligned_unsafe_function;
+#endif
+ using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>;
+
+ struct unsafe_function_result;
+ struct protected_function_result;
+ using safe_function_result = protected_function_result;
+#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS)
+ using function_result = safe_function_result;
+#else
+ using function_result = unsafe_function_result;
+#endif
+
+ template <typename base_t>
+ class basic_object_base;
+ template <typename base_t>
+ class basic_object;
+ template <typename base_t>
+ class basic_userdata;
+ template <typename base_t>
+ class basic_lightuserdata;
+ template <typename base_t>
+ class basic_coroutine;
+ template <typename base_t>
+ class basic_packaged_coroutine;
+ template <typename base_t>
+ class basic_thread;
+
+ using object = basic_object<reference>;
+ using userdata = basic_userdata<reference>;
+ using lightuserdata = basic_lightuserdata<reference>;
+ using thread = basic_thread<reference>;
+ using coroutine = basic_coroutine<reference>;
+ using packaged_coroutine = basic_packaged_coroutine<reference>;
+ using main_object = basic_object<main_reference>;
+ using main_userdata = basic_userdata<main_reference>;
+ using main_lightuserdata = basic_lightuserdata<main_reference>;
+ using main_coroutine = basic_coroutine<main_reference>;
+ using stack_object = basic_object<stack_reference>;
+ using stack_userdata = basic_userdata<stack_reference>;
+ using stack_lightuserdata = basic_lightuserdata<stack_reference>;
+ using stack_thread = basic_thread<stack_reference>;
+ using stack_coroutine = basic_coroutine<stack_reference>;
+
+ struct stack_proxy_base;
+ struct stack_proxy;
+ struct variadic_args;
+ struct variadic_results;
+ struct stack_count;
+ struct this_state;
+ struct this_main_state;
+ struct this_environment;
+
+ class state_view;
+ class state;
+
+ template <typename T>
+ struct as_table_t;
+ template <typename T>
+ struct as_container_t;
+ template <typename T>
+ struct nested;
+ template <typename T>
+ struct light;
+ template <typename T>
+ struct user;
+ template <typename T>
+ struct as_args_t;
+ template <typename T>
+ struct protect_t;
+ template <typename F, typename... Policies>
+ struct policy_wrapper;
+
+ template <typename T>
+ struct usertype_traits;
+ template <typename T>
+ struct unique_usertype_traits;
+
+ template <typename... Args>
+ struct types {
+ typedef std::make_index_sequence<sizeof...(Args)> indices;
+ static constexpr std::size_t size() {
+ return sizeof...(Args);
+ }
+ };
+
+ template <typename T>
+ struct derive : std::false_type {
+ typedef types<> type;
+ };
+
+ template <typename T>
+ struct base : std::false_type {
+ typedef types<> type;
+ };
+
+ template <typename T>
+ struct weak_derive {
+ static bool value;
+ };
+
+ template <typename T>
+ bool weak_derive<T>::value = false;
+
+ namespace stack {
+ struct record;
+ }
+
+#if SOL_IS_OFF(SOL_USE_BOOST)
+ template <class T>
+ class optional;
+
+ template <class T>
+ class optional<T&>;
+#endif
+
+ using check_handler_type = int(lua_State*, int, type, type, const char*);
+
+} // namespace sol
+
+#define SOL_BASE_CLASSES(T, ...) \
+ namespace sol { \
+ template <> \
+ struct base<T> : std::true_type { \
+ typedef ::sol::types<__VA_ARGS__> type; \
+ }; \
+ } \
+ static_assert(true, "")
+#define SOL_DERIVED_CLASSES(T, ...) \
+ namespace sol { \
+ template <> \
+ struct derive<T> : std::true_type { \
+ typedef ::sol::types<__VA_ARGS__> type; \
+ }; \
+ } \
+ static_assert(true, "")
+
+#endif // SOL_FORWARD_HPP
+// end of sol/forward.hpp
+
+// beginning of sol/forward_detail.hpp
+
+#ifndef SOL_FORWARD_DETAIL_HPP
+#define SOL_FORWARD_DETAIL_HPP
+
+// beginning of sol/traits.hpp
+
+// beginning of sol/tuple.hpp
+
+// beginning of sol/base_traits.hpp
+
+#include <type_traits>
+
+namespace sol {
+ namespace detail {
+ struct unchecked_t { };
+ const unchecked_t unchecked = unchecked_t {};
+ } // namespace detail
+
+ namespace meta {
+ using sfinae_yes_t = std::true_type;
+ using sfinae_no_t = std::false_type;
+
+ template <typename...>
+ using void_t = void;
+
+ template <typename T>
+ using unqualified = std::remove_cv<std::remove_reference_t<T>>;
+
+ template <typename T>
+ using unqualified_t = typename unqualified<T>::type;
+
+ namespace meta_detail {
+ template <typename T>
+ struct unqualified_non_alias : unqualified<T> { };
+
+ template <template <class...> class Test, class, class... Args>
+ struct is_detected : std::false_type { };
+
+ template <template <class...> class Test, class... Args>
+ struct is_detected<Test, void_t<Test<Args...>>, Args...> : std::true_type { };
+ } // namespace meta_detail
+
+ template <template <class...> class Trait, class... Args>
+ using is_detected = typename meta_detail::is_detected<Trait, void, Args...>::type;
+
+ template <template <class...> class Trait, class... Args>
+ constexpr inline bool is_detected_v = is_detected<Trait, Args...>::value;
+
+ template <typename _Default, typename _Void, template <typename...> typename _Op, typename... _Args>
+ class detector {
+ public:
+ using value_t = ::std::false_type;
+ using type = _Default;
+ };
+
+ template <typename _Default, template <typename...> typename _Op, typename... _Args>
+ class detector<_Default, void_t<_Op<_Args...>>, _Op, _Args...> {
+ public:
+ using value_t = ::std::true_type;
+ using type = _Op<_Args...>;
+ };
+
+ class nonesuch {
+ public:
+ ~nonesuch() = delete;
+ nonesuch(nonesuch const&) = delete;
+ nonesuch& operator=(nonesuch const&) = delete;
+ };
+
+ template <template <typename...> typename _Op, typename... _Args>
+ using detected_t = typename detector<nonesuch, void, _Op, _Args...>::type;
+
+ template <typename _Default, template <typename...> typename _Op, typename... _Args>
+ using detected_or = detector<_Default, void, _Op, _Args...>;
+
+ template <typename _Default, template <typename...> typename _Op, typename... _Args>
+ using detected_or_t = typename detector<_Default, void, _Op, _Args...>::type;
+
+ template <typename _Default, template <typename...> typename _Op, typename... _Args>
+ constexpr inline bool detected_or_v = detector<_Default, void, _Op, _Args...>::value;
+
+ template <std::size_t I>
+ using index_value = std::integral_constant<std::size_t, I>;
+
+ template <bool>
+ struct conditional {
+ template <typename T, typename U>
+ using type = T;
+ };
+
+ template <>
+ struct conditional<false> {
+ template <typename T, typename U>
+ using type = U;
+ };
+
+ template <bool B, typename T, typename U>
+ using conditional_t = typename conditional<B>::template type<T, U>;
+
+ namespace meta_detail {
+ template <typename T, template <typename...> class Templ>
+ struct is_specialization_of : std::false_type { };
+ template <typename... T, template <typename...> class Templ>
+ struct is_specialization_of<Templ<T...>, Templ> : std::true_type { };
+ } // namespace meta_detail
+
+ template <typename T, template <typename...> class Templ>
+ using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>;
+
+ template <typename T, template <typename...> class Templ>
+ inline constexpr bool is_specialization_of_v = is_specialization_of<std::remove_cv_t<T>, Templ>::value;
+
+ template <typename T>
+ struct identity {
+ typedef T type;
+ };
+
+ template <typename T>
+ using identity_t = typename identity<T>::type;
+
+ template <typename T>
+ using is_builtin_type = std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value>;
+
+ namespace meta_detail {
+ template <typename T, typename = void>
+ struct has_internal_marker_impl : std::false_type { };
+ template <typename T>
+ struct has_internal_marker_impl<T, void_t<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>> : std::true_type { };
+
+ template <typename T>
+ using has_internal_marker = has_internal_marker_impl<T>;
+
+ template <typename T>
+ constexpr inline bool has_internal_marker_v = has_internal_marker<T>::value;
+ } // namespace meta_detail
+
+ } // namespace meta
+} // namespace sol
+
+// end of sol/base_traits.hpp
+
+#include <tuple>
+#include <cstddef>
+
+namespace sol {
+ namespace detail {
+ using swallow = std::initializer_list<int>;
+ } // namespace detail
+
+ namespace meta {
+ template <typename T>
+ using is_tuple = is_specialization_of<T, std::tuple>;
+
+ template <typename T>
+ constexpr inline bool is_tuple_v = is_tuple<T>::value;
+
+ namespace detail {
+ template <typename... Args>
+ struct tuple_types_ {
+ typedef types<Args...> type;
+ };
+
+ template <typename... Args>
+ struct tuple_types_<std::tuple<Args...>> {
+ typedef types<Args...> type;
+ };
+ } // namespace detail
+
+ template <typename... Args>
+ using tuple_types = typename detail::tuple_types_<Args...>::type;
+
+ template <typename Arg>
+ struct pop_front_type;
+
+ template <typename Arg>
+ using pop_front_type_t = typename pop_front_type<Arg>::type;
+
+ template <typename... Args>
+ struct pop_front_type<types<Args...>> {
+ typedef void front_type;
+ typedef types<Args...> type;
+ };
+
+ template <typename Arg, typename... Args>
+ struct pop_front_type<types<Arg, Args...>> {
+ typedef Arg front_type;
+ typedef types<Args...> type;
+ };
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
+
+ } // namespace meta
+} // namespace sol
+
+// end of sol/tuple.hpp
+
+// beginning of sol/bind_traits.hpp
+
+namespace sol { namespace meta {
+ namespace meta_detail {
+ template <typename F>
+ using detect_deducible_signature = decltype(&F::operator());
+ } // namespace meta_detail
+
+ template <typename F>
+ using call_operator_deducible = typename is_detected<meta_detail::detect_deducible_signature, F>::type;
+
+ template <typename F>
+ constexpr inline bool call_operator_deducible_v = call_operator_deducible<F>::value;
+
+ namespace meta_detail {
+
+ template <std::size_t I, typename T>
+ struct void_tuple_element : meta::tuple_element<I, T> { };
+
+ template <std::size_t I>
+ struct void_tuple_element<I, std::tuple<>> {
+ typedef void type;
+ };
+
+ template <std::size_t I, typename T>
+ using void_tuple_element_t = typename void_tuple_element<I, T>::type;
+
+ template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args>
+ struct basic_traits {
+ private:
+ using first_type = meta::conditional_t<std::is_void<T>::value, int, T>&;
+
+ public:
+ inline static constexpr const bool is_noexcept = it_is_noexcept;
+ inline static constexpr bool is_member_function = std::is_void<T>::value;
+ inline static constexpr bool has_c_var_arg = has_c_variadic;
+ inline static constexpr std::size_t arity = sizeof...(Args);
+ inline static constexpr std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value);
+ typedef types<Args...> args_list;
+ typedef std::tuple<Args...> args_tuple;
+ typedef T object_type;
+ typedef R return_type;
+ typedef tuple_types<R> returns_list;
+ typedef R(function_type)(Args...);
+ typedef meta::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
+ typedef meta::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
+ typedef meta::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type;
+ typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
+ template <std::size_t i>
+ using arg_at = void_tuple_element_t<i, args_tuple>;
+ };
+
+ template <typename Signature, bool b = call_operator_deducible<Signature>::value>
+ struct fx_traits : public basic_traits<false, false, void, void> { };
+
+ // Free Functions
+ template <typename R, typename... Args>
+ struct fx_traits<R(Args...), false> : public basic_traits<false, false, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args...);
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R (*)(Args...), false> : public basic_traits<false, false, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args...);
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R(Args..., ...), false> : public basic_traits<false, true, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args..., ...);
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R (*)(Args..., ...), false> : public basic_traits<false, true, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args..., ...);
+ };
+
+ // Member Functions
+ /* C-Style Variadics */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...), false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...);
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...), false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...);
+ };
+
+ /* Const Volatile */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile;
+ };
+
+ /* Member Function Qualifiers */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...)&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) &;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...)&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) &;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...)&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) &&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...)&&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) &&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const&&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const&&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const&&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile&&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : public basic_traits<false, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&;
+ };
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+
+ template <typename R, typename... Args>
+ struct fx_traits<R(Args...) noexcept, false> : public basic_traits<true, false, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args...) noexcept;
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R (*)(Args...) noexcept, false> : public basic_traits<true, false, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args...) noexcept;
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R(Args..., ...) noexcept, false> : public basic_traits<true, true, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args..., ...) noexcept;
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R (*)(Args..., ...) noexcept, false> : public basic_traits<true, true, void, R, Args...> {
+ typedef R (*function_pointer_type)(Args..., ...) noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) noexcept;
+ };
+
+ /* Const Volatile */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...)& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) & noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...)& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) & noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...)&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) && noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...)&& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) && noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const&& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
+ };
+
+#endif // noexcept is part of a function's type
+
+#if SOL_IS_ON(SOL_COMPILER_VCXX) && SOL_IS_ON(SOL_PLATFORM_X86)
+ template <typename R, typename... Args>
+ struct fx_traits<R __stdcall(Args...), false> : public basic_traits<false, false, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args...);
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R(__stdcall*)(Args...), false> : public basic_traits<false, false, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args...);
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...), false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...);
+ };
+
+ /* Const Volatile */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile;
+ };
+
+ /* Member Function Qualifiers */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...)&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) &;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) &&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const&&;
+ };
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : public basic_traits<false, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&;
+ };
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+
+ template <typename R, typename... Args>
+ struct fx_traits<R __stdcall(Args...) noexcept, false> : public basic_traits<true, false, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R(__stdcall*)(Args...) noexcept, false> : public basic_traits<true, false, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
+ };
+
+ /* __stdcall cannot be applied to functions with varargs*/
+ /*template <typename R, typename... Args>
+ struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : public basic_traits<true, true, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
+ };
+
+ template <typename R, typename... Args>
+ struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : public basic_traits<true, true, void, R, Args...> {
+ typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept;
+ };*/
+
+ /* Const Volatile */
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...)& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...)&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept;
+ };*/
+
+ template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : public basic_traits<true, false, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept;
+ };
+
+ /* __stdcall does not work with varargs */
+ /*template <typename T, typename R, typename... Args>
+ struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : public basic_traits<true, true, T, R, Args...> {
+ typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
+ };*/
+#endif // noexcept is part of a function's type
+#endif // __stdcall x86 VC++ bug
+
+ template <typename Signature>
+ struct fx_traits<Signature, true> : public fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> { };
+
+ template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
+ struct callable_traits : public fx_traits<std::decay_t<Signature>> { };
+
+ template <typename R, typename T>
+ struct callable_traits<R(T::*), true> {
+ typedef meta::conditional_t<std::is_array_v<R>, std::add_lvalue_reference_t<R>, R> return_type;
+ typedef return_type Arg;
+ typedef T object_type;
+ using signature_type = R(T::*);
+ inline static constexpr bool is_noexcept = false;
+ inline static constexpr bool is_member_function = false;
+ inline static constexpr std::size_t arity = 1;
+ inline static constexpr std::size_t free_arity = 2;
+ typedef std::tuple<Arg> args_tuple;
+ typedef types<Arg> args_list;
+ typedef types<T, Arg> free_args_list;
+ typedef meta::tuple_types<return_type> returns_list;
+ typedef return_type(function_type)(T&, return_type);
+ typedef return_type (*function_pointer_type)(T&, Arg);
+ typedef return_type (*free_function_pointer_type)(T&, Arg);
+ template <std::size_t i>
+ using arg_at = void_tuple_element_t<i, args_tuple>;
+ };
+
+ } // namespace meta_detail
+
+ template <typename Signature>
+ using bind_traits = meta_detail::callable_traits<Signature>;
+
+ namespace meta_detail {
+ template <typename, bool>
+ struct is_probably_stateless_lambda : std::false_type { };
+
+ template <typename T>
+ struct is_probably_stateless_lambda<T, true> : std::is_convertible<T, typename bind_traits<T>::function_type*>::type { };
+ } // namespace meta_detail
+
+ template <typename T>
+ using is_probably_stateless_lambda = typename meta_detail::is_probably_stateless_lambda<T, std::is_empty_v<T> && call_operator_deducible_v<T>>::type;
+
+ template <typename T>
+ inline constexpr bool is_probably_stateless_lambda_v = is_probably_stateless_lambda<T>::value;
+
+ template <typename Signature>
+ using function_args_t = typename bind_traits<Signature>::args_list;
+
+ template <typename Signature>
+ using function_signature_t = typename bind_traits<Signature>::signature_type;
+
+ template <typename Signature>
+ using function_return_t = typename bind_traits<Signature>::return_type;
+}} // namespace sol::meta
+
+// end of sol/bind_traits.hpp
+
+// beginning of sol/pointer_like.hpp
+
+#include <utility>
+#include <type_traits>
+#include <memory>
+
+namespace sol {
+
+ namespace meta {
+ namespace meta_detail {
+ template <typename T>
+ using is_dereferenceable_test = decltype(*std::declval<T>());
+
+ template <typename T>
+ using is_explicitly_dereferenceable_test = decltype(std::declval<T>().operator*());
+ } // namespace meta_detail
+
+ template <typename T>
+ using is_pointer_like = std::integral_constant<bool,
+ !std::is_array_v<T> && (std::is_pointer_v<T> || is_detected_v<meta_detail::is_explicitly_dereferenceable_test, T>)>;
+
+ template <typename T>
+ constexpr inline bool is_pointer_like_v = is_pointer_like<T>::value;
+ } // namespace meta
+
+ namespace detail {
+
+ template <typename T>
+ auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
+ return std::forward<T>(item);
+ }
+
+ template <typename T>
+ T& unwrap(std::reference_wrapper<T> arg) {
+ return arg.get();
+ }
+
+ template <typename T>
+ inline decltype(auto) deref(T&& item) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::is_pointer_like_v<Tu>) {
+ return *std::forward<T>(item);
+ }
+ else {
+ return std::forward<T>(item);
+ }
+ }
+
+ template <typename T>
+ inline decltype(auto) deref_move_only(T&& item) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::is_pointer_like_v<Tu> && !std::is_pointer_v<Tu> && !std::is_copy_constructible_v<Tu>) {
+ return *std::forward<T>(item);
+ }
+ else {
+ return std::forward<T>(item);
+ }
+ }
+
+ template <typename T>
+ inline T* ptr(T& val) {
+ return std::addressof(val);
+ }
+
+ template <typename T>
+ inline T* ptr(std::reference_wrapper<T> val) {
+ return std::addressof(val.get());
+ }
+
+ template <typename T>
+ inline T* ptr(T* val) {
+ return val;
+ }
+ } // namespace detail
+} // namespace sol
+
+// end of sol/pointer_like.hpp
+
+// beginning of sol/string_view.hpp
+
+#include <cstddef>
+#include <string>
+#include <string_view>
+#include <functional>
+
+namespace sol {
+ template <typename C, typename T = std::char_traits<C>>
+ using basic_string_view = std::basic_string_view<C, T>;
+
+ typedef std::string_view string_view;
+ typedef std::wstring_view wstring_view;
+ typedef std::u16string_view u16string_view;
+ typedef std::u32string_view u32string_view;
+ typedef std::hash<std::string_view> string_view_hash;
+} // namespace sol
+
+// end of sol/string_view.hpp
+
+#include <type_traits>
+#include <cstdint>
+#include <memory>
+#include <functional>
+#include <array>
+#include <iterator>
+#include <iosfwd>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // variant is weird on XCode, thanks XCode
+
+namespace sol { namespace meta {
+ template <typename T>
+ struct unwrapped {
+ typedef T type;
+ };
+
+ template <typename T>
+ struct unwrapped<std::reference_wrapper<T>> {
+ typedef T type;
+ };
+
+ template <typename T>
+ using unwrapped_t = typename unwrapped<T>::type;
+
+ template <typename T>
+ struct unwrap_unqualified : unwrapped<unqualified_t<T>> { };
+
+ template <typename T>
+ using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
+
+ template <typename T>
+ struct remove_member_pointer;
+
+ template <typename R, typename T>
+ struct remove_member_pointer<R T::*> {
+ typedef R type;
+ };
+
+ template <typename R, typename T>
+ struct remove_member_pointer<R T::*const> {
+ typedef R type;
+ };
+
+ template <typename T>
+ using remove_member_pointer_t = remove_member_pointer<T>;
+
+ template <typename T, typename...>
+ struct all_same : std::true_type { };
+
+ template <typename T, typename U, typename... Args>
+ struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> { };
+
+ template <typename T, typename...>
+ struct any_same : std::false_type { };
+
+ template <typename T, typename U, typename... Args>
+ struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> { };
+
+ template <typename T, typename... Args>
+ constexpr inline bool any_same_v = any_same<T, Args...>::value;
+
+ template <bool B>
+ using boolean = std::integral_constant<bool, B>;
+
+ template <bool B>
+ constexpr inline bool boolean_v = boolean<B>::value;
+
+ template <typename T>
+ using neg = boolean<!T::value>;
+
+ template <typename T>
+ constexpr inline bool neg_v = neg<T>::value;
+
+ template <typename... Args>
+ struct all : boolean<true> { };
+
+ template <typename T, typename... Args>
+ struct all<T, Args...> : std::conditional_t<T::value, all<Args...>, boolean<false>> { };
+
+ template <typename... Args>
+ struct any : boolean<false> { };
+
+ template <typename T, typename... Args>
+ struct any<T, Args...> : std::conditional_t<T::value, boolean<true>, any<Args...>> { };
+
+ template <typename... Args>
+ constexpr inline bool all_v = all<Args...>::value;
+
+ template <typename... Args>
+ constexpr inline bool any_v = any<Args...>::value;
+
+ enum class enable_t { _ };
+
+ constexpr const auto enabler = enable_t::_;
+
+ template <bool value, typename T = void>
+ using disable_if_t = std::enable_if_t<!value, T>;
+
+ template <typename... Args>
+ using enable = std::enable_if_t<all<Args...>::value, enable_t>;
+
+ template <typename... Args>
+ using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
+
+ template <typename... Args>
+ using enable_any = std::enable_if_t<any<Args...>::value, enable_t>;
+
+ template <typename... Args>
+ using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
+
+ template <typename V, typename... Vs>
+ struct find_in_pack_v : boolean<false> { };
+
+ template <typename V, typename Vs1, typename... Vs>
+ struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> { };
+
+ namespace meta_detail {
+ template <std::size_t I, typename T, typename... Args>
+ struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> { };
+
+ template <std::size_t I, typename T, typename T1, typename... Args>
+ struct index_in_pack<I, T, T1, Args...>
+ : conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> { };
+ } // namespace meta_detail
+
+ template <typename T, typename... Args>
+ struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> { };
+
+ template <typename T, typename List>
+ struct index_in : meta_detail::index_in_pack<0, T, List> { };
+
+ template <typename T, typename... Args>
+ struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> { };
+
+ template <std::size_t I, typename... Args>
+ struct at_in_pack { };
+
+ template <std::size_t I, typename... Args>
+ using at_in_pack_t = typename at_in_pack<I, Args...>::type;
+
+ template <std::size_t I, typename Arg, typename... Args>
+ struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> { };
+
+ template <typename Arg, typename... Args>
+ struct at_in_pack<0, Arg, Args...> {
+ typedef Arg type;
+ };
+
+ namespace meta_detail {
+ template <typename, typename TI>
+ using on_even = meta::boolean<(TI::value % 2) == 0>;
+
+ template <typename, typename TI>
+ using on_odd = meta::boolean<(TI::value % 2) == 1>;
+
+ template <typename, typename>
+ using on_always = std::true_type;
+
+ template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts>
+ struct count_when_for_pack : std::integral_constant<std::size_t, 0> { };
+ template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts>
+ struct count_when_for_pack<When, Limit, I, Pred, T, Ts...> : conditional_t < sizeof...(Ts)
+ == 0
+ || Limit<2, std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
+ count_when_for_pack<When, Limit - static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value),
+ I + static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value&& Pred<T>::value), Pred, Ts...>> { };
+ } // namespace meta_detail
+
+ template <template <typename...> class Pred, typename... Ts>
+ struct count_for_pack : meta_detail::count_when_for_pack<meta_detail::on_always, sizeof...(Ts), 0, Pred, Ts...> { };
+
+ template <template <typename...> class Pred, typename... Ts>
+ inline constexpr std::size_t count_for_pack_v = count_for_pack<Pred, Ts...>::value;
+
+ template <template <typename...> class Pred, typename List>
+ struct count_for;
+
+ template <template <typename...> class Pred, typename... Args>
+ struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> { };
+
+ template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
+ struct count_for_to_pack : meta_detail::count_when_for_pack<meta_detail::on_always, Limit, 0, Pred, Ts...> { };
+
+ template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
+ inline constexpr std::size_t count_for_to_pack_v = count_for_to_pack<Limit, Pred, Ts...>::value;
+
+ template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
+ struct count_when_for_to_pack : meta_detail::count_when_for_pack<When, Limit, 0, Pred, Ts...> { };
+
+ template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
+ inline constexpr std::size_t count_when_for_to_pack_v = count_when_for_to_pack<When, Limit, Pred, Ts...>::value;
+
+ template <template <typename...> class Pred, typename... Ts>
+ using count_even_for_pack = count_when_for_to_pack<meta_detail::on_even, sizeof...(Ts), Pred, Ts...>;
+
+ template <template <typename...> class Pred, typename... Ts>
+ inline constexpr std::size_t count_even_for_pack_v = count_even_for_pack<Pred, Ts...>::value;
+
+ template <template <typename...> class Pred, typename... Ts>
+ using count_odd_for_pack = count_when_for_to_pack<meta_detail::on_odd, sizeof...(Ts), Pred, Ts...>;
+
+ template <template <typename...> class Pred, typename... Ts>
+ inline constexpr std::size_t count_odd_for_pack_v = count_odd_for_pack<Pred, Ts...>::value;
+
+ template <typename... Args>
+ struct return_type {
+ typedef std::tuple<Args...> type;
+ };
+
+ template <typename T>
+ struct return_type<T> {
+ typedef T type;
+ };
+
+ template <>
+ struct return_type<> {
+ typedef void type;
+ };
+
+ template <typename... Args>
+ using return_type_t = typename return_type<Args...>::type;
+
+ namespace meta_detail {
+ template <typename>
+ struct always_true : std::true_type { };
+ struct is_invokable_tester {
+ template <typename Fun, typename... Args>
+ static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int);
+ template <typename...>
+ static std::false_type test(...);
+ };
+ } // namespace meta_detail
+
+ template <typename T>
+ struct is_invokable;
+ template <typename Fun, typename... Args>
+ struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) { };
+
+ namespace meta_detail {
+
+ template <typename T, typename = void>
+ struct is_invocable : std::is_function<std::remove_pointer_t<T>> { };
+
+ template <typename T>
+ struct is_invocable<T,
+ std::enable_if_t<std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
+ && std::is_same<decltype(void(&T::operator())), void>::value>> { };
+
+ template <typename T>
+ struct is_invocable<T,
+ std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
+ && std::is_destructible<unqualified_t<T>>::value>> {
+ struct F {
+ void operator()() {};
+ };
+ struct Derived : T, F { };
+ template <typename U, U>
+ struct Check;
+
+ template <typename V>
+ static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
+
+ template <typename>
+ static sfinae_yes_t test(...);
+
+ static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct is_invocable<T,
+ std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
+ && !std::is_destructible<unqualified_t<T>>::value>> {
+ struct F {
+ void operator()() {};
+ };
+ struct Derived : T, F {
+ ~Derived() = delete;
+ };
+ template <typename U, U>
+ struct Check;
+
+ template <typename V>
+ static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
+
+ template <typename>
+ static sfinae_yes_t test(...);
+
+ static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
+ };
+
+ struct has_begin_end_impl {
+ template <typename T, typename U = unqualified_t<T>, typename B = decltype(std::declval<U&>().begin()),
+ typename E = decltype(std::declval<U&>().end())>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_key_type_impl {
+ template <typename T, typename U = unqualified_t<T>, typename V = typename U::key_type>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_key_comp_impl {
+ template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().key_comp())>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_load_factor_impl {
+ template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().load_factor())>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_mapped_type_impl {
+ template <typename T, typename V = typename unqualified_t<T>::mapped_type>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_value_type_impl {
+ template <typename T, typename V = typename unqualified_t<T>::value_type>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_iterator_impl {
+ template <typename T, typename V = typename unqualified_t<T>::iterator>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ struct has_key_value_pair_impl {
+ template <typename T, typename U = unqualified_t<T>, typename V = typename U::value_type, typename F = decltype(std::declval<V&>().first),
+ typename S = decltype(std::declval<V&>().second)>
+ static std::true_type test(int);
+
+ template <typename...>
+ static std::false_type test(...);
+ };
+
+ template <typename T>
+ struct has_push_back_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_insert_with_iterator_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().insert(
+ std::declval<std::add_rvalue_reference_t<typename C::iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = !std::is_same_v<decltype(test<T>(0)), sfinae_no_t>;
+ };
+
+ template <typename T>
+ struct has_insert_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = !std::is_same_v<decltype(test<T>(0)), sfinae_no_t>;
+ };
+
+ template <typename T>
+ struct has_insert_after_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(),
+ std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_size_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().size())*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_max_size_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().max_size())*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_to_string_test {
+ private:
+ template <typename C>
+ static sfinae_yes_t test(decltype(std::declval<C>().to_string())*);
+ template <typename C>
+ static sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
+ };
+
+ template <typename T, typename U, typename = void>
+ class supports_op_less_test : public std::false_type { };
+ template <typename T, typename U>
+ class supports_op_less_test<T, U, void_t<decltype(std::declval<T&>() < std::declval<U&>())>>
+ : public std::integral_constant<bool,
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>
+#else
+ true
+#endif
+ > {
+ };
+
+ template <typename T, typename U, typename = void>
+ class supports_op_equal_test : public std::false_type { };
+ template <typename T, typename U>
+ class supports_op_equal_test<T, U, void_t<decltype(std::declval<T&>() == std::declval<U&>())>>
+ : public std::integral_constant<bool,
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>
+#else
+ true
+#endif
+ > {
+ };
+
+ template <typename T, typename U, typename = void>
+ class supports_op_less_equal_test : public std::false_type { };
+ template <typename T, typename U>
+ class supports_op_less_equal_test<T, U, void_t<decltype(std::declval<T&>() <= std::declval<U&>())>>
+ : public std::integral_constant<bool,
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>
+#else
+ true
+#endif
+ > {
+ };
+
+ template <typename T, typename U, typename = void>
+ class supports_op_left_shift_test : public std::false_type { };
+ template <typename T, typename U>
+ class supports_op_left_shift_test<T, U, void_t<decltype(std::declval<T&>() << std::declval<U&>())>> : public std::true_type { };
+
+ template <typename T, typename = void>
+ class supports_adl_to_string_test : public std::false_type { };
+ template <typename T>
+ class supports_adl_to_string_test<T, void_t<decltype(to_string(std::declval<const T&>()))>> : public std::true_type { };
+
+ template <typename T, bool b>
+ struct is_matched_lookup_impl : std::false_type { };
+ template <typename T>
+ struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> { };
+
+ template <typename T>
+ using non_void_t = meta::conditional_t<std::is_void_v<T>, ::sol::detail::unchecked_t, T>;
+
+ template <typename T>
+ using detect_sentinel = typename T::sentinel;
+ } // namespace meta_detail
+
+ template <typename T, typename Fallback>
+ class sentinel_or {
+ public:
+ using type = detected_or_t<Fallback, meta_detail::detect_sentinel, T>;
+ };
+
+ template <typename T, typename Fallback>
+ using sentinel_or_t = typename sentinel_or<T, Fallback>::type;
+
+ template <typename T, typename U = T>
+ class supports_op_less : public meta_detail::supports_op_less_test<T, U> { };
+
+ template <typename T, typename U = T>
+ class supports_op_equal : public meta_detail::supports_op_equal_test<T, U> { };
+
+ template <typename T, typename U = T>
+ class supports_op_less_equal : public meta_detail::supports_op_less_equal_test<T, U> { };
+
+ template <typename T, typename U = T>
+ class supports_op_left_shift : public meta_detail::supports_op_left_shift_test<T, U> { };
+
+ template <typename T>
+ class supports_adl_to_string : public meta_detail::supports_adl_to_string_test<T> { };
+
+ template <typename T>
+ class supports_to_string_member : public meta::boolean<meta_detail::has_to_string_test<meta_detail::non_void_t<T>>::value> { };
+
+ template <typename T>
+ using is_invocable = boolean<meta_detail::is_invocable<T>::value>;
+
+ template <typename T>
+ constexpr inline bool is_invocable_v = is_invocable<T>::value;
+
+ template <typename T>
+ struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) { };
+
+ template <typename T>
+ constexpr inline bool has_begin_end_v = has_begin_end<T>::value;
+
+ template <typename T>
+ struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_key_comp : decltype(meta_detail::has_key_comp_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_load_factor : decltype(meta_detail::has_load_factor_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) { };
+
+ template <typename T>
+ struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) { };
+
+ template <typename T>
+ using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>;
+
+ template <typename T>
+ using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>;
+
+ template <typename T>
+ using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>;
+
+ template <typename T>
+ using has_insert_with_iterator = meta::boolean<meta_detail::has_insert_with_iterator_test<T>::value>;
+
+ template <typename T>
+ using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>;
+
+ template <typename T>
+ using has_size = meta::boolean<meta_detail::has_size_test<T>::value>;
+
+ template <typename T>
+ using is_associative = meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>>;
+
+ template <typename T>
+ using is_lookup = meta::all<has_key_type<T>, has_value_type<T>>;
+
+ template <typename T>
+ using is_ordered = meta::all<has_key_comp<T>, meta::neg<has_load_factor<T>>>;
+
+ template <typename T>
+ using is_matched_lookup = meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value>;
+
+ template <typename T>
+ using is_initializer_list = meta::is_specialization_of<T, std::initializer_list>;
+
+ template <typename T>
+ constexpr inline bool is_initializer_list_v = is_initializer_list<T>::value;
+
+ template <typename T, typename CharT = char>
+ using is_string_literal_array_of = boolean<std::is_array_v<T> && std::is_same_v<std::remove_all_extents_t<T>, CharT>>;
+
+ template <typename T, typename CharT = char>
+ constexpr inline bool is_string_literal_array_of_v = is_string_literal_array_of<T, CharT>::value;
+
+ template <typename T>
+ using is_string_literal_array = boolean<std::is_array_v<T>
+ && any_same_v<std::remove_all_extents_t<T>, char,
+#if SOL_IS_ON(SOL_CHAR8_T)
+ char8_t,
+#endif
+ char16_t, char32_t, wchar_t>>;
+
+ template <typename T>
+ constexpr inline bool is_string_literal_array_v = is_string_literal_array<T>::value;
+
+ template <typename T, typename CharT>
+ struct is_string_of : std::false_type { };
+
+ template <typename CharT, typename CharTargetT, typename TraitsT, typename AllocT>
+ struct is_string_of<std::basic_string<CharT, TraitsT, AllocT>, CharTargetT> : std::is_same<CharT, CharTargetT> { };
+
+ template <typename T, typename CharT>
+ constexpr inline bool is_string_of_v = is_string_of<T, CharT>::value;
+
+ template <typename T, typename CharT>
+ struct is_string_view_of : std::false_type { };
+
+ template <typename CharT, typename CharTargetT, typename TraitsT>
+ struct is_string_view_of<std::basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> { };
+
+ template <typename T, typename CharT>
+ constexpr inline bool is_string_view_of_v = is_string_view_of<T, CharT>::value;
+
+ template <typename T>
+ using is_string_like
+ = meta::boolean<is_specialization_of_v<T, std::basic_string> || is_specialization_of_v<T, std::basic_string_view> || is_string_literal_array_v<T>>;
+
+ template <typename T>
+ constexpr inline bool is_string_like_v = is_string_like<T>::value;
+
+ template <typename T, typename CharT = char>
+ using is_string_constructible = meta::boolean<is_string_literal_array_of_v<T, CharT> || std::is_same_v<T, const CharT*> || std::is_same_v<T, CharT>
+ || is_string_of_v<T, CharT> || std::is_same_v<T, std::initializer_list<CharT>> || is_string_view_of_v<T, CharT> || std::is_null_pointer_v<T>>;
+
+ template <typename T, typename CharT = char>
+ constexpr inline bool is_string_constructible_v = is_string_constructible<T, CharT>::value;
+
+ template <typename T>
+ using is_string_like_or_constructible = meta::boolean<is_string_like_v<T> || is_string_constructible_v<T>>;
+
+ template <typename T>
+ struct is_pair : std::false_type { };
+
+ template <typename T1, typename T2>
+ struct is_pair<std::pair<T1, T2>> : std::true_type { };
+
+ template <typename T, typename Char>
+ using is_c_str_of = any<std::is_same<T, const Char*>, std::is_same<T, Char const* const>, std::is_same<T, Char*>, is_string_literal_array_of<T, Char>>;
+
+ template <typename T, typename Char>
+ constexpr inline bool is_c_str_of_v = is_c_str_of<T, Char>::value;
+
+ template <typename T>
+ using is_c_str = is_c_str_of<T, char>;
+
+ template <typename T>
+ constexpr inline bool is_c_str_v = is_c_str<T>::value;
+
+ template <typename T, typename Char>
+ using is_c_str_or_string_of = any<is_c_str_of<T, Char>, is_string_of<T, Char>>;
+
+ template <typename T, typename Char>
+ constexpr inline bool is_c_str_or_string_of_v = is_c_str_or_string_of<T, Char>::value;
+
+ template <typename T>
+ using is_c_str_or_string = is_c_str_or_string_of<T, char>;
+
+ template <typename T>
+ constexpr inline bool is_c_str_or_string_v = is_c_str_or_string<T>::value;
+
+ template <typename T>
+ struct is_move_only : all<neg<std::is_reference<T>>, neg<std::is_copy_constructible<unqualified_t<T>>>, std::is_move_constructible<unqualified_t<T>>> { };
+
+ template <typename T>
+ using is_not_move_only = neg<is_move_only<T>>;
+
+ namespace meta_detail {
+ template <typename T>
+ decltype(auto) force_tuple(T&& x) {
+ if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>) {
+ return std::forward<T>(x);
+ }
+ else {
+ return std::tuple<T>(std::forward<T>(x));
+ }
+ }
+ } // namespace meta_detail
+
+ template <typename... X>
+ decltype(auto) tuplefy(X&&... x) {
+ return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
+ }
+
+ template <typename T, typename = void>
+ struct iterator_tag {
+ using type = std::input_iterator_tag;
+ };
+
+ template <typename T>
+ struct iterator_tag<T, conditional_t<false, typename std::iterator_traits<T>::iterator_category, void>> {
+ using type = typename std::iterator_traits<T>::iterator_category;
+ };
+}} // namespace sol::meta
+
+// end of sol/traits.hpp
+
+namespace sol {
+ namespace detail {
+ const bool default_safe_function_calls =
+#if SOL_IS_ON(SOL_SAFE_FUNCTION_CALLS)
+ true;
+#else
+ false;
+#endif
+ } // namespace detail
+
+ namespace meta { namespace meta_detail {
+ }} // namespace meta::meta_detail
+
+ namespace stack { namespace stack_detail {
+ using undefined_method_func = void (*)(stack_reference);
+
+ template <typename T>
+ void set_undefined_methods_on(stack_reference);
+
+ struct undefined_metatable;
+ }} // namespace stack::stack_detail
+} // namespace sol
+
+#endif // SOL_FORWARD_DETAIL_HPP
+// end of sol/forward_detail.hpp
+
+// beginning of sol/assert.hpp
+
+#if SOL_IS_ON(SOL2_CI)
+
+struct pre_main {
+ pre_main() {
+#ifdef _MSC_VER
+ _set_abort_behavior(0, _WRITE_ABORT_MSG);
+#endif
+ }
+} inline sol2_ci_dont_lock_ci_please = {};
+
+#endif // Prevent lockup when doing Continuous Integration
+
+#if SOL_IS_ON(SOL_USER_ASSERT)
+ #define SOL_ASSERT(...) SOL_C_ASSERT(__VA_ARGS__)
+#else
+ #if SOL_IS_ON(SOL_DEBUG_BUILD)
+ #include <exception>
+ #include <iostream>
+ #include <cstdlib>
+
+ #define SOL_ASSERT(...) \
+ do { \
+ if (!(__VA_ARGS__)) { \
+ std::cerr << "Assertion `" #__VA_ARGS__ "` failed in " << __FILE__ << " line " << __LINE__ << std::endl; \
+ std::terminate(); \
+ } \
+ } while (false)
+ #else
+ #define SOL_ASSERT(...) \
+ do { \
+ if (false) { \
+ (void)(__VA_ARGS__); \
+ } \
+ } while (false)
+ #endif
+#endif
+
+#if SOL_IS_ON(SOL_USER_ASSERT_MSG)
+ #define SOL_ASSERT_MSG(message, ...) SOL_ASSERT_MSG(message, __VA_ARGS__)
+#else
+ #if SOL_IS_ON(SOL_DEBUG_BUILD)
+ #include <exception>
+ #include <iostream>
+ #include <cstdlib>
+
+ #define SOL_ASSERT_MSG(message, ...) \
+ do { \
+ if (!(__VA_ARGS__)) { \
+ std::cerr << "Assertion `" #__VA_ARGS__ "` failed in " << __FILE__ << " line " << __LINE__ << ": " << message << std::endl; \
+ std::terminate(); \
+ } \
+ } while (false)
+ #else
+ #define SOL_ASSERT_MSG(message, ...) \
+ do { \
+ if (false) { \
+ (void)(__VA_ARGS__); \
+ (void)sizeof(message); \
+ } \
+ } while (false)
+ #endif
+#endif
+
+// end of sol/assert.hpp
+
+// beginning of sol/bytecode.hpp
+
+// beginning of sol/compatibility.hpp
+
+// beginning of sol/compatibility/lua_version.hpp
+
+#if SOL_IS_ON(SOL_USING_CXX_LUA)
+ #include <lua.h>
+ #include <lualib.h>
+ #include <lauxlib.h>
+#elif SOL_IS_ON(SOL_USE_LUA_HPP)
+ #include <lua.hpp>
+#else
+ extern "C" {
+ #include <lua.h>
+ #include <lauxlib.h>
+ #include <lualib.h>
+ }
+#endif // C++ Mangling for Lua vs. Not
+
+#if defined(SOL_LUAJIT)
+ #if (SOL_LUAJIT != 0)
+ #define SOL_USE_LUAJIT_I_ SOL_ON
+ #else
+ #define SOL_USE_LUAJIT_I_ SOL_OFF
+ #endif
+#elif defined(LUAJIT_VERSION)
+ #define SOL_USE_LUAJIT_I_ SOL_ON
+#else
+ #define SOL_USE_LUAJIT_I_ SOL_DEFAULT_OFF
+#endif // luajit
+
+#if SOL_IS_ON(SOL_USING_CXX_LUAJIT)
+ #include <luajit.h>
+#elif SOL_IS_ON(SOL_USE_LUAJIT)
+ extern "C" {
+ #include <luajit.h>
+ }
+#endif // C++ LuaJIT ... whatever that means
+
+#if defined(SOL_LUAJIT_VERSION)
+ #define SOL_LUAJIT_VERSION_I_ SOL_LUAJIT_VERSION
+#elif SOL_IS_ON(SOL_USE_LUAJIT)
+ #define SOL_LUAJIT_VERSION_I_ LUAJIT_VERSION_NUM
+#else
+ #define SOL_LUAJIT_VERSION_I_ 0
+#endif
+
+#if defined(SOL_LUAJIT_FFI_DISABLED)
+ #define SOL_LUAJIT_FFI_DISABLED_I_ SOL_ON
+#elif defined(LUAJIT_DISABLE_FFI)
+ #define SOL_LUAJIT_FFI_DISABLED_I_ SOL_ON
+#else
+ #define SOL_LUAJIT_FFI_DISABLED_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(MOONJIT_VERSION)
+ #define SOL_USE_MOONJIT_I_ SOL_ON
+#else
+ #define SOL_USE_MOONJIT_I_ SOL_OFF
+#endif
+
+#if !defined(SOL_LUA_VERSION)
+ #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
+ #define SOL_LUA_VERSION LUA_VERSION_NUM
+ #elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+ #define SOL_LUA_VERSION LUA_VERSION_NUM
+ #elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM)
+ // Definitely 5.0
+ #define SOL_LUA_VERSION 500
+ #else
+ // ??? Not sure, assume latest?
+ #define SOL_LUA_VERSION 504
+ #endif // Lua Version 503, 502, 501 || luajit, 500
+#endif // SOL_LUA_VERSION
+
+#if defined(SOL_LUA_VERSION)
+ #define SOL_LUA_VERSION_I_ SOL_LUA_VERSION
+#else
+ #define SOL_LUA_VERSION_I_ 504
+#endif
+
+#if defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE)
+ #if (SOL_EXCEPTIONS_ALWAYS_UNSAFE != 0)
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
+ #else
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
+ #endif
+#elif defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
+ #if (SOL_EXCEPTIONS_SAFE_PROPAGATION != 0)
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
+ #else
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
+ #endif
+#elif SOL_LUAJIT_VERSION_I_ >= 20100
+ // LuaJIT 2.1.0-beta3 and better have exception support locked in for all platforms (mostly)
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
+#elif SOL_LUAJIT_VERSION_I_ >= 20000
+ // LuaJIT 2.0.x have exception support only on x64 builds
+ #if SOL_IS_ON(SOL_PLATFORM_X64)
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
+ #endif
+#else
+ // otherwise, there is no exception safety for
+ // shoving exceptions through Lua and errors should
+ // always be serialized
+ #define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_OFF
+#endif
+
+#if defined(SOL_EXCEPTIONS_CATCH_ALL)
+ #if (SOL_EXCEPTIONS_CATCH_ALL != 0)
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_ON
+ #else
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_ON(SOL_USE_LUAJIT)
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_DEFAULT_OFF
+ #elif SOL_IS_ON(SOL_USING_CXX_LUAJIT)
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_DEFAULT_OFF
+ #elif SOL_IS_ON(SOL_USING_CXX_LUA)
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_DEFAULT_OFF
+ #else
+ #define SOL_EXCEPTIONS_CATCH_ALL_I_ SOL_DEFAULT_ON
+ #endif
+#endif
+
+#if defined(SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE)
+ #if (SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE != 0)
+ #define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
+ #else
+ #define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS) && SOL_IS_ON(SOL_USE_LUAJIT)
+ #define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
+ #else
+ #define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined(SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION)
+ #if (SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION != 0)
+ #define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
+ #else
+ #define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_OFF
+ #endif
+#else
+ #if SOL_IS_OFF(SOL_USE_LUAJIT) && (SOL_LUA_VERSION > 501)
+ #define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
+ #else
+ #define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined (SOL_LUA_BIT32_LIB)
+ #if SOL_LUA_BIT32_LIB != 0
+ #define SOL_LUA_BIT32_LIB_I_ SOL_ON
+ #else
+ #define SOL_LUA_BIT32_LIB_I_ SOL_OFF
+ #endif
+#else
+ // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
+ // Lua 5.2, or other versions of Lua with the compat flag, or Lua that is not 5.2 with the specific define (5.4.1 either removed it entirely or broke it)
+ #if (SOL_LUA_VERSION_I_ == 502)
+ #define SOL_LUA_BIT32_LIB_I_ SOL_ON
+ #elif defined(LUA_COMPAT_BITLIB)
+ #define SOL_LUA_BIT32_LIB_I_ SOL_ON
+ #elif (SOL_LUA_VERSION_I_ < 504 && defined(LUA_COMPAT_5_2))
+ #define SOL_LUA_BIT32_LIB_I_ SOL_ON
+ #else
+ #define SOL_LUA_BIT32_LIB_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+#if defined (SOL_LUA_NIL_IN_TABLES)
+ #if SOL_LUA_NIL_IN_TABLES != 0
+ #define SOL_LUA_NIL_IN_TABLES_I_ SOL_ON
+ #else
+ #define SOL_LUA_NIL_IN_TABLES_I_ SOL_OFF
+ #endif
+#else
+ #if defined(LUA_NILINTABLE) && (LUA_NILINTABLE != 0)
+ #define SOL_LUA_NIL_IN_TABLES_I_ SOL_DEFAULT_ON
+ #else
+ #define SOL_LUA_NIL_IN_TABLES_I_ SOL_DEFAULT_OFF
+ #endif
+#endif
+
+// end of sol/compatibility/lua_version.hpp
+
+#if SOL_IS_ON(SOL_USE_COMPATIBILITY_LAYER)
+
+#if SOL_IS_ON(SOL_USING_CXX_LUA) || SOL_IS_ON(SOL_USING_CXX_LUAJIT)
+ #ifndef COMPAT53_LUA_CPP
+ #define COMPAT53_LUA_CPP 1
+ #endif // Build Lua Compat layer as C++
+#endif
+ #ifndef COMPAT53_INCLUDE_SOURCE
+ #define COMPAT53_INCLUDE_SOURCE 1
+ #endif // Build Compat Layer Inline
+// beginning of sol/compatibility/compat-5.3.h
+
+#ifndef KEPLER_PROJECT_COMPAT53_H_
+#define KEPLER_PROJECT_COMPAT53_H_
+
+#include <stddef.h>
+#include <limits.h>
+#include <string.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+extern "C" {
+#endif
+#include <lua.h>
+#include <lauxlib.h>
+#include <lualib.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+}
+#endif
+
+#ifndef COMPAT53_PREFIX
+/* we chose this name because many other lua bindings / libs have
+* their own compatibility layer, and that use the compat53 declaration
+* frequently, causing all kinds of linker / compiler issues
+*/
+# define COMPAT53_PREFIX kp_compat53
+#endif // COMPAT53_PREFIX
+
+#ifndef COMPAT53_API
+# if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE
+# if defined(__GNUC__) || defined(__clang__)
+# define COMPAT53_API __attribute__((__unused__)) static inline
+# else
+# define COMPAT53_API static inline
+# endif /* Clang/GCC */
+# else /* COMPAT53_INCLUDE_SOURCE */
+/* we are not including source, so everything is extern */
+# define COMPAT53_API extern
+# endif /* COMPAT53_INCLUDE_SOURCE */
+#endif /* COMPAT53_PREFIX */
+
+#define COMPAT53_CONCAT_HELPER(a, b) a##b
+#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)
+
+/* declarations for Lua 5.1 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+
+/* XXX not implemented:
+* lua_arith (new operators)
+* lua_upvalueid
+* lua_upvaluejoin
+* lua_version
+* lua_yieldk
+*/
+
+#ifndef LUA_OK
+# define LUA_OK 0
+#endif
+#ifndef LUA_OPADD
+# define LUA_OPADD 0
+#endif
+#ifndef LUA_OPSUB
+# define LUA_OPSUB 1
+#endif
+#ifndef LUA_OPMUL
+# define LUA_OPMUL 2
+#endif
+#ifndef LUA_OPDIV
+# define LUA_OPDIV 3
+#endif
+#ifndef LUA_OPMOD
+# define LUA_OPMOD 4
+#endif
+#ifndef LUA_OPPOW
+# define LUA_OPPOW 5
+#endif
+#ifndef LUA_OPUNM
+# define LUA_OPUNM 6
+#endif
+#ifndef LUA_OPEQ
+# define LUA_OPEQ 0
+#endif
+#ifndef LUA_OPLT
+# define LUA_OPLT 1
+#endif
+#ifndef LUA_OPLE
+# define LUA_OPLE 2
+#endif
+
+/* LuaJIT/Lua 5.1 does not have the updated
+* error codes for thread status/function returns (but some patched versions do)
+* define it only if it's not found
+*/
+#if !defined(LUA_ERRGCMM)
+/* Use + 2 because in some versions of Lua (Lua 5.1)
+* LUA_ERRFILE is defined as (LUA_ERRERR+1)
+* so we need to avoid it (LuaJIT might have something at this
+* integer value too)
+*/
+# define LUA_ERRGCMM (LUA_ERRERR + 2)
+#endif /* LUA_ERRGCMM define */
+
+#if !defined(MOONJIT_VERSION)
+typedef size_t lua_Unsigned;
+#endif
+
+typedef struct luaL_Buffer_53 {
+ luaL_Buffer b; /* make incorrect code crash! */
+ char *ptr;
+ size_t nelems;
+ size_t capacity;
+ lua_State *L2;
+} luaL_Buffer_53;
+#define luaL_Buffer luaL_Buffer_53
+
+/* In PUC-Rio 5.1, userdata is a simple FILE*
+* In LuaJIT, it's a struct where the first member is a FILE*
+* We can't support the `closef` member
+*/
+typedef struct luaL_Stream {
+ FILE *f;
+} luaL_Stream;
+
+#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
+COMPAT53_API int lua_absindex(lua_State *L, int i);
+
+#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
+COMPAT53_API void lua_arith(lua_State *L, int op);
+
+#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
+COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op);
+
+#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
+COMPAT53_API void lua_copy(lua_State *L, int from, int to);
+
+#define lua_getuservalue(L, i) \
+ (lua_getfenv((L), (i)), lua_type((L), -1))
+#define lua_setuservalue(L, i) \
+ (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))
+
+#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
+COMPAT53_API void lua_len(lua_State *L, int i);
+
+#define lua_pushstring(L, s) \
+ (lua_pushstring((L), (s)), lua_tostring((L), -1))
+
+#define lua_pushlstring(L, s, len) \
+ ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))
+
+#ifndef luaL_newlibtable
+# define luaL_newlibtable(L, l) \
+ (lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1))
+#endif
+#ifndef luaL_newlib
+# define luaL_newlib(L, l) \
+ (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
+#endif
+
+#ifndef lua_pushglobaltable
+# define lua_pushglobaltable(L) \
+ lua_pushvalue((L), LUA_GLOBALSINDEX)
+#endif
+#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
+COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p);
+
+#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
+COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p);
+
+#define lua_rawlen(L, i) lua_objlen((L), (i))
+
+#define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL)
+
+#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
+COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
+
+#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
+COMPAT53_API void luaL_checkversion(lua_State *L);
+
+#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
+COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode);
+
+#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
+COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode);
+
+#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
+COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode);
+
+#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
+COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg);
+
+#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
+COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name);
+
+#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
+COMPAT53_API lua_Integer luaL_len(lua_State *L, int i);
+
+#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
+COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
+
+#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
+COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname);
+
+#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
+COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname);
+
+#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
+COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
+
+#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
+COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname);
+
+#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
+COMPAT53_API int luaL_execresult(lua_State *L, int stat);
+
+#define lua_callk(L, na, nr, ctx, cont) \
+ ((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
+#define lua_pcallk(L, na, nr, err, ctx, cont) \
+ ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))
+
+#define lua_resume(L, from, nargs) \
+ ((void)(from), lua_resume((L), (nargs)))
+
+#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
+COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B);
+
+#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
+COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s);
+
+#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
+COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l);
+
+#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
+COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B);
+
+#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
+COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B);
+
+#undef luaL_buffinitsize
+#define luaL_buffinitsize(L, B, s) \
+ (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))
+
+#undef luaL_prepbuffer
+#define luaL_prepbuffer(B) \
+ luaL_prepbuffsize((B), LUAL_BUFFERSIZE)
+
+#undef luaL_addchar
+#define luaL_addchar(B, c) \
+ ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
+ ((B)->ptr[(B)->nelems++] = (c)))
+
+#undef luaL_addsize
+#define luaL_addsize(B, s) \
+ ((B)->nelems += (s))
+
+#undef luaL_addstring
+#define luaL_addstring(B, s) \
+ luaL_addlstring((B), (s), strlen((s)))
+
+#undef luaL_pushresultsize
+#define luaL_pushresultsize(B, s) \
+ (luaL_addsize((B), (s)), luaL_pushresult((B)))
+
+#if defined(LUA_COMPAT_APIINTCASTS)
+#define lua_pushunsigned(L, n) \
+ lua_pushinteger((L), (lua_Integer)(n))
+#define lua_tounsignedx(L, i, is) \
+ ((lua_Unsigned)lua_tointegerx((L), (i), (is)))
+#define lua_tounsigned(L, i) \
+ lua_tounsignedx((L), (i), NULL)
+#define luaL_checkunsigned(L, a) \
+ ((lua_Unsigned)luaL_checkinteger((L), (a)))
+#define luaL_optunsigned(L, a, d) \
+ ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
+#endif
+
+#endif /* Lua 5.1 only */
+
+/* declarations for Lua 5.1 and 5.2 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
+
+typedef int lua_KContext;
+
+typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx);
+
+#define lua_dump(L, w, d, s) \
+ ((void)(s), lua_dump((L), (w), (d)))
+
+#define lua_getfield(L, i, k) \
+ (lua_getfield((L), (i), (k)), lua_type((L), -1))
+
+#define lua_gettable(L, i) \
+ (lua_gettable((L), (i)), lua_type((L), -1))
+
+#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
+COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i);
+
+#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
+COMPAT53_API int lua_isinteger(lua_State *L, int index);
+
+#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53)
+COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
+
+#define lua_numbertointeger(n, p) \
+ ((*(p) = (lua_Integer)(n)), 1)
+
+#define lua_rawget(L, i) \
+ (lua_rawget((L), (i)), lua_type((L), -1))
+
+#define lua_rawgeti(L, i, n) \
+ (lua_rawgeti((L), (i), (n)), lua_type((L), -1))
+
+#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
+COMPAT53_API void lua_rotate(lua_State *L, int idx, int n);
+
+#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
+COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i);
+
+#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
+COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s);
+
+#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
+COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
+
+#define luaL_getmetafield(L, o, e) \
+ (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)
+
+#define luaL_newmetatable(L, tn) \
+ (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)
+
+#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
+COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
+ lua_CFunction openf, int glb);
+
+#endif /* Lua 5.1 and Lua 5.2 */
+
+/* declarations for Lua 5.2 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502
+
+/* XXX not implemented:
+* lua_isyieldable
+* lua_getextraspace
+* lua_arith (new operators)
+* lua_pushfstring (new formats)
+*/
+
+#define lua_getglobal(L, n) \
+ (lua_getglobal((L), (n)), lua_type((L), -1))
+
+#define lua_getuservalue(L, i) \
+ (lua_getuservalue((L), (i)), lua_type((L), -1))
+
+#define lua_pushlstring(L, s, len) \
+ (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))
+
+#define lua_rawgetp(L, i, p) \
+ (lua_rawgetp((L), (i), (p)), lua_type((L), -1))
+
+#define LUA_KFUNCTION(_name) \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx); \
+ static int (_name ## _52)(lua_State *L) { \
+ lua_KContext ctx; \
+ int status = lua_getctx(L, &ctx); \
+ return (_name)(L, status, ctx); \
+ } \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx)
+
+#define lua_pcallk(L, na, nr, err, ctx, cont) \
+ lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52)
+
+#define lua_callk(L, na, nr, ctx, cont) \
+ lua_callk((L), (na), (nr), (ctx), cont ## _52)
+
+#define lua_yieldk(L, nr, ctx, cont) \
+ lua_yieldk((L), (nr), (ctx), cont ## _52)
+
+#ifdef lua_call
+# undef lua_call
+# define lua_call(L, na, nr) \
+ (lua_callk)((L), (na), (nr), 0, NULL)
+#endif
+
+#ifdef lua_pcall
+# undef lua_pcall
+# define lua_pcall(L, na, nr, err) \
+ (lua_pcallk)((L), (na), (nr), (err), 0, NULL)
+#endif
+
+#ifdef lua_yield
+# undef lua_yield
+# define lua_yield(L, nr) \
+ (lua_yieldk)((L), (nr), 0, NULL)
+#endif
+
+#endif /* Lua 5.2 only */
+
+/* other Lua versions */
+#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504
+
+# error "unsupported Lua version (i.e. not Lua 5.1, 5.2, 5.3, or 5.4)"
+
+#endif /* other Lua versions except 5.1, 5.2, 5.3, and 5.4 */
+
+/* helper macro for defining continuation functions (for every version
+* *except* Lua 5.2) */
+#ifndef LUA_KFUNCTION
+#define LUA_KFUNCTION(_name) \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx)
+#endif
+
+#if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1
+// beginning of sol/compatibility/compat-5.3.c.h
+
+#include <stddef.h>
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>
+#include <errno.h>
+#include <stdio.h>
+
+/* don't compile it again if it already is included via compat53.h */
+#ifndef KEPLER_PROJECT_COMPAT53_C_
+#define KEPLER_PROJECT_COMPAT53_C_
+
+/* definitions for Lua 5.1 only */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+
+#ifndef COMPAT53_FOPEN_NO_LOCK
+#if defined(_MSC_VER)
+#define COMPAT53_FOPEN_NO_LOCK 1
+#else /* otherwise */
+#define COMPAT53_FOPEN_NO_LOCK 0
+#endif /* VC++ only so far */
+#endif /* No-lock fopen_s usage if possible */
+
+#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
+#include <share.h>
+#endif /* VC++ _fsopen for share-allowed file read */
+
+#ifndef COMPAT53_HAVE_STRERROR_R
+#if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || (!defined(__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
+#define COMPAT53_HAVE_STRERROR_R 1
+#else /* none of the defines matched: define to 0 */
+#define COMPAT53_HAVE_STRERROR_R 0
+#endif /* have strerror_r of some form */
+#endif /* strerror_r */
+
+#ifndef COMPAT53_HAVE_STRERROR_S
+#if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
+#define COMPAT53_HAVE_STRERROR_S 1
+#else /* not VC++ or C11 */
+#define COMPAT53_HAVE_STRERROR_S 0
+#endif /* strerror_s from VC++ or C11 */
+#endif /* strerror_s */
+
+#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
+#define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
+#endif /* Lua File Buffer Size */
+
+static char* compat53_strerror(int en, char* buff, size_t sz) {
+#if COMPAT53_HAVE_STRERROR_R
+ /* use strerror_r here, because it's available on these specific platforms */
+ if (sz > 0) {
+ buff[0] = '\0';
+ /* we don't care whether the GNU version or the XSI version is used: */
+ if (strerror_r(en, buff, sz)) {
+ /* Yes, we really DO want to ignore the return value!
+ * GCC makes that extra hard, not even a (void) cast will do. */
+ }
+ if (buff[0] == '\0') {
+ /* Buffer is unchanged, so we probably have called GNU strerror_r which
+ * returned a static constant string. Chances are that strerror will
+ * return the same static constant string and therefore be thread-safe. */
+ return strerror(en);
+ }
+ }
+ return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
+#elif COMPAT53_HAVE_STRERROR_S
+ /* for MSVC and other C11 implementations, use strerror_s since it's
+ * provided by default by the libraries */
+ strerror_s(buff, sz, en);
+ return buff;
+#else
+ /* fallback, but strerror is not guaranteed to be threadsafe due to modifying
+ * errno itself and some impls not locking a static buffer for it ... but most
+ * known systems have threadsafe errno: this might only change if the locale
+ * is changed out from under someone while this function is being called */
+ (void)buff;
+ (void)sz;
+ return strerror(en);
+#endif
+}
+
+COMPAT53_API int lua_absindex(lua_State* L, int i) {
+ if (i < 0 && i > LUA_REGISTRYINDEX)
+ i += lua_gettop(L) + 1;
+ return i;
+}
+
+static void compat53_call_lua(lua_State* L, char const code[], size_t len, int nargs, int nret) {
+ lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
+ if (lua_type(L, -1) != LUA_TFUNCTION) {
+ lua_pop(L, 1);
+ if (luaL_loadbuffer(L, code, len, "=none"))
+ lua_error(L);
+ lua_pushvalue(L, -1);
+ lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
+ }
+ lua_insert(L, -nargs - 1);
+ lua_call(L, nargs, nret);
+}
+
+COMPAT53_API void lua_arith(lua_State* L, int op) {
+ static const char compat53_arith_code[]
+ = "local op,a,b=...\n"
+ "if op==0 then return a+b\n"
+ "elseif op==1 then return a-b\n"
+ "elseif op==2 then return a*b\n"
+ "elseif op==3 then return a/b\n"
+ "elseif op==4 then return a%b\n"
+ "elseif op==5 then return a^b\n"
+ "elseif op==6 then return -a\n"
+ "end\n";
+
+ if (op < LUA_OPADD || op > LUA_OPUNM)
+ luaL_error(L, "invalid 'op' argument for lua_arith");
+ luaL_checkstack(L, 5, "not enough stack slots");
+ if (op == LUA_OPUNM)
+ lua_pushvalue(L, -1);
+ lua_pushnumber(L, op);
+ lua_insert(L, -3);
+ compat53_call_lua(L, compat53_arith_code, sizeof(compat53_arith_code) - 1, 3, 1);
+}
+
+COMPAT53_API int lua_compare(lua_State* L, int idx1, int idx2, int op) {
+ static const char compat53_compare_code[]
+ = "local a,b=...\n"
+ "return a<=b\n";
+
+ int result = 0;
+ switch (op) {
+ case LUA_OPEQ:
+ return lua_equal(L, idx1, idx2);
+ case LUA_OPLT:
+ return lua_lessthan(L, idx1, idx2);
+ case LUA_OPLE:
+ luaL_checkstack(L, 5, "not enough stack slots");
+ idx1 = lua_absindex(L, idx1);
+ idx2 = lua_absindex(L, idx2);
+ lua_pushvalue(L, idx1);
+ lua_pushvalue(L, idx2);
+ compat53_call_lua(L, compat53_compare_code, sizeof(compat53_compare_code) - 1, 2, 1);
+ result = lua_toboolean(L, -1);
+ lua_pop(L, 1);
+ return result;
+ default:
+ luaL_error(L, "invalid 'op' argument for lua_compare");
+ }
+ return 0;
+}
+
+COMPAT53_API void lua_copy(lua_State* L, int from, int to) {
+ int abs_to = lua_absindex(L, to);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushvalue(L, from);
+ lua_replace(L, abs_to);
+}
+
+COMPAT53_API void lua_len(lua_State* L, int i) {
+ switch (lua_type(L, i)) {
+ case LUA_TSTRING:
+ lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
+ break;
+ case LUA_TTABLE:
+ if (!luaL_callmeta(L, i, "__len"))
+ lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
+ break;
+ case LUA_TUSERDATA:
+ if (luaL_callmeta(L, i, "__len"))
+ break;
+ /* FALLTHROUGH */
+ default:
+ luaL_error(L, "attempt to get length of a %s value", lua_typename(L, lua_type(L, i)));
+ }
+}
+
+COMPAT53_API int lua_rawgetp(lua_State* L, int i, const void* p) {
+ int abs_i = lua_absindex(L, i);
+ lua_pushlightuserdata(L, (void*)p);
+ lua_rawget(L, abs_i);
+ return lua_type(L, -1);
+}
+
+COMPAT53_API void lua_rawsetp(lua_State* L, int i, const void* p) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushlightuserdata(L, (void*)p);
+ lua_insert(L, -2);
+ lua_rawset(L, abs_i);
+}
+
+COMPAT53_API lua_Number lua_tonumberx(lua_State* L, int i, int* isnum) {
+ lua_Number n = lua_tonumber(L, i);
+ if (isnum != NULL) {
+ *isnum = (n != 0 || lua_isnumber(L, i));
+ }
+ return n;
+}
+
+COMPAT53_API void luaL_checkversion(lua_State* L) {
+ (void)L;
+}
+
+COMPAT53_API void luaL_checkstack(lua_State* L, int sp, const char* msg) {
+ if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
+ if (msg != NULL)
+ luaL_error(L, "stack overflow (%s)", msg);
+ else {
+ lua_pushliteral(L, "stack overflow");
+ lua_error(L);
+ }
+ }
+}
+
+COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char* name) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 3, "not enough stack slots");
+ lua_pushstring(L, name);
+ lua_gettable(L, abs_i);
+ if (lua_istable(L, -1))
+ return 1;
+ lua_pop(L, 1);
+ lua_newtable(L);
+ lua_pushstring(L, name);
+ lua_pushvalue(L, -2);
+ lua_settable(L, abs_i);
+ return 0;
+}
+
+COMPAT53_API lua_Integer luaL_len(lua_State* L, int i) {
+ lua_Integer res = 0;
+ int isnum = 0;
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_len(L, i);
+ res = lua_tointegerx(L, -1, &isnum);
+ lua_pop(L, 1);
+ if (!isnum)
+ luaL_error(L, "object length is not an integer");
+ return res;
+}
+
+COMPAT53_API void luaL_setfuncs(lua_State* L, const luaL_Reg* l, int nup) {
+ luaL_checkstack(L, nup + 1, "too many upvalues");
+ for (; l->name != NULL; l++) { /* fill the table with given functions */
+ int i;
+ lua_pushstring(L, l->name);
+ for (i = 0; i < nup; i++) /* copy upvalues to the top */
+ lua_pushvalue(L, -(nup + 1));
+ lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
+ lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
+ }
+ lua_pop(L, nup); /* remove upvalues */
+}
+
+COMPAT53_API void luaL_setmetatable(lua_State* L, const char* tname) {
+ luaL_checkstack(L, 1, "not enough stack slots");
+ luaL_getmetatable(L, tname);
+ lua_setmetatable(L, -2);
+}
+
+COMPAT53_API void* luaL_testudata(lua_State* L, int i, const char* tname) {
+ void* p = lua_touserdata(L, i);
+ luaL_checkstack(L, 2, "not enough stack slots");
+ if (p == NULL || !lua_getmetatable(L, i))
+ return NULL;
+ else {
+ int res = 0;
+ luaL_getmetatable(L, tname);
+ res = lua_rawequal(L, -1, -2);
+ lua_pop(L, 2);
+ if (!res)
+ p = NULL;
+ }
+ return p;
+}
+
+static int compat53_countlevels(lua_State* L) {
+ lua_Debug ar;
+ int li = 1, le = 1;
+ /* find an upper bound */
+ while (lua_getstack(L, le, &ar)) {
+ li = le;
+ le *= 2;
+ }
+ /* do a binary search */
+ while (li < le) {
+ int m = (li + le) / 2;
+ if (lua_getstack(L, m, &ar))
+ li = m + 1;
+ else
+ le = m;
+ }
+ return le - 1;
+}
+
+static int compat53_findfield(lua_State* L, int objidx, int level) {
+ if (level == 0 || !lua_istable(L, -1))
+ return 0; /* not found */
+ lua_pushnil(L); /* start 'next' loop */
+ while (lua_next(L, -2)) { /* for each pair in table */
+ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
+ if (lua_rawequal(L, objidx, -1)) { /* found object? */
+ lua_pop(L, 1); /* remove value (but keep name) */
+ return 1;
+ }
+ else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
+ lua_remove(L, -2); /* remove table (but keep name) */
+ lua_pushliteral(L, ".");
+ lua_insert(L, -2); /* place '.' between the two names */
+ lua_concat(L, 3);
+ return 1;
+ }
+ }
+ lua_pop(L, 1); /* remove value */
+ }
+ return 0; /* not found */
+}
+
+static int compat53_pushglobalfuncname(lua_State* L, lua_Debug* ar) {
+ int top = lua_gettop(L);
+ lua_getinfo(L, "f", ar); /* push function */
+ lua_pushvalue(L, LUA_GLOBALSINDEX);
+ if (compat53_findfield(L, top + 1, 2)) {
+ lua_copy(L, -1, top + 1); /* move name to proper place */
+ lua_pop(L, 2); /* remove pushed values */
+ return 1;
+ }
+ else {
+ lua_settop(L, top); /* remove function and global table */
+ return 0;
+ }
+}
+
+static void compat53_pushfuncname(lua_State* L, lua_Debug* ar) {
+ if (*ar->namewhat != '\0') /* is there a name? */
+ lua_pushfstring(L, "function " LUA_QS, ar->name);
+ else if (*ar->what == 'm') /* main? */
+ lua_pushliteral(L, "main chunk");
+ else if (*ar->what == 'C') {
+ if (compat53_pushglobalfuncname(L, ar)) {
+ lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
+ lua_remove(L, -2); /* remove name */
+ }
+ else
+ lua_pushliteral(L, "?");
+ }
+ else
+ lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
+}
+
+#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
+#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */
+
+COMPAT53_API void luaL_traceback(lua_State* L, lua_State* L1, const char* msg, int level) {
+ lua_Debug ar;
+ int top = lua_gettop(L);
+ int numlevels = compat53_countlevels(L1);
+ int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
+ if (msg)
+ lua_pushfstring(L, "%s\n", msg);
+ lua_pushliteral(L, "stack traceback:");
+ while (lua_getstack(L1, level++, &ar)) {
+ if (level == mark) { /* too many levels? */
+ lua_pushliteral(L, "\n\t..."); /* add a '...' */
+ level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
+ }
+ else {
+ lua_getinfo(L1, "Slnt", &ar);
+ lua_pushfstring(L, "\n\t%s:", ar.short_src);
+ if (ar.currentline > 0)
+ lua_pushfstring(L, "%d:", ar.currentline);
+ lua_pushliteral(L, " in ");
+ compat53_pushfuncname(L, &ar);
+ lua_concat(L, lua_gettop(L) - top);
+ }
+ }
+ lua_concat(L, lua_gettop(L) - top);
+}
+
+COMPAT53_API int luaL_fileresult(lua_State* L, int stat, const char* fname) {
+ const char* serr = NULL;
+ int en = errno; /* calls to Lua API may change this value */
+ char buf[512] = { 0 };
+ if (stat) {
+ lua_pushboolean(L, 1);
+ return 1;
+ }
+ else {
+ lua_pushnil(L);
+ serr = compat53_strerror(en, buf, sizeof(buf));
+ if (fname)
+ lua_pushfstring(L, "%s: %s", fname, serr);
+ else
+ lua_pushstring(L, serr);
+ lua_pushnumber(L, (lua_Number)en);
+ return 3;
+ }
+}
+
+static int compat53_checkmode(lua_State* L, const char* mode, const char* modename, int err) {
+ if (mode && strchr(mode, modename[0]) == NULL) {
+ lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
+ return err;
+ }
+ return LUA_OK;
+}
+
+typedef struct {
+ lua_Reader reader;
+ void* ud;
+ int has_peeked_data;
+ const char* peeked_data;
+ size_t peeked_data_size;
+} compat53_reader_data;
+
+static const char* compat53_reader(lua_State* L, void* ud, size_t* size) {
+ compat53_reader_data* data = (compat53_reader_data*)ud;
+ if (data->has_peeked_data) {
+ data->has_peeked_data = 0;
+ *size = data->peeked_data_size;
+ return data->peeked_data;
+ }
+ else
+ return data->reader(L, data->ud, size);
+}
+
+COMPAT53_API int lua_load(lua_State* L, lua_Reader reader, void* data, const char* source, const char* mode) {
+ int status = LUA_OK;
+ compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
+ compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
+ if (compat53_data.peeked_data && compat53_data.peeked_data_size && compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
+ status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
+ else
+ status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
+ if (status != LUA_OK)
+ return status;
+ /* we need to call the original 5.1 version of lua_load! */
+#undef lua_load
+ return lua_load(L, compat53_reader, &compat53_data, source);
+#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
+}
+
+typedef struct {
+ int n; /* number of pre-read characters */
+ FILE* f; /* file being read */
+ char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
+} compat53_LoadF;
+
+static const char* compat53_getF(lua_State* L, void* ud, size_t* size) {
+ compat53_LoadF* lf = (compat53_LoadF*)ud;
+ (void)L; /* not used */
+ if (lf->n > 0) { /* are there pre-read characters to be read? */
+ *size = lf->n; /* return them (chars already in buffer) */
+ lf->n = 0; /* no more pre-read characters */
+ }
+ else { /* read a block from file */
+ /* 'fread' can return > 0 *and* set the EOF flag. If next call to
+ 'compat53_getF' called 'fread', it might still wait for user input.
+ The next check avoids this problem. */
+ if (feof(lf->f))
+ return NULL;
+ *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
+ }
+ return lf->buff;
+}
+
+static int compat53_errfile(lua_State* L, const char* what, int fnameindex) {
+ char buf[512] = { 0 };
+ const char* serr = compat53_strerror(errno, buf, sizeof(buf));
+ const char* filename = lua_tostring(L, fnameindex) + 1;
+ lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
+ lua_remove(L, fnameindex);
+ return LUA_ERRFILE;
+}
+
+static int compat53_skipBOM(compat53_LoadF* lf) {
+ const char* p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
+ int c;
+ lf->n = 0;
+ do {
+ c = getc(lf->f);
+ if (c == EOF || c != *(const unsigned char*)p++)
+ return c;
+ lf->buff[lf->n++] = (char)c; /* to be read by the parser */
+ } while (*p != '\0');
+ lf->n = 0; /* prefix matched; discard it */
+ return getc(lf->f); /* return next character */
+}
+
+/*
+** reads the first character of file 'f' and skips an optional BOM mark
+** in its beginning plus its first line if it starts with '#'. Returns
+** true if it skipped the first line. In any case, '*cp' has the
+** first "valid" character of the file (after the optional BOM and
+** a first-line comment).
+*/
+static int compat53_skipcomment(compat53_LoadF* lf, int* cp) {
+ int c = *cp = compat53_skipBOM(lf);
+ if (c == '#') { /* first line is a comment (Unix exec. file)? */
+ do { /* skip first line */
+ c = getc(lf->f);
+ } while (c != EOF && c != '\n');
+ *cp = getc(lf->f); /* skip end-of-line, if present */
+ return 1; /* there was a comment */
+ }
+ else
+ return 0; /* no comment */
+}
+
+COMPAT53_API int luaL_loadfilex(lua_State* L, const char* filename, const char* mode) {
+ compat53_LoadF lf;
+ int status, readstatus;
+ int c;
+ int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
+ if (filename == NULL) {
+ lua_pushliteral(L, "=stdin");
+ lf.f = stdin;
+ }
+ else {
+ lua_pushfstring(L, "@%s", filename);
+#if defined(_MSC_VER)
+ /* This code is here to stop a deprecation error that stops builds
+ * if a certain macro is defined. While normally not caring would
+ * be best, some header-only libraries and builds can't afford to
+ * dictate this to the user. A quick check shows that fopen_s this
+ * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
+ * possibly even before that so we don't need to do any version
+ * number checks, since this has been there since forever. */
+
+ /* TO USER: if you want the behavior of typical fopen_s/fopen,
+ * which does lock the file on VC++, define the macro used below to 0 */
+#if COMPAT53_FOPEN_NO_LOCK
+ lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
+ if (lf.f == NULL)
+ return compat53_errfile(L, "open", fnameindex);
+#else /* use default locking version */
+ if (fopen_s(&lf.f, filename, "r") != 0)
+ return compat53_errfile(L, "open", fnameindex);
+#endif /* Locking vs. No-locking fopen variants */
+#else
+ lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
+ if (lf.f == NULL)
+ return compat53_errfile(L, "open", fnameindex);
+#endif
+ }
+ if (compat53_skipcomment(&lf, &c)) /* read initial portion */
+ lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */
+ if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
+#if defined(_MSC_VER)
+ if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
+ return compat53_errfile(L, "reopen", fnameindex);
+#else
+ lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
+ if (lf.f == NULL)
+ return compat53_errfile(L, "reopen", fnameindex);
+#endif
+ compat53_skipcomment(&lf, &c); /* re-read initial portion */
+ }
+ if (c != EOF)
+ lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
+ status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
+ readstatus = ferror(lf.f);
+ if (filename)
+ fclose(lf.f); /* close file (even in case of errors) */
+ if (readstatus) {
+ lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
+ return compat53_errfile(L, "read", fnameindex);
+ }
+ lua_remove(L, fnameindex);
+ return status;
+}
+
+COMPAT53_API int luaL_loadbufferx(lua_State* L, const char* buff, size_t sz, const char* name, const char* mode) {
+ int status = LUA_OK;
+ if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
+ status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
+ }
+ else {
+ status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
+ }
+ if (status != LUA_OK)
+ return status;
+ return luaL_loadbuffer(L, buff, sz, name);
+}
+
+#if !defined(l_inspectstat) \
+ && (defined(unix) || defined(__unix) || defined(__unix__) || defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || (defined(__APPLE__) && defined(__MACH__)))
+/* some form of unix; check feature macros in unistd.h for details */
+#include <unistd.h>
+/* check posix version; the relevant include files and macros probably
+ * were available before 2001, but I'm not sure */
+#if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
+#include <sys/wait.h>
+#define l_inspectstat(stat, what) \
+ if (WIFEXITED(stat)) { \
+ stat = WEXITSTATUS(stat); \
+ } \
+ else if (WIFSIGNALED(stat)) { \
+ stat = WTERMSIG(stat); \
+ what = "signal"; \
+ }
+#endif
+#endif
+
+/* provide default (no-op) version */
+#if !defined(l_inspectstat)
+#define l_inspectstat(stat, what) ((void)0)
+#endif
+
+COMPAT53_API int luaL_execresult(lua_State* L, int stat) {
+ const char* what = "exit";
+ if (stat == -1)
+ return luaL_fileresult(L, 0, NULL);
+ else {
+ l_inspectstat(stat, what);
+ if (*what == 'e' && stat == 0)
+ lua_pushboolean(L, 1);
+ else
+ lua_pushnil(L);
+ lua_pushstring(L, what);
+ lua_pushinteger(L, stat);
+ return 3;
+ }
+}
+
+COMPAT53_API void luaL_buffinit(lua_State* L, luaL_Buffer_53* B) {
+ /* make it crash if used via pointer to a 5.1-style luaL_Buffer */
+ B->b.p = NULL;
+ B->b.L = NULL;
+ B->b.lvl = 0;
+ /* reuse the buffer from the 5.1-style luaL_Buffer though! */
+ B->ptr = B->b.buffer;
+ B->capacity = LUAL_BUFFERSIZE;
+ B->nelems = 0;
+ B->L2 = L;
+}
+
+COMPAT53_API char* luaL_prepbuffsize(luaL_Buffer_53* B, size_t s) {
+ if (B->capacity - B->nelems < s) { /* needs to grow */
+ char* newptr = NULL;
+ size_t newcap = B->capacity * 2;
+ if (newcap - B->nelems < s)
+ newcap = B->nelems + s;
+ if (newcap < B->capacity) /* overflow */
+ luaL_error(B->L2, "buffer too large");
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 504
+ newptr = (char*)lua_newuserdatauv(B->L2, newcap, 0);
+#else
+ newptr = (char*)lua_newuserdata(B->L2, newcap);
+#endif
+ memcpy(newptr, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove old buffer */
+ B->ptr = newptr;
+ B->capacity = newcap;
+ }
+ return B->ptr + B->nelems;
+}
+
+COMPAT53_API void luaL_addlstring(luaL_Buffer_53* B, const char* s, size_t l) {
+ memcpy(luaL_prepbuffsize(B, l), s, l);
+ luaL_addsize(B, l);
+}
+
+COMPAT53_API void luaL_addvalue(luaL_Buffer_53* B) {
+ size_t len = 0;
+ const char* s = lua_tolstring(B->L2, -1, &len);
+ if (!s)
+ luaL_error(B->L2, "cannot convert value to string");
+ if (B->ptr != B->b.buffer)
+ lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
+ luaL_addlstring(B, s, len);
+ lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
+}
+
+void luaL_pushresult(luaL_Buffer_53* B) {
+ lua_pushlstring(B->L2, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove userdata buffer */
+}
+
+#endif /* Lua 5.1 */
+
+/* definitions for Lua 5.1 and Lua 5.2 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
+
+COMPAT53_API int lua_geti(lua_State* L, int index, lua_Integer i) {
+ index = lua_absindex(L, index);
+ lua_pushinteger(L, i);
+ lua_gettable(L, index);
+ return lua_type(L, -1);
+}
+
+COMPAT53_API int lua_isinteger(lua_State* L, int index) {
+ if (lua_type(L, index) == LUA_TNUMBER) {
+ lua_Number n = lua_tonumber(L, index);
+ lua_Integer i = lua_tointeger(L, index);
+ if (i == n)
+ return 1;
+ }
+ return 0;
+}
+
+COMPAT53_API lua_Integer lua_tointegerx(lua_State* L, int i, int* isnum) {
+ int ok = 0;
+ lua_Number n = lua_tonumberx(L, i, &ok);
+ if (ok) {
+ if (n == (lua_Integer)n) {
+ if (isnum)
+ *isnum = 1;
+ return (lua_Integer)n;
+ }
+ }
+ if (isnum)
+ *isnum = 0;
+ return 0;
+}
+
+static void compat53_reverse(lua_State* L, int a, int b) {
+ for (; a < b; ++a, --b) {
+ lua_pushvalue(L, a);
+ lua_pushvalue(L, b);
+ lua_replace(L, a);
+ lua_replace(L, b);
+ }
+}
+
+COMPAT53_API void lua_rotate(lua_State* L, int idx, int n) {
+ int n_elems = 0;
+ idx = lua_absindex(L, idx);
+ n_elems = lua_gettop(L) - idx + 1;
+ if (n < 0)
+ n += n_elems;
+ if (n > 0 && n < n_elems) {
+ luaL_checkstack(L, 2, "not enough stack slots available");
+ n = n_elems - n;
+ compat53_reverse(L, idx, idx + n - 1);
+ compat53_reverse(L, idx + n, idx + n_elems - 1);
+ compat53_reverse(L, idx, idx + n_elems - 1);
+ }
+}
+
+COMPAT53_API void lua_seti(lua_State* L, int index, lua_Integer i) {
+ luaL_checkstack(L, 1, "not enough stack slots available");
+ index = lua_absindex(L, index);
+ lua_pushinteger(L, i);
+ lua_insert(L, -2);
+ lua_settable(L, index);
+}
+
+#if !defined(lua_str2number)
+#define lua_str2number(s, p) strtod((s), (p))
+#endif
+
+COMPAT53_API size_t lua_stringtonumber(lua_State* L, const char* s) {
+ char* endptr;
+ lua_Number n = lua_str2number(s, &endptr);
+ if (endptr != s) {
+ while (*endptr != '\0' && isspace((unsigned char)*endptr))
+ ++endptr;
+ if (*endptr == '\0') {
+ lua_pushnumber(L, n);
+ return endptr - s + 1;
+ }
+ }
+ return 0;
+}
+
+COMPAT53_API const char* luaL_tolstring(lua_State* L, int idx, size_t* len) {
+ if (!luaL_callmeta(L, idx, "__tostring")) {
+ int t = lua_type(L, idx), tt = 0;
+ char const* name = NULL;
+ switch (t) {
+ case LUA_TNIL:
+ lua_pushliteral(L, "nil");
+ break;
+ case LUA_TSTRING:
+ case LUA_TNUMBER:
+ lua_pushvalue(L, idx);
+ break;
+ case LUA_TBOOLEAN:
+ if (lua_toboolean(L, idx))
+ lua_pushliteral(L, "true");
+ else
+ lua_pushliteral(L, "false");
+ break;
+ default:
+ tt = luaL_getmetafield(L, idx, "__name");
+ name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
+ lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
+ if (tt != LUA_TNIL)
+ lua_replace(L, -2);
+ break;
+ }
+ }
+ else {
+ if (!lua_isstring(L, -1))
+ luaL_error(L, "'__tostring' must return a string");
+ }
+ return lua_tolstring(L, -1, len);
+}
+
+COMPAT53_API void luaL_requiref(lua_State* L, const char* modname, lua_CFunction openf, int glb) {
+ luaL_checkstack(L, 3, "not enough stack slots available");
+ luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
+ if (lua_getfield(L, -1, modname) == LUA_TNIL) {
+ lua_pop(L, 1);
+ lua_pushcfunction(L, openf);
+ lua_pushstring(L, modname);
+ lua_call(L, 1, 1);
+ lua_pushvalue(L, -1);
+ lua_setfield(L, -3, modname);
+ }
+ if (glb) {
+ lua_pushvalue(L, -1);
+ lua_setglobal(L, modname);
+ }
+ lua_replace(L, -2);
+}
+
+#endif /* Lua 5.1 and 5.2 */
+
+#endif /* KEPLER_PROJECT_COMPAT53_C_ */
+
+/*********************************************************************
+ * This file contains parts of Lua 5.2's and Lua 5.3's source code:
+ *
+ * Copyright (C) 1994-2014 Lua.org, PUC-Rio.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *********************************************************************/
+// end of sol/compatibility/compat-5.3.c.h
+
+#endif
+
+#endif /* KEPLER_PROJECT_COMPAT53_H_ */
+
+// end of sol/compatibility/compat-5.3.h
+
+// beginning of sol/compatibility/compat-5.4.h
+
+#ifndef NOT_KEPLER_PROJECT_COMPAT54_H_
+#define NOT_KEPLER_PROJECT_COMPAT54_H_
+
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+extern "C" {
+#endif
+#include <lua.h>
+#include <lauxlib.h>
+#include <lualib.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+}
+#endif
+
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 504
+
+#if !defined(LUA_ERRGCMM)
+/* So Lua 5.4 actually removes this, which breaks sol2...
+ man, this API is quite unstable...!
+*/
+# define LUA_ERRGCMM (LUA_ERRERR + 2)
+#endif /* LUA_ERRGCMM define */
+
+#endif // Lua 5.4 only
+
+#endif // NOT_KEPLER_PROJECT_COMPAT54_H_// end of sol/compatibility/compat-5.4.h
+
+#endif
+
+// end of sol/compatibility.hpp
+
+#include <vector>
+#include <cstdint>
+#include <cstddef>
+
+namespace sol {
+
+ template <typename Allocator = std::allocator<std::byte>>
+ class basic_bytecode : private std::vector<std::byte, Allocator> {
+ private:
+ using base_t = std::vector<std::byte, Allocator>;
+
+ public:
+ using typename base_t::allocator_type;
+ using typename base_t::const_iterator;
+ using typename base_t::const_pointer;
+ using typename base_t::const_reference;
+ using typename base_t::const_reverse_iterator;
+ using typename base_t::difference_type;
+ using typename base_t::iterator;
+ using typename base_t::pointer;
+ using typename base_t::reference;
+ using typename base_t::reverse_iterator;
+ using typename base_t::size_type;
+ using typename base_t::value_type;
+
+ using base_t::base_t;
+ using base_t::operator=;
+
+ using base_t::data;
+ using base_t::empty;
+ using base_t::max_size;
+ using base_t::size;
+
+ using base_t::at;
+ using base_t::operator[];
+ using base_t::back;
+ using base_t::front;
+
+ using base_t::begin;
+ using base_t::cbegin;
+ using base_t::cend;
+ using base_t::end;
+
+ using base_t::crbegin;
+ using base_t::crend;
+ using base_t::rbegin;
+ using base_t::rend;
+
+ using base_t::get_allocator;
+ using base_t::swap;
+
+ using base_t::clear;
+ using base_t::emplace;
+ using base_t::emplace_back;
+ using base_t::erase;
+ using base_t::insert;
+ using base_t::pop_back;
+ using base_t::push_back;
+ using base_t::reserve;
+ using base_t::resize;
+ using base_t::shrink_to_fit;
+
+ string_view as_string_view() const {
+ return string_view(reinterpret_cast<const char*>(this->data()), this->size());
+ }
+ };
+
+ template <typename Container>
+ inline int basic_insert_dump_writer(lua_State*, const void* memory, size_t memory_size, void* userdata_pointer) {
+ using storage_t = Container;
+ const std::byte* p_code = static_cast<const std::byte*>(memory);
+ storage_t& bc = *static_cast<storage_t*>(userdata_pointer);
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ bc.insert(bc.cend(), p_code, p_code + memory_size);
+#else
+ try {
+ bc.insert(bc.cend(), p_code, p_code + memory_size);
+ }
+ catch (...) {
+ return -1;
+ }
+#endif
+ return 0;
+ }
+
+ using bytecode = basic_bytecode<>;
+
+ constexpr inline auto bytecode_dump_writer = &basic_insert_dump_writer<bytecode>;
+
+} // namespace sol
+
+// end of sol/bytecode.hpp
+
+// beginning of sol/stack.hpp
+
+// beginning of sol/trampoline.hpp
+
+// beginning of sol/types.hpp
+
+// beginning of sol/error.hpp
+
+#include <stdexcept>
+#include <string>
+#include <array>
+
+namespace sol {
+ namespace detail {
+ struct direct_error_tag { };
+ const auto direct_error = direct_error_tag {};
+
+ struct error_result {
+ int results;
+ const char* format_string;
+ std::array<const char*, 4> argument_strings;
+
+ error_result() : results(0), format_string(nullptr) {
+ }
+
+ error_result(int results_) : results(results_), format_string(nullptr) {
+ }
+
+ error_result(const char* format_string_, const char* first_message_) : results(0), format_string(format_string_), argument_strings() {
+ argument_strings[0] = first_message_;
+ }
+ };
+
+ inline int handle_errors(lua_State* L, const error_result& er) {
+ if (er.format_string == nullptr) {
+ return er.results;
+ }
+ return luaL_error(L, er.format_string, er.argument_strings[0], er.argument_strings[1], er.argument_strings[2], er.argument_strings[3]);
+ }
+ } // namespace detail
+
+ class error : public std::runtime_error {
+ private:
+ // Because VC++ is upsetting, most of the time!
+ std::string what_reason;
+
+ public:
+ error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {
+ }
+ error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {
+ }
+ error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), what_reason(str) {
+ }
+ error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), what_reason(std::move(str)) {
+ }
+
+ error(const error& e) = default;
+ error(error&& e) = default;
+ error& operator=(const error& e) = default;
+ error& operator=(error&& e) = default;
+
+ virtual const char* what() const noexcept override {
+ return what_reason.c_str();
+ }
+ };
+
+} // namespace sol
+
+// end of sol/error.hpp
+
+// beginning of sol/optional.hpp
+
+// beginning of sol/in_place.hpp
+
+#include <cstddef>
+#include <utility>
+
+namespace sol {
+
+ using in_place_t = std::in_place_t;
+ constexpr std::in_place_t in_place {};
+ constexpr std::in_place_t in_place_of {};
+
+ template <typename T>
+ using in_place_type_t = std::in_place_type_t<T>;
+ template <typename T>
+ constexpr std::in_place_type_t<T> in_place_type {};
+
+ template <size_t I>
+ using in_place_index_t = std::in_place_index_t<I>;
+ template <size_t I>
+ constexpr in_place_index_t<I> in_place_index {};
+
+} // namespace sol
+
+// end of sol/in_place.hpp
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+#include <boost/optional.hpp>
+#else
+// beginning of sol/optional_implementation.hpp
+
+#define SOL_TL_OPTIONAL_VERSION_MAJOR 0
+#define SOL_TL_OPTIONAL_VERSION_MINOR 5
+
+#include <exception>
+#include <functional>
+#include <new>
+#include <type_traits>
+#include <utility>
+#include <cstdlib>
+#include <optional>
+
+#if (defined(_MSC_VER) && _MSC_VER == 1900)
+#define SOL_TL_OPTIONAL_MSVC2015
+#endif
+
+#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
+#define SOL_TL_OPTIONAL_GCC49
+#endif
+
+#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && !defined(__clang__))
+#define SOL_TL_OPTIONAL_GCC54
+#endif
+
+#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && !defined(__clang__))
+#define SOL_TL_OPTIONAL_GCC55
+#endif
+
+#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
+#define SOL_TL_OPTIONAL_NO_CONSTRR
+
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::has_trivial_copy_constructor<T>::value
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value
+
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
+
+#elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__))
+#ifndef SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
+#define SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
+namespace sol { namespace detail {
+ template <class T>
+ struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> { };
+#ifdef _GLIBCXX_VECTOR
+ template <class T, class A>
+ struct is_trivially_copy_constructible<std::vector<T, A>> : std::is_trivially_copy_constructible<T> { };
+#endif
+}} // namespace sol::detail
+#endif
+
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) sol::detail::is_trivially_copy_constructible<T>::value
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
+#else
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::is_trivially_copy_constructible<T>::value
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
+#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
+#endif
+
+#if __cplusplus > 201103L
+#define SOL_TL_OPTIONAL_CXX14
+#endif
+
+#if (__cplusplus == 201103L || defined(SOL_TL_OPTIONAL_MSVC2015) || defined(SOL_TL_OPTIONAL_GCC49))
+#define SOL_TL_OPTIONAL_11_CONSTEXPR
+#else
+ /// \exclude
+#define SOL_TL_OPTIONAL_11_CONSTEXPR constexpr
+#endif
+
+namespace sol {
+#ifndef SOL_TL_MONOSTATE_INPLACE_MUTEX
+#define SOL_TL_MONOSTATE_INPLACE_MUTEX
+ /// \brief Used to represent an optional with no data; essentially a bool
+ class monostate { };
+#endif
+
+ template <class T>
+ class optional;
+
+ /// \exclude
+ namespace detail {
+#ifndef SOL_TL_TRAITS_MUTEX
+#define SOL_TL_TRAITS_MUTEX
+ // C++14-style aliases for brevity
+ template <class T>
+ using remove_const_t = typename std::remove_const<T>::type;
+ template <class T>
+ using remove_reference_t = typename std::remove_reference<T>::type;
+ template <class T>
+ using decay_t = typename std::decay<T>::type;
+ template <bool E, class T = void>
+ using enable_if_t = typename std::enable_if<E, T>::type;
+ template <bool B, class T, class F>
+ using conditional_t = typename std::conditional<B, T, F>::type;
+
+ // std::conjunction from C++17
+ template <class...>
+ struct conjunction : std::true_type { };
+ template <class B>
+ struct conjunction<B> : B { };
+ template <class B, class... Bs>
+ struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type { };
+
+#if defined(_LIBCPP_VERSION) && __cplusplus == 201103L
+#define SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
+#endif
+
+#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
+ template <class T>
+ struct is_pointer_to_non_const_member_func : std::false_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type { };
+ template <class T, class Ret, class... Args>
+ struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type { };
+
+ template <class T>
+ struct is_const_or_const_ref : std::false_type { };
+ template <class T>
+ struct is_const_or_const_ref<T const&> : std::true_type { };
+ template <class T>
+ struct is_const_or_const_ref<T const> : std::true_type { };
+#endif
+
+ // std::invoke from C++17
+ // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
+ template <typename Fn, typename... Args,
+#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
+ typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>,
+#endif
+ typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0>
+ constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::mem_fn(f)(std::forward<Args>(args)...)))
+ -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) {
+ return std::mem_fn(f)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>>
+ constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...)))
+ -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) {
+ return std::forward<Fn>(f)(std::forward<Args>(args)...);
+ }
+
+ // std::invoke_result from C++17
+ template <class F, class, class... Us>
+ struct invoke_result_impl;
+
+ template <class F, class... Us>
+ struct invoke_result_impl<F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> {
+ using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...));
+ };
+
+ template <class F, class... Us>
+ using invoke_result = invoke_result_impl<F, void, Us...>;
+
+ template <class F, class... Us>
+ using invoke_result_t = typename invoke_result<F, Us...>::type;
+#endif
+
+ // std::void_t from C++17
+ template <class...>
+ struct voider {
+ using type = void;
+ };
+ template <class... Ts>
+ using void_t = typename voider<Ts...>::type;
+
+ // Trait for checking if a type is a sol::optional
+ template <class T>
+ struct is_optional_impl : std::false_type { };
+ template <class T>
+ struct is_optional_impl<optional<T>> : std::true_type { };
+ template <class T>
+ using is_optional = is_optional_impl<decay_t<T>>;
+
+ // Change void to sol::monostate
+ template <class U>
+ using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
+
+ template <class F, class U, class = invoke_result_t<F, U>>
+ using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
+
+ // Check if invoking F for some Us returns void
+ template <class F, class = void, class... U>
+ struct returns_void_impl;
+ template <class F, class... U>
+ struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> : std::is_void<invoke_result_t<F, U...>> { };
+ template <class F, class... U>
+ using returns_void = returns_void_impl<F, void, U...>;
+
+ template <class T, class... U>
+ using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>;
+
+ template <class T, class... U>
+ using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>;
+
+ template <class T, class U>
+ using enable_forward_value = detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value
+ && !std::is_same<optional<T>, detail::decay_t<U>>::value>;
+
+ template <class T, class U, class Other>
+ using enable_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value
+ && !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value
+ && !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value
+ && !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value
+ && !std::is_convertible<const optional<U>&&, T>::value>;
+
+ template <class T, class U>
+ using enable_assign_forward = detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value
+ && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value
+ && std::is_assignable<T&, U>::value>;
+
+ template <class T, class U, class Other>
+ using enable_assign_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value
+ && !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value
+ && !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value
+ && !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value
+ && !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value
+ && !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value
+ && !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>;
+
+#ifdef _MSC_VER
+ // TODO make a version which works with MSVC
+ template <class T, class U = T>
+ struct is_swappable : std::true_type { };
+
+ template <class T, class U = T>
+ struct is_nothrow_swappable : std::true_type { };
+#else
+ // https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
+ namespace swap_adl_tests {
+ // if swap ADL finds this then it would call std::swap otherwise (same
+ // signature)
+ struct tag { };
+
+ template <class T>
+ tag swap(T&, T&);
+ template <class T, std::size_t N>
+ tag swap(T (&a)[N], T (&b)[N]);
+
+ // helper functions to test if an unqualified swap is possible, and if it
+ // becomes std::swap
+ template <class, class>
+ std::false_type can_swap(...) noexcept(false);
+ template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))>
+ std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>())));
+
+ template <class, class>
+ std::false_type uses_std(...);
+ template <class T, class U>
+ std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int);
+
+ template <class T>
+ struct is_std_swap_noexcept
+ : std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> { };
+
+ template <class T, std::size_t N>
+ struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> { };
+
+ template <class T, class U>
+ struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> { };
+ } // namespace swap_adl_tests
+
+ template <class T, class U = T>
+ struct is_swappable : std::integral_constant<bool,
+ decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value
+ && (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
+ || (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> { };
+
+ template <class T, std::size_t N>
+ struct is_swappable<T[N], T[N]> : std::integral_constant<bool,
+ decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value
+ && (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)> { };
+
+ template <class T, class U = T>
+ struct is_nothrow_swappable
+ : std::integral_constant<bool,
+ is_swappable<T, U>::value
+ && ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value)
+ || (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> { };
+#endif
+
+ // The storage base manages the actual storage, and correctly propagates
+ // trivial destroyion from T. This case is for when T is not trivially
+ // destructible.
+ template <class T, bool = ::std::is_trivially_destructible<T>::value>
+ struct optional_storage_base {
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
+ }
+
+ template <class... U>
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
+ }
+
+ ~optional_storage_base() {
+ if (m_has_value) {
+ m_value.~T();
+ m_has_value = false;
+ }
+ }
+
+ struct dummy { };
+ union {
+ dummy m_dummy;
+ T m_value;
+ };
+
+ bool m_has_value;
+ };
+
+ // This case is for when T is trivially destructible.
+ template <class T>
+ struct optional_storage_base<T, true> {
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
+ }
+
+ template <class... U>
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
+ }
+
+ // No destructor, so this class is trivially destructible
+
+ struct dummy { };
+ union {
+ dummy m_dummy;
+ T m_value;
+ };
+
+ bool m_has_value = false;
+ };
+
+ // This base class provides some handy member functions which can be used in
+ // further derived classes
+ template <class T>
+ struct optional_operations_base : optional_storage_base<T> {
+ using optional_storage_base<T>::optional_storage_base;
+
+ void hard_reset() noexcept {
+ get().~T();
+ this->m_has_value = false;
+ }
+
+ template <class... Args>
+ void construct(Args&&... args) noexcept {
+ new (std::addressof(this->m_value)) T(std::forward<Args>(args)...);
+ this->m_has_value = true;
+ }
+
+ template <class Opt>
+ void assign(Opt&& rhs) {
+ if (this->has_value()) {
+ if (rhs.has_value()) {
+ this->m_value = std::forward<Opt>(rhs).get();
+ }
+ else {
+ this->m_value.~T();
+ this->m_has_value = false;
+ }
+ }
+
+ else if (rhs.has_value()) {
+ construct(std::forward<Opt>(rhs).get());
+ }
+ }
+
+ bool has_value() const {
+ return this->m_has_value;
+ }
+
+ SOL_TL_OPTIONAL_11_CONSTEXPR T& get() & {
+ return this->m_value;
+ }
+ SOL_TL_OPTIONAL_11_CONSTEXPR const T& get() const& {
+ return this->m_value;
+ }
+ SOL_TL_OPTIONAL_11_CONSTEXPR T&& get() && {
+ return std::move(this->m_value);
+ }
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ constexpr const T&& get() const&& {
+ return std::move(this->m_value);
+ }
+#endif
+ };
+
+ // This class manages conditionally having a trivial copy constructor
+ // This specialization is for when T is trivially copy constructible
+ template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
+ struct optional_copy_base : optional_operations_base<T> {
+ using optional_operations_base<T>::optional_operations_base;
+ };
+
+ // This specialization is for when T is not trivially copy constructible
+ template <class T>
+ struct optional_copy_base<T, false> : optional_operations_base<T> {
+ using base_t = optional_operations_base<T>;
+
+ using base_t::base_t;
+
+ optional_copy_base() = default;
+ optional_copy_base(const optional_copy_base& rhs) : base_t() {
+ if (rhs.has_value()) {
+ this->construct(rhs.get());
+ }
+ else {
+ this->m_has_value = false;
+ }
+ }
+
+ optional_copy_base(optional_copy_base&& rhs) = default;
+ optional_copy_base& operator=(const optional_copy_base& rhs) = default;
+ optional_copy_base& operator=(optional_copy_base&& rhs) = default;
+ };
+
+#ifndef SOL_TL_OPTIONAL_GCC49
+ template <class T, bool = std::is_trivially_move_constructible<T>::value>
+ struct optional_move_base : optional_copy_base<T> {
+ using optional_copy_base<T>::optional_copy_base;
+ };
+#else
+ template <class T, bool = false>
+ struct optional_move_base;
+#endif
+ template <class T>
+ struct optional_move_base<T, false> : optional_copy_base<T> {
+ using optional_copy_base<T>::optional_copy_base;
+
+ optional_move_base() = default;
+ optional_move_base(const optional_move_base& rhs) = default;
+
+ optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value) {
+ if (rhs.has_value()) {
+ this->construct(std::move(rhs.get()));
+ }
+ else {
+ this->m_has_value = false;
+ }
+ }
+ optional_move_base& operator=(const optional_move_base& rhs) = default;
+ optional_move_base& operator=(optional_move_base&& rhs) = default;
+ };
+
+ // This class manages conditionally having a trivial copy assignment operator
+ template <class T,
+ bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)
+ && SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)>
+ struct optional_copy_assign_base : optional_move_base<T> {
+ using optional_move_base<T>::optional_move_base;
+ };
+
+ template <class T>
+ struct optional_copy_assign_base<T, false> : optional_move_base<T> {
+ using optional_move_base<T>::optional_move_base;
+
+ optional_copy_assign_base() = default;
+ optional_copy_assign_base(const optional_copy_assign_base& rhs) = default;
+
+ optional_copy_assign_base(optional_copy_assign_base&& rhs) = default;
+ optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs) {
+ this->assign(rhs);
+ return *this;
+ }
+ optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default;
+ };
+
+#ifndef SOL_TL_OPTIONAL_GCC49
+ template <class T,
+ bool = std::is_trivially_destructible<T>::value&& std::is_trivially_move_constructible<T>::value&& std::is_trivially_move_assignable<T>::value>
+ struct optional_move_assign_base : optional_copy_assign_base<T> {
+ using optional_copy_assign_base<T>::optional_copy_assign_base;
+ };
+#else
+ template <class T, bool = false>
+ struct optional_move_assign_base;
+#endif
+
+ template <class T>
+ struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
+ using optional_copy_assign_base<T>::optional_copy_assign_base;
+
+ optional_move_assign_base() = default;
+ optional_move_assign_base(const optional_move_assign_base& rhs) = default;
+
+ optional_move_assign_base(optional_move_assign_base&& rhs) = default;
+
+ optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default;
+
+ optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept(
+ std::is_nothrow_move_constructible<T>::value&& std::is_nothrow_move_assignable<T>::value) {
+ this->assign(std::move(rhs));
+ return *this;
+ }
+ };
+
+ // optional_delete_ctor_base will conditionally delete copy and move
+ // constructors depending on whether T is copy/move constructible
+ template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, bool EnableMove = std::is_move_constructible<T>::value>
+ struct optional_delete_ctor_base {
+ optional_delete_ctor_base() = default;
+ optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
+ optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
+ };
+
+ template <class T>
+ struct optional_delete_ctor_base<T, true, false> {
+ optional_delete_ctor_base() = default;
+ optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
+ optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
+ };
+
+ template <class T>
+ struct optional_delete_ctor_base<T, false, true> {
+ optional_delete_ctor_base() = default;
+ optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
+ optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
+ optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
+ };
+
+ template <class T>
+ struct optional_delete_ctor_base<T, false, false> {
+ optional_delete_ctor_base() = default;
+ optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
+ optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
+ optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
+ optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
+ };
+
+ // optional_delete_assign_base will conditionally delete copy and move
+ // constructors depending on whether T is copy/move constructible + assignable
+ template <class T, bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value),
+ bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)>
+ struct optional_delete_assign_base {
+ optional_delete_assign_base() = default;
+ optional_delete_assign_base(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
+ optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
+ };
+
+ template <class T>
+ struct optional_delete_assign_base<T, true, false> {
+ optional_delete_assign_base() = default;
+ optional_delete_assign_base(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
+ optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
+ };
+
+ template <class T>
+ struct optional_delete_assign_base<T, false, true> {
+ optional_delete_assign_base() = default;
+ optional_delete_assign_base(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
+ optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
+ optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
+ };
+
+ template <class T>
+ struct optional_delete_assign_base<T, false, false> {
+ optional_delete_assign_base() = default;
+ optional_delete_assign_base(const optional_delete_assign_base&) = default;
+ optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
+ optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
+ optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
+ };
+
+ } // namespace detail
+
+ /// \brief A tag type to represent an empty optional
+ using nullopt_t = std::nullopt_t;
+
+ /// \brief Represents an empty optional
+ /// \synopsis static constexpr nullopt_t nullopt;
+ ///
+ /// *Examples*:
+ /// ```
+ /// sol::optional<int> a = sol::nullopt;
+ /// void foo (sol::optional<int>);
+ /// foo(sol::nullopt); //pass an empty optional
+ /// ```
+ using std::nullopt;
+
+ /// @brief An exception for when an optional is accessed through specific methods while it is not engaged.
+ class bad_optional_access : public std::exception {
+ public:
+ /// @brief Default-constructs an optional exception.
+ bad_optional_access() = default;
+ /// @brief Returns a pointer to a null-terminated string containing the reason for the exception.
+ const char* what() const noexcept override {
+ return "Optional has no value";
+ }
+ };
+
+ /// An optional object is an object that contains the storage for another
+ /// object and manages the lifetime of this contained object, if any. The
+ /// contained object may be initialized after the optional object has been
+ /// initialized, and may be destroyed before the optional object has been
+ /// destroyed. The initialization state of the contained object is tracked by
+ /// the optional object.
+ template <class T>
+ class optional : private detail::optional_move_assign_base<T>,
+ private detail::optional_delete_ctor_base<T>,
+ private detail::optional_delete_assign_base<T> {
+ using base = detail::optional_move_assign_base<T>;
+
+ static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed");
+ static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, "instantiation of optional with nullopt_t is ill-formed");
+
+ public:
+#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
+ /// \group and_then
+ /// Carries out some operation which returns an optional on the stored
+ /// object if there is one. \requires `std::invoke(std::forward<F>(f),
+ /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
+ /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
+ /// `std::optional<U>`. The return value is empty if `*this` is empty,
+ /// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
+ /// is returned.
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
+ using result = detail::invoke_result_t<F, T&&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &;
+ template <class F>
+ constexpr auto and_then(F&& f) const& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &&;
+ template <class F>
+ constexpr auto and_then(F&& f) const&& {
+ using result = detail::invoke_result_t<F, const T&&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
+ }
+#endif
+#else
+ /// \group and_then
+ /// Carries out some operation which returns an optional on the stored
+ /// object if there is one. \requires `std::invoke(std::forward<F>(f),
+ /// value())` returns a `std::optional<U>` for some `U`.
+ /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
+ /// value())`. Returns a `std::optional<U>`. The return value is empty if
+ /// `*this` is empty, otherwise the return value of
+ /// `std::invoke(std::forward<F>(f), value())` is returned.
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) && {
+ using result = detail::invoke_result_t<F, T&&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &;
+ template <class F>
+ constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &&;
+ template <class F>
+ constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&& {
+ using result = detail::invoke_result_t<F, const T&&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
+ }
+#endif
+#endif
+
+#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
+ /// \brief Carries out some operation on the stored object if there is one.
+ /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
+ /// value())`. Returns a `std::optional<U>`. The return value is empty if
+ /// `*this` is empty, otherwise an `optional<U>` is constructed from the
+ /// return value of `std::invoke(std::forward<F>(f), value())` and is
+ /// returned.
+ ///
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
+ return optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
+ return optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) const&;
+ template <class F>
+ constexpr auto map(F&& f) const& {
+ return optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) const&&;
+ template <class F>
+ constexpr auto map(F&& f) const&& {
+ return optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+#else
+ /// \brief Carries out some operation on the stored object if there is one.
+ /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
+ /// value())`. Returns a `std::optional<U>`. The return value is empty if
+ /// `*this` is empty, otherwise an `optional<U>` is constructed from the
+ /// return value of `std::invoke(std::forward<F>(f), value())` and is
+ /// returned.
+ ///
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
+ return optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
+ return optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) const&;
+ template <class F>
+ constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
+ return optional_map_impl(*this, std::forward<F>(f));
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) const&&;
+ template <class F>
+ constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
+ return optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+#endif
+#endif
+
+ /// \brief Calls `f` if the optional is empty
+ /// \requires `std::invoke_result_t<F>` must be void or convertible to
+ /// `optional<T>`.
+ /// \effects If `*this` has a value, returns `*this`.
+ /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
+ /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
+ ///
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) &;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
+ if (has_value())
+ return *this;
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
+ return has_value() ? *this : std::forward<F>(f)();
+ }
+
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) &&;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) && {
+ if (has_value())
+ return std::move(*this);
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
+ return has_value() ? std::move(*this) : std::forward<F>(f)();
+ }
+
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) const &;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const& {
+ if (has_value())
+ return *this;
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
+ return has_value() ? *this : std::forward<F>(f)();
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \exclude
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const&& {
+ if (has_value())
+ return std::move(*this);
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const&& {
+ return has_value() ? std::move(*this) : std::forward<F>(f)();
+ }
+#endif
+
+ /// \brief Maps the stored value with `f` if there is one, otherwise returns
+ /// `u`.
+ ///
+ /// \details If there is a value stored, then `f` is called with `**this`
+ /// and the value is returned. Otherwise `u` is returned.
+ ///
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) & {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
+ }
+
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) && {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
+ }
+
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) const& {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) const&& {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
+ }
+#endif
+
+ /// \brief Maps the stored value with `f` if there is one, otherwise calls
+ /// `u` and returns the result.
+ ///
+ /// \details If there is a value stored, then `f` is
+ /// called with `**this` and the value is returned. Otherwise
+ /// `std::forward<U>(u)()` is returned.
+ ///
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u) &;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
+ }
+
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// &&;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
+ }
+
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// const &;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// const &&;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
+ }
+#endif
+
+ /// \returns `u` if `*this` has a value, otherwise an empty optional.
+ template <class U>
+ constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
+ using result = optional<detail::decay_t<U>>;
+ return has_value() ? result { u } : result { nullopt };
+ }
+
+ /// \returns `rhs` if `*this` is empty, otherwise the current value.
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
+ return has_value() ? *this : rhs;
+ }
+
+ /// \group disjunction
+ constexpr optional disjunction(const optional& rhs) const& {
+ return has_value() ? *this : rhs;
+ }
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
+ return has_value() ? std::move(*this) : rhs;
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group disjunction
+ constexpr optional disjunction(const optional& rhs) const&& {
+ return has_value() ? std::move(*this) : rhs;
+ }
+#endif
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
+ return has_value() ? *this : std::move(rhs);
+ }
+
+ /// \group disjunction
+ constexpr optional disjunction(optional&& rhs) const& {
+ return has_value() ? *this : std::move(rhs);
+ }
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
+ return has_value() ? std::move(*this) : std::move(rhs);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group disjunction
+ constexpr optional disjunction(optional&& rhs) const&& {
+ return has_value() ? std::move(*this) : std::move(rhs);
+ }
+#endif
+
+ /// Takes the value out of the optional, leaving it empty
+ /// \group take
+ optional take() & {
+ optional ret = *this;
+ reset();
+ return ret;
+ }
+
+ /// \group take
+ optional take() const& {
+ optional ret = *this;
+ reset();
+ return ret;
+ }
+
+ /// \group take
+ optional take() && {
+ optional ret = std::move(*this);
+ reset();
+ return ret;
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group take
+ optional take() const&& {
+ optional ret = std::move(*this);
+ reset();
+ return ret;
+ }
+#endif
+
+ using value_type = T;
+
+ /// Constructs an optional that does not contain a value.
+ /// \group ctor_empty
+ constexpr optional() noexcept = default;
+
+ /// \group ctor_empty
+ constexpr optional(nullopt_t) noexcept {
+ }
+
+ /// Copy constructor
+ ///
+ /// If `rhs` contains a value, the stored value is direct-initialized with
+ /// it. Otherwise, the constructed optional is empty.
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) = default;
+
+ /// Move constructor
+ ///
+ /// If `rhs` contains a value, the stored value is direct-initialized with
+ /// it. Otherwise, the constructed optional is empty.
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
+
+ /// Constructs the stored value in-place using the given arguments.
+ /// \group in_place
+ /// \synopsis template <class... Args> constexpr explicit optional(in_place_t, Args&&... args);
+ template <class... Args>
+ constexpr explicit optional(detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args)
+ : base(in_place, std::forward<Args>(args)...) {
+ }
+
+ /// \group in_place
+ /// \synopsis template <class U, class... Args> \n constexpr explicit optional(in_place_t, std::initializer_list<U>&, Args&&... args);
+ template <class U, class... Args>
+ SOL_TL_OPTIONAL_11_CONSTEXPR explicit optional(detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>,
+ std::initializer_list<U> il, Args&&... args) {
+ this->construct(il, std::forward<Args>(args)...);
+ }
+
+#if 0 // SOL_MODIFICATION
+ /// Constructs the stored value with `u`.
+ /// \synopsis template <class U=T> constexpr optional(U &&u);
+ template <class U = T, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
+ constexpr optional(U&& u) : base(in_place, std::forward<U>(u)) {
+ }
+
+ /// \exclude
+ template <class U = T, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
+ constexpr explicit optional(U&& u) : base(in_place, std::forward<U>(u)) {
+ }
+#else
+ /// Constructs the stored value with `u`.
+ /// \synopsis template <class U=T> constexpr optional(U &&u);
+ constexpr optional(T&& u) : base(in_place, std::move(u)) {
+ }
+
+ /// \exclude
+ constexpr optional(const T& u) : base(in_place, u) {
+ }
+#endif // sol2 modification
+
+ /// Converting copy constructor.
+ /// \synopsis template <class U> optional(const optional<U> &rhs);
+ template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr>
+ optional(const optional<U>& rhs) {
+ if (rhs.has_value()) {
+ this->construct(*rhs);
+ }
+ }
+
+ /// \exclude
+ template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr>
+ explicit optional(const optional<U>& rhs) {
+ if (rhs.has_value()) {
+ this->construct(*rhs);
+ }
+ }
+
+ /// Converting move constructor.
+ /// \synopsis template <class U> optional(optional<U> &&rhs);
+ template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr>
+ optional(optional<U>&& rhs) {
+ if (rhs.has_value()) {
+ this->construct(std::move(*rhs));
+ }
+ }
+
+ /// \exclude
+ template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr>
+ explicit optional(optional<U>&& rhs) {
+ this->construct(std::move(*rhs));
+ }
+
+ /// Destroys the stored value if there is one.
+ ~optional() = default;
+
+ /// Assignment to empty.
+ ///
+ /// Destroys the current value if there is one.
+ optional& operator=(nullopt_t) noexcept {
+ if (has_value()) {
+ this->m_value.~T();
+ this->m_has_value = false;
+ }
+
+ return *this;
+ }
+
+ /// Copy assignment.
+ ///
+ /// Copies the value from `rhs` if there is one. Otherwise resets the stored
+ /// value in `*this`.
+ optional& operator=(const optional& rhs) = default;
+
+ /// Move assignment.
+ ///
+ /// Moves the value from `rhs` if there is one. Otherwise resets the stored
+ /// value in `*this`.
+ optional& operator=(optional&& rhs) = default;
+
+ /// Assigns the stored value from `u`, destroying the old value if there was
+ /// one.
+ /// \synopsis optional &operator=(U &&u);
+ template <class U = T, detail::enable_assign_forward<T, U>* = nullptr>
+ optional& operator=(U&& u) {
+ if (has_value()) {
+ this->m_value = std::forward<U>(u);
+ }
+ else {
+ this->construct(std::forward<U>(u));
+ }
+
+ return *this;
+ }
+
+ /// Converting copy assignment operator.
+ ///
+ /// Copies the value from `rhs` if there is one. Otherwise resets the stored
+ /// value in `*this`.
+ /// \synopsis optional &operator=(const optional<U> & rhs);
+ template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr>
+ optional& operator=(const optional<U>& rhs) {
+ if (has_value()) {
+ if (rhs.has_value()) {
+ this->m_value = *rhs;
+ }
+ else {
+ this->hard_reset();
+ }
+ }
+
+ if (rhs.has_value()) {
+ this->construct(*rhs);
+ }
+
+ return *this;
+ }
+
+ // TODO check exception guarantee
+ /// Converting move assignment operator.
+ ///
+ /// Moves the value from `rhs` if there is one. Otherwise resets the stored
+ /// value in `*this`.
+ /// \synopsis optional &operator=(optional<U> && rhs);
+ template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr>
+ optional& operator=(optional<U>&& rhs) {
+ if (has_value()) {
+ if (rhs.has_value()) {
+ this->m_value = std::move(*rhs);
+ }
+ else {
+ this->hard_reset();
+ }
+ }
+
+ if (rhs.has_value()) {
+ this->construct(std::move(*rhs));
+ }
+
+ return *this;
+ }
+
+ /// Constructs the value in-place, destroying the current one if there is
+ /// one.
+ /// \group emplace
+ template <class... Args>
+ T& emplace(Args&&... args) {
+ static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
+
+ *this = nullopt;
+ this->construct(std::forward<Args>(args)...);
+ return value();
+ }
+
+ /// \group emplace
+ /// \synopsis template <class U, class... Args> \n T& emplace(std::initializer_list<U> il, Args &&... args);
+ template <class U, class... Args>
+ detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&> emplace(std::initializer_list<U> il, Args&&... args) {
+ *this = nullopt;
+ this->construct(il, std::forward<Args>(args)...);
+ return value();
+ }
+
+ /// Swaps this optional with the other.
+ ///
+ /// If neither optionals have a value, nothing happens.
+ /// If both have a value, the values are swapped.
+ /// If one has a value, it is moved to the other and the movee is left
+ /// valueless.
+ void swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value&& detail::is_nothrow_swappable<T>::value) {
+ if (has_value()) {
+ if (rhs.has_value()) {
+ using std::swap;
+ swap(**this, *rhs);
+ }
+ else {
+ new (std::addressof(rhs.m_value)) T(std::move(this->m_value));
+ this->m_value.T::~T();
+ }
+ }
+ else if (rhs.has_value()) {
+ new (std::addressof(this->m_value)) T(std::move(rhs.m_value));
+ rhs.m_value.T::~T();
+ }
+ }
+
+ /// \returns a pointer to the stored value
+ /// \requires a value is stored
+ /// \group pointer
+ /// \synopsis constexpr const T *operator->() const;
+ constexpr const T* operator->() const {
+ return std::addressof(this->m_value);
+ }
+
+ /// \group pointer
+ /// \synopsis constexpr T *operator->();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
+ return std::addressof(this->m_value);
+ }
+
+ /// \returns the stored value
+ /// \requires a value is stored
+ /// \group deref
+ /// \synopsis constexpr T &operator*();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() & {
+ return this->m_value;
+ }
+
+ /// \group deref
+ /// \synopsis constexpr const T &operator*() const;
+ constexpr const T& operator*() const& {
+ return this->m_value;
+ }
+
+ /// \exclude
+ SOL_TL_OPTIONAL_11_CONSTEXPR T&& operator*() && {
+ return std::move(this->m_value);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \exclude
+ constexpr const T&& operator*() const&& {
+ return std::move(this->m_value);
+ }
+#endif
+
+ /// \returns whether or not the optional has a value
+ /// \group has_value
+ constexpr bool has_value() const noexcept {
+ return this->m_has_value;
+ }
+
+ /// \group has_value
+ constexpr explicit operator bool() const noexcept {
+ return this->m_has_value;
+ }
+
+ /// \returns the contained value if there is one, otherwise throws
+ /// [bad_optional_access]
+ /// \group value
+ /// \synopsis constexpr T &value();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T& value() & {
+ if (has_value())
+ return this->m_value;
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+ /// \group value
+ /// \synopsis constexpr const T &value() const;
+ SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const& {
+ if (has_value())
+ return this->m_value;
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+ /// \exclude
+ SOL_TL_OPTIONAL_11_CONSTEXPR T&& value() && {
+ if (has_value())
+ return std::move(this->m_value);
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \exclude
+ SOL_TL_OPTIONAL_11_CONSTEXPR const T&& value() const&& {
+ if (has_value())
+ return std::move(this->m_value);
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+#endif
+
+ /// \returns the stored value if there is one, otherwise returns `u`
+ /// \group value_or
+ template <class U>
+ constexpr T value_or(U&& u) const& {
+ static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be copy constructible and convertible from U");
+ return has_value() ? **this : static_cast<T>(std::forward<U>(u));
+ }
+
+ /// \group value_or
+ template <class U>
+ SOL_TL_OPTIONAL_11_CONSTEXPR T value_or(U&& u) && {
+ static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be move constructible and convertible from U");
+ return has_value() ? **this : static_cast<T>(std::forward<U>(u));
+ }
+
+ /// Destroys the stored value if one exists, making the optional empty
+ void reset() noexcept {
+ if (has_value()) {
+ this->m_value.~T();
+ this->m_has_value = false;
+ }
+ }
+ }; // namespace sol
+
+ /// \group relop
+ /// \brief Compares two optional objects
+ /// \details If both optionals contain a value, they are compared with `T`s
+ /// relational operators. Otherwise `lhs` and `rhs` are equal only if they are
+ /// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs`
+ /// is not.
+ template <class T, class U>
+ inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) {
+ return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs);
+ }
+ /// \group relop
+ template <class T, class U>
+ inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) {
+ return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs);
+ }
+ /// \group relop
+ template <class T, class U>
+ inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) {
+ return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
+ }
+ /// \group relop
+ template <class T, class U>
+ inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) {
+ return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
+ }
+ /// \group relop
+ template <class T, class U>
+ inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) {
+ return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
+ }
+ /// \group relop
+ template <class T, class U>
+ inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) {
+ return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
+ }
+
+ /// \group relop_nullopt
+ /// \brief Compares an optional to a `nullopt`
+ /// \details Equivalent to comparing the optional to an empty optional
+ template <class T>
+ inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept {
+ return !lhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept {
+ return !rhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept {
+ return lhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept {
+ return rhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
+ return false;
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept {
+ return rhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept {
+ return !lhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
+ return true;
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept {
+ return lhs.has_value();
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
+ return false;
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
+ return true;
+ }
+ /// \group relop_nullopt
+ template <class T>
+ inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept {
+ return !rhs.has_value();
+ }
+
+ /// \group relop_t
+ /// \brief Compares the optional with a value.
+ /// \details If the optional has a value, it is compared with the other value
+ /// using `T`s relational operators. Otherwise, the optional is considered
+ /// less than the value.
+ template <class T, class U>
+ inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs == rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs == *rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs != rhs : true;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs != *rhs : true;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs < rhs : true;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs < *rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs <= rhs : true;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs <= *rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs > rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs > *rhs : true;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) {
+ return lhs.has_value() ? *lhs >= rhs : false;
+ }
+ /// \group relop_t
+ template <class T, class U>
+ inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) {
+ return rhs.has_value() ? lhs >= *rhs : true;
+ }
+
+ /// \synopsis template <class T> \n void swap(optional<T> &lhs, optional<T> &rhs);
+ template <class T, detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr, detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr>
+ void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) {
+ return lhs.swap(rhs);
+ }
+
+ namespace detail {
+ struct i_am_secret { };
+ } // namespace detail
+
+ template <class T = detail::i_am_secret, class U, class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>>
+ inline constexpr optional<Ret> make_optional(U&& v) {
+ return optional<Ret>(std::forward<U>(v));
+ }
+
+ template <class T, class... Args>
+ inline constexpr optional<T> make_optional(Args&&... args) {
+ return optional<T>(in_place, std::forward<Args>(args)...);
+ }
+ template <class T, class U, class... Args>
+ inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args) {
+ return optional<T>(in_place, il, std::forward<Args>(args)...);
+ }
+
+#if __cplusplus >= 201703L
+ template <class T>
+ optional(T) -> optional<T>;
+#endif
+
+ /// \exclude
+ namespace detail {
+#ifdef SOL_TL_OPTIONAL_CXX14
+ template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
+ detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
+ constexpr auto optional_map_impl(Opt&& opt, F&& f) {
+ return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
+ }
+
+ template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
+ detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
+ auto optional_map_impl(Opt&& opt, F&& f) {
+ if (opt.has_value()) {
+ detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
+ return make_optional(monostate {});
+ }
+
+ return optional<monostate>(nullopt);
+ }
+#else
+ template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
+ detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
+
+ constexpr auto optional_map_impl(Opt&& opt, F&& f) -> optional<Ret> {
+ return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
+ }
+
+ template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
+ detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
+
+ auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate> {
+ if (opt.has_value()) {
+ detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
+ return monostate {};
+ }
+
+ return nullopt;
+ }
+#endif
+ } // namespace detail
+
+ /// Specialization for when `T` is a reference. `optional<T&>` acts similarly
+ /// to a `T*`, but provides more operations and shows intent more clearly.
+ ///
+ /// *Examples*:
+ ///
+ /// ```
+ /// int i = 42;
+ /// sol::optional<int&> o = i;
+ /// *o == 42; //true
+ /// i = 12;
+ /// *o = 12; //true
+ /// &*o == &i; //true
+ /// ```
+ ///
+ /// Assignment has rebind semantics rather than assign-through semantics:
+ ///
+ /// ```
+ /// int j = 8;
+ /// o = j;
+ ///
+ /// &*o == &j; //true
+ /// ```
+ template <class T>
+ class optional<T&> {
+ public:
+#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
+ /// \group and_then
+ /// Carries out some operation which returns an optional on the stored
+ /// object if there is one. \requires `std::invoke(std::forward<F>(f),
+ /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
+ /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
+ /// `std::optional<U>`. The return value is empty if `*this` is empty,
+ /// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
+ /// is returned.
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &;
+ template <class F>
+ constexpr auto and_then(F&& f) const& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &&;
+ template <class F>
+ constexpr auto and_then(F&& f) const&& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+#endif
+#else
+ /// \group and_then
+ /// Carries out some operation which returns an optional on the stored
+ /// object if there is one. \requires `std::invoke(std::forward<F>(f),
+ /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
+ /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
+ /// `std::optional<U>`. The return value is empty if `*this` is empty,
+ /// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
+ /// is returned.
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) && {
+ using result = detail::invoke_result_t<F, T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &;
+ template <class F>
+ constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group and_then
+ /// \synopsis template <class F> \n constexpr auto and_then(F &&f) const &&;
+ template <class F>
+ constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&& {
+ using result = detail::invoke_result_t<F, const T&>;
+ static_assert(detail::is_optional<result>::value, "F must return an optional");
+
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
+ }
+#endif
+#endif
+
+#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
+ /// \brief Carries out some operation on the stored object if there is one.
+ /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
+ /// value())`. Returns a `std::optional<U>`. The return value is empty if
+ /// `*this` is empty, otherwise an `optional<U>` is constructed from the
+ /// return value of `std::invoke(std::forward<F>(f), value())` and is
+ /// returned.
+ ///
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
+ return detail::optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
+ return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) const&;
+ template <class F>
+ constexpr auto map(F&& f) const& {
+ return detail::optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> constexpr auto map(F &&f) const&&;
+ template <class F>
+ constexpr auto map(F&& f) const&& {
+ return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+#else
+ /// \brief Carries out some operation on the stored object if there is one.
+ /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
+ /// value())`. Returns a `std::optional<U>`. The return value is empty if
+ /// `*this` is empty, otherwise an `optional<U>` is constructed from the
+ /// return value of `std::invoke(std::forward<F>(f), value())` and is
+ /// returned.
+ ///
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) &;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
+ return detail::optional_map_impl(*this, std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) &&;
+ template <class F>
+ SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
+ return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) const&;
+ template <class F>
+ constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
+ return detail::optional_map_impl(*this, std::forward<F>(f));
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map
+ /// \synopsis template <class F> auto map(F &&f) const&&;
+ template <class F>
+ constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
+ return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
+ }
+#endif
+#endif
+
+ /// \brief Calls `f` if the optional is empty
+ /// \requires `std::invoke_result_t<F>` must be void or convertible to
+ /// `optional<T>`. \effects If `*this` has a value, returns `*this`.
+ /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
+ /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
+ ///
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) &;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
+ if (has_value())
+ return *this;
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
+ return has_value() ? *this : std::forward<F>(f)();
+ }
+
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) &&;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) && {
+ if (has_value())
+ return std::move(*this);
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
+ return has_value() ? std::move(*this) : std::forward<F>(f)();
+ }
+
+ /// \group or_else
+ /// \synopsis template <class F> optional<T> or_else (F &&f) const &;
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const& {
+ if (has_value())
+ return *this;
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
+ return has_value() ? *this : std::forward<F>(f)();
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \exclude
+ template <class F, detail::enable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const&& {
+ if (has_value())
+ return std::move(*this);
+
+ std::forward<F>(f)();
+ return nullopt;
+ }
+
+ /// \exclude
+ template <class F, detail::disable_if_ret_void<F>* = nullptr>
+ optional<T> or_else(F&& f) const&& {
+ return has_value() ? std::move(*this) : std::forward<F>(f)();
+ }
+#endif
+
+ /// \brief Maps the stored value with `f` if there is one, otherwise returns
+ /// `u`.
+ ///
+ /// \details If there is a value stored, then `f` is called with `**this`
+ /// and the value is returned. Otherwise `u` is returned.
+ ///
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) & {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
+ }
+
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) && {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
+ }
+
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) const& {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map_or
+ template <class F, class U>
+ U map_or(F&& f, U&& u) const&& {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
+ }
+#endif
+
+ /// \brief Maps the stored value with `f` if there is one, otherwise calls
+ /// `u` and returns the result.
+ ///
+ /// \details If there is a value stored, then `f` is
+ /// called with `**this` and the value is returned. Otherwise
+ /// `std::forward<U>(u)()` is returned.
+ ///
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u) &;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
+ }
+
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// &&;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
+ }
+
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// const &;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
+ return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group map_or_else
+ /// \synopsis template <class F, class U> \n auto map_or_else(F &&f, U &&u)
+ /// const &&;
+ template <class F, class U>
+ detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
+ return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
+ }
+#endif
+
+ /// \returns `u` if `*this` has a value, otherwise an empty optional.
+ template <class U>
+ constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
+ using result = optional<detail::decay_t<U>>;
+ return has_value() ? result { u } : result { nullopt };
+ }
+
+ /// \returns `rhs` if `*this` is empty, otherwise the current value.
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
+ return has_value() ? *this : rhs;
+ }
+
+ /// \group disjunction
+ constexpr optional disjunction(const optional& rhs) const& {
+ return has_value() ? *this : rhs;
+ }
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
+ return has_value() ? std::move(*this) : rhs;
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group disjunction
+ constexpr optional disjunction(const optional& rhs) const&& {
+ return has_value() ? std::move(*this) : rhs;
+ }
+#endif
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
+ return has_value() ? *this : std::move(rhs);
+ }
+
+ /// \group disjunction
+ constexpr optional disjunction(optional&& rhs) const& {
+ return has_value() ? *this : std::move(rhs);
+ }
+
+ /// \group disjunction
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
+ return has_value() ? std::move(*this) : std::move(rhs);
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group disjunction
+ constexpr optional disjunction(optional&& rhs) const&& {
+ return has_value() ? std::move(*this) : std::move(rhs);
+ }
+#endif
+
+ /// Takes the value out of the optional, leaving it empty
+ /// \group take
+ optional take() & {
+ optional ret = *this;
+ reset();
+ return ret;
+ }
+
+ /// \group take
+ optional take() const& {
+ optional ret = *this;
+ reset();
+ return ret;
+ }
+
+ /// \group take
+ optional take() && {
+ optional ret = std::move(*this);
+ reset();
+ return ret;
+ }
+
+#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
+ /// \group take
+ optional take() const&& {
+ optional ret = std::move(*this);
+ reset();
+ return ret;
+ }
+#endif
+
+ using value_type = T&;
+
+ /// Constructs an optional that does not contain a value.
+ /// \group ctor_empty
+ constexpr optional() noexcept : m_value(nullptr) {
+ }
+
+ /// \group ctor_empty
+ constexpr optional(nullopt_t) noexcept : m_value(nullptr) {
+ }
+
+ /// Copy constructor
+ ///
+ /// If `rhs` contains a value, the stored value is direct-initialized with
+ /// it. Otherwise, the constructed optional is empty.
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) noexcept = default;
+
+ /// Move constructor
+ ///
+ /// If `rhs` contains a value, the stored value is direct-initialized with
+ /// it. Otherwise, the constructed optional is empty.
+ SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
+
+ /// Constructs the stored value with `u`.
+ /// \synopsis template <class U=T> constexpr optional(U &&u);
+ template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
+ constexpr optional(U&& u) : m_value(std::addressof(u)) {
+ static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
+ }
+
+ /// \exclude
+ template <class U>
+ constexpr explicit optional(const optional<U>& rhs) : optional(*rhs) {
+ }
+
+ /// No-op
+ ~optional() = default;
+
+ /// Assignment to empty.
+ ///
+ /// Destroys the current value if there is one.
+ optional& operator=(nullopt_t) noexcept {
+ m_value = nullptr;
+ return *this;
+ }
+
+ /// Copy assignment.
+ ///
+ /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
+ /// resets the stored value in `*this`.
+ optional& operator=(const optional& rhs) = default;
+
+ /// Rebinds this optional to `u`.
+ ///
+ /// \requires `U` must be an lvalue reference.
+ /// \synopsis optional &operator=(U &&u);
+ template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
+ optional& operator=(U&& u) {
+ static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
+ m_value = std::addressof(u);
+ return *this;
+ }
+
+ /// Converting copy assignment operator.
+ ///
+ /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
+ /// resets the stored value in `*this`.
+ template <class U>
+ optional& operator=(const optional<U>& rhs) {
+ m_value = std::addressof(rhs.value());
+ return *this;
+ }
+
+ /// Constructs the value in-place, destroying the current one if there is
+ /// one.
+ ///
+ /// \group emplace
+ template <class... Args>
+ T& emplace(Args&&... args) noexcept {
+ static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
+
+ *this = nullopt;
+ this->construct(std::forward<Args>(args)...);
+ }
+
+ /// Swaps this optional with the other.
+ ///
+ /// If neither optionals have a value, nothing happens.
+ /// If both have a value, the values are swapped.
+ /// If one has a value, it is moved to the other and the movee is left
+ /// valueless.
+ void swap(optional& rhs) noexcept {
+ std::swap(m_value, rhs.m_value);
+ }
+
+ /// \returns a pointer to the stored value
+ /// \requires a value is stored
+ /// \group pointer
+ /// \synopsis constexpr const T *operator->() const;
+ constexpr const T* operator->() const {
+ return m_value;
+ }
+
+ /// \group pointer
+ /// \synopsis constexpr T *operator->();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
+ return m_value;
+ }
+
+ /// \returns the stored value
+ /// \requires a value is stored
+ /// \group deref
+ /// \synopsis constexpr T &operator*();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() {
+ return *m_value;
+ }
+
+ /// \group deref
+ /// \synopsis constexpr const T &operator*() const;
+ constexpr const T& operator*() const {
+ return *m_value;
+ }
+
+ /// \returns whether or not the optional has a value
+ /// \group has_value
+ constexpr bool has_value() const noexcept {
+ return m_value != nullptr;
+ }
+
+ /// \group has_value
+ constexpr explicit operator bool() const noexcept {
+ return m_value != nullptr;
+ }
+
+ /// \returns the contained value if there is one, otherwise throws
+ /// [bad_optional_access]
+ /// \group value
+ /// synopsis constexpr T &value();
+ SOL_TL_OPTIONAL_11_CONSTEXPR T& value() {
+ if (has_value())
+ return *m_value;
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+ /// \group value
+ /// \synopsis constexpr const T &value() const;
+ SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const {
+ if (has_value())
+ return *m_value;
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ std::abort();
+#else
+ throw bad_optional_access();
+#endif // No exceptions allowed
+ }
+
+ /// \returns the stored value if there is one, otherwise returns `u`
+ /// \group value_or
+ template <class U>
+ constexpr T& value_or(U&& u) const {
+ static_assert(std::is_convertible<U&&, T&>::value, "T must be convertible from U");
+ return has_value() ? const_cast<T&>(**this) : static_cast<T&>(std::forward<U>(u));
+ }
+
+ /// Destroys the stored value if one exists, making the optional empty
+ void reset() noexcept {
+ m_value = nullptr;
+ }
+
+ private:
+ T* m_value;
+ };
+
+} // namespace sol
+
+namespace std {
+ // TODO SFINAE
+ template <class T>
+ struct hash<::sol::optional<T>> {
+ ::std::size_t operator()(const ::sol::optional<T>& o) const {
+ if (!o.has_value())
+ return 0;
+
+ return ::std::hash<::sol::detail::remove_const_t<T>>()(*o);
+ }
+ };
+} // namespace std
+
+// end of sol/optional_implementation.hpp
+
+#endif // Boost vs. Better optional
+
+#include <optional>
+
+namespace sol {
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+ template <typename T>
+ using optional = boost::optional<T>;
+ using nullopt_t = boost::none_t;
+ SOL_BOOST_NONE_CONSTEXPR_I_ nullopt_t nullopt = boost::none;
+#endif // Boost vs. Better optional
+
+ namespace meta {
+ template <typename T>
+ using is_optional = any<is_specialization_of<T, optional>, is_specialization_of<T, std::optional>>;
+
+ template <typename T>
+ constexpr inline bool is_optional_v = is_optional<T>::value;
+ } // namespace meta
+
+ namespace detail {
+ template <typename T>
+ struct associated_nullopt {
+ inline static constexpr std::nullopt_t value = std::nullopt;
+ };
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+ template <typename T>
+ struct associated_nullopt<boost::optional<T>> {
+ inline static SOL_BOOST_NONE_CONSTEXPR_I_ boost::none_t value = boost::none;
+ };
+#endif // Boost nullopt
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+ template <typename T>
+ inline SOL_BOOST_NONE_CONSTEXPR_I_ auto associated_nullopt_v = associated_nullopt<T>::value;
+#else
+ template <typename T>
+ inline constexpr auto associated_nullopt_v = associated_nullopt<T>::value;
+#endif // Boost continues to lag behind, to not many people's surprise...
+ } // namespace detail
+} // namespace sol
+
+#if SOL_IS_ON(SOL_USE_BOOST)
+#undef SOL_BOOST_NONE_CONSTEXPR_I_
+#endif
+
+// end of sol/optional.hpp
+
+// beginning of sol/raii.hpp
+
+#include <memory>
+
+namespace sol {
+ namespace detail {
+ struct default_construct {
+ template <typename T, typename... Args>
+ static void construct(T&& obj, Args&&... args) {
+ typedef meta::unqualified_t<T> Tu;
+ std::allocator<Tu> alloc {};
+ std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename... Args>
+ void operator()(T&& obj, Args&&... args) const {
+ construct(std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+ };
+
+ struct default_destroy {
+ template <typename T>
+ static void destroy(T&& obj) {
+ std::allocator<meta::unqualified_t<T>> alloc {};
+ alloc.destroy(obj);
+ }
+
+ template <typename T>
+ void operator()(T&& obj) const {
+ destroy(std::forward<T>(obj));
+ }
+ };
+
+ struct deleter {
+ template <typename T>
+ void operator()(T* p) const {
+ delete p;
+ }
+ };
+
+ struct state_deleter {
+ void operator()(lua_State* L) const {
+ lua_close(L);
+ }
+ };
+
+ template <typename T, typename Dx, typename... Args>
+ inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
+ return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
+ }
+
+ template <typename Tag, typename T>
+ struct tagged {
+ private:
+ T value_;
+
+ public:
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
+ tagged(Arg&& arg, Args&&... args) : value_(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ T& value() & {
+ return value_;
+ }
+
+ T const& value() const& {
+ return value_;
+ }
+
+ T&& value() && {
+ return std::move(value_);
+ }
+ };
+ } // namespace detail
+
+ template <typename... Args>
+ struct constructor_list { };
+
+ template <typename... Args>
+ using constructors = constructor_list<Args...>;
+
+ const auto default_constructor = constructors<types<>> {};
+
+ struct no_construction { };
+ const auto no_constructor = no_construction {};
+
+ struct call_construction { };
+ const auto call_constructor = call_construction {};
+
+ template <typename... Functions>
+ struct constructor_wrapper {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
+ constructor_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+ };
+
+ template <typename... Functions>
+ inline auto initializers(Functions&&... functions) {
+ return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
+ }
+
+ template <typename... Functions>
+ struct factory_wrapper {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
+ factory_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+ };
+
+ template <typename... Functions>
+ inline auto factories(Functions&&... functions) {
+ return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
+ }
+
+ template <typename Function>
+ struct destructor_wrapper {
+ Function fx;
+ destructor_wrapper(Function f) : fx(std::move(f)) {
+ }
+ };
+
+ template <>
+ struct destructor_wrapper<void> { };
+
+ const destructor_wrapper<void> default_destructor {};
+
+ template <typename Fx>
+ inline auto destructor(Fx&& fx) {
+ return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
+ }
+
+} // namespace sol
+
+// end of sol/raii.hpp
+
+// beginning of sol/policies.hpp
+
+#include <array>
+
+namespace sol {
+ namespace detail {
+ struct policy_base_tag { };
+ } // namespace detail
+
+ template <int Target, int... In>
+ struct static_stack_dependencies : detail::policy_base_tag { };
+ typedef static_stack_dependencies<-1, 1> self_dependency;
+ template <int... In>
+ struct returns_self_with : detail::policy_base_tag { };
+ typedef returns_self_with<> returns_self;
+
+ struct stack_dependencies : detail::policy_base_tag {
+ int target;
+ std::array<int, 64> stack_indices;
+ std::size_t len;
+
+ template <typename... Args>
+ stack_dependencies(int stack_target, Args&&... args) : target(stack_target), stack_indices(), len(sizeof...(Args)) {
+ std::size_t i = 0;
+ (void)detail::swallow { int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())... };
+ }
+
+ int& operator[](std::size_t i) {
+ return stack_indices[i];
+ }
+
+ const int& operator[](std::size_t i) const {
+ return stack_indices[i];
+ }
+
+ std::size_t size() const {
+ return len;
+ }
+ };
+
+ template <typename F, typename... Policies>
+ struct policy_wrapper {
+ typedef std::index_sequence_for<Policies...> indices;
+
+ F value;
+ std::tuple<Policies...> policies;
+
+ template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, policy_wrapper>>> = meta::enabler>
+ policy_wrapper(Fx&& fx, Args&&... args) : value(std::forward<Fx>(fx)), policies(std::forward<Args>(args)...) {
+ }
+
+ policy_wrapper(const policy_wrapper&) = default;
+ policy_wrapper& operator=(const policy_wrapper&) = default;
+ policy_wrapper(policy_wrapper&&) = default;
+ policy_wrapper& operator=(policy_wrapper&&) = default;
+ };
+
+ template <typename F, typename... Args>
+ auto policies(F&& f, Args&&... args) {
+ return policy_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...);
+ }
+
+ namespace detail {
+ template <typename T>
+ using is_policy = meta::is_specialization_of<T, policy_wrapper>;
+
+ template <typename T>
+ inline constexpr bool is_policy_v = is_policy<T>::value;
+ } // namespace detail
+} // namespace sol
+
+// end of sol/policies.hpp
+
+// beginning of sol/ebco.hpp
+
+#include <type_traits>
+#include <utility>
+#include <memory>
+
+namespace sol { namespace detail {
+
+ template <typename T, std::size_t tag = 0, typename = void>
+ struct ebco {
+ T m_value;
+
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco(const T& v) noexcept(std::is_nothrow_copy_constructible_v<T>) : m_value(v) {};
+ ebco(T&& v) noexcept(std::is_nothrow_move_constructible_v<T>) : m_value(std::move(v)) {};
+ ebco& operator=(const T& v) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ m_value = v;
+ return *this;
+ }
+ ebco& operator=(T&& v) noexcept(std::is_nothrow_move_assignable_v<T>) {
+ m_value = std::move(v);
+ return *this;
+ };
+ template <typename Arg, typename... Args,
+ typename = std::enable_if_t<
+ !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
+ ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T> && (sizeof...(Args) > 0 || !std::is_convertible_v<Arg, T>)>>
+ ebco(Arg&& arg, Args&&... args) noexcept(std::is_nothrow_constructible_v<T, Arg, Args...>)
+ : m_value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ T& value() & noexcept {
+ return m_value;
+ }
+
+ T const& value() const& noexcept {
+ return m_value;
+ }
+
+ T&& value() && noexcept {
+ return std::move(m_value);
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T, tag, std::enable_if_t<!std::is_reference_v<T> && std::is_class_v<T> && !std::is_final_v<T>>> : T {
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco(const T& v) noexcept(std::is_nothrow_copy_constructible_v<T>) : T(v) {};
+ ebco(T&& v) noexcept(std::is_nothrow_move_constructible_v<T>) : T(std::move(v)) {};
+ template <typename Arg, typename... Args,
+ typename = std::enable_if_t<
+ !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
+ ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T> && (sizeof...(Args) > 0 || !std::is_convertible_v<Arg, T>)>>
+ ebco(Arg&& arg, Args&&... args) noexcept(std::is_nothrow_constructible_v<T, Arg, Args...>) : T(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco& operator=(const T& v) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ static_cast<T&>(*this) = v;
+ return *this;
+ }
+ ebco& operator=(T&& v) noexcept(std::is_nothrow_move_assignable_v<T>) {
+ static_cast<T&>(*this) = std::move(v);
+ return *this;
+ };
+
+ T& value() & noexcept {
+ return static_cast<T&>(*this);
+ }
+
+ T const& value() const& noexcept {
+ return static_cast<T const&>(*this);
+ }
+
+ T&& value() && noexcept {
+ return std::move(static_cast<T&>(*this));
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T&, tag> {
+ private:
+ T* m_ref;
+
+ public:
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco(T& v) noexcept : m_ref(std::addressof(v)) {};
+
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco& operator=(T& v) noexcept {
+ m_ref = std::addressof(v);
+ return *this;
+ }
+
+ T& value() const noexcept {
+ return *(const_cast<ebco<T&, tag>&>(*this).m_ref);
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T&&, tag> {
+ T&& ref;
+
+ ebco() = default;
+ ebco(const ebco&) = delete;
+ ebco(ebco&&) = default;
+ ebco(T&& v) noexcept : ref(v) {};
+
+ ebco& operator=(const ebco&) = delete;
+ ebco& operator=(ebco&&) = delete;
+
+ T& value() & noexcept {
+ return ref;
+ }
+
+ const T& value() const& noexcept {
+ return ref;
+ }
+
+ T&& value() && noexcept {
+ return std::move(ref);
+ }
+ };
+
+}} // namespace sol::detail
+
+// end of sol/ebco.hpp
+
+#include <array>
+#include <initializer_list>
+#include <string>
+#include <string_view>
+#include <limits>
+#include <optional>
+#include <memory>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // variant shenanigans (thanks, Mac OSX)
+
+namespace sol {
+ namespace d {
+ // shortest possible hidden detail namespace
+ // when types are transcribed, this saves
+ // quite a bit of space, actually.
+ // it's a little unfortunate, but here we are?
+ template <typename T>
+ struct u { };
+ } // namespace d
+
+ namespace detail {
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept;
+#else
+ typedef int (*lua_CFunction_noexcept)(lua_State* L);
+#endif // noexcept function type for lua_CFunction
+
+ template <typename T>
+ struct implicit_wrapper {
+ T& value;
+
+ implicit_wrapper(T* value_) : value(*value_) {
+ }
+
+ implicit_wrapper(T& value_) : value(value_) {
+ }
+
+ operator T&() {
+ return value;
+ }
+
+ operator T*() {
+ return std::addressof(value);
+ }
+ };
+
+ struct yield_tag_t { };
+ inline constexpr yield_tag_t yield_tag {};
+ } // namespace detail
+
+ struct lua_nil_t { };
+ inline constexpr lua_nil_t lua_nil {};
+ inline bool operator==(lua_nil_t, lua_nil_t) {
+ return true;
+ }
+ inline bool operator!=(lua_nil_t, lua_nil_t) {
+ return false;
+ }
+#if SOL_IS_ON(SOL_NIL)
+ using nil_t = lua_nil_t;
+ inline constexpr const nil_t& nil = lua_nil;
+#endif
+
+ namespace detail {
+ struct non_lua_nil_t { };
+ } // namespace detail
+
+ struct metatable_key_t { };
+ inline constexpr metatable_key_t metatable_key {};
+
+ struct global_tag_t {
+ } inline constexpr global_tag {};
+
+ struct env_key_t { };
+ inline constexpr env_key_t env_key {};
+
+ struct no_metatable_t { };
+ inline constexpr no_metatable_t no_metatable {};
+
+ template <typename T>
+ struct yielding_t {
+ T func;
+
+ yielding_t() = default;
+ yielding_t(const yielding_t&) = default;
+ yielding_t(yielding_t&&) = default;
+ yielding_t& operator=(const yielding_t&) = default;
+ yielding_t& operator=(yielding_t&&) = default;
+ template <typename Arg,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>,
+ meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
+ yielding_t(Arg&& arg) : func(std::forward<Arg>(arg)) {
+ }
+ template <typename Arg0, typename Arg1, typename... Args>
+ yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
+ }
+ };
+
+ template <typename F>
+ inline yielding_t<std::decay_t<F>> yielding(F&& f) {
+ return yielding_t<std::decay_t<F>>(std::forward<F>(f));
+ }
+
+ typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;
+
+ template <typename T>
+ struct non_null { };
+
+ template <typename... Args>
+ struct function_sig { };
+
+ struct upvalue_index {
+ int index;
+ upvalue_index(int idx) : index(lua_upvalueindex(idx)) {
+ }
+
+ operator int() const {
+ return index;
+ }
+ };
+
+ struct raw_index {
+ int index;
+ raw_index(int i) : index(i) {
+ }
+
+ operator int() const {
+ return index;
+ }
+ };
+
+ struct absolute_index {
+ int index;
+ absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {
+ }
+
+ operator int() const {
+ return index;
+ }
+ };
+
+ struct ref_index {
+ int index;
+ ref_index(int idx) : index(idx) {
+ }
+
+ operator int() const {
+ return index;
+ }
+ };
+
+ struct stack_count {
+ int count;
+
+ stack_count(int cnt) : count(cnt) {
+ }
+ };
+
+ struct lightuserdata_value {
+ void* value;
+ lightuserdata_value(void* data) : value(data) {
+ }
+ operator void*() const {
+ return value;
+ }
+ };
+
+ struct userdata_value {
+ private:
+ void* m_value;
+
+ public:
+ userdata_value(void* data) : m_value(data) {
+ }
+
+ void* value() const {
+ return m_value;
+ }
+
+ operator void*() const {
+ return value();
+ }
+ };
+
+ template <typename T>
+ struct light {
+ private:
+ static_assert(!std::is_void_v<T>, "the type for light will never be void");
+ T* m_value;
+
+ public:
+ light(T& x) : m_value(std::addressof(x)) {
+ }
+ light(T* x) : m_value(x) {
+ }
+ explicit light(void* x) : m_value(static_cast<T*>(x)) {
+ }
+
+ T* value() const {
+ return m_value;
+ }
+
+ operator T*() const {
+ return m_value;
+ }
+ operator T&() const {
+ return *m_value;
+ }
+
+ void* void_value() const {
+ return m_value;
+ }
+ };
+
+ template <typename T>
+ auto make_light(T& l) {
+ typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
+ return light<L>(l);
+ }
+
+ template <typename T>
+ struct user : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+
+ using base_t::value;
+
+ operator std::add_pointer_t<std::remove_reference_t<T>>() {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_pointer_t<std::add_const_t<std::remove_reference_t<T>>>() const {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_lvalue_reference_t<T>() {
+ return this->base_t::value();
+ }
+
+ operator std::add_const_t<std::add_lvalue_reference_t<T>>&() const {
+ return this->base_t::value();
+ }
+ };
+
+ template <typename T>
+ auto make_user(T&& u) {
+ typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
+ return user<U>(std::forward<T>(u));
+ }
+
+ template <typename T>
+ struct metatable_registry_key : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+
+ using base_t::value;
+ };
+
+ template <typename T>
+ auto meta_registry_key(T&& key) {
+ typedef meta::unqualified_t<T> K;
+ return metatable_registry_key<K>(std::forward<T>(key));
+ }
+
+ template <typename... Upvalues>
+ struct closure {
+ lua_CFunction c_function;
+ std::tuple<Upvalues...> upvalues;
+ closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {
+ }
+ };
+
+ template <>
+ struct closure<> {
+ lua_CFunction c_function;
+ int upvalues;
+ closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) {
+ }
+ };
+
+ typedef closure<> c_closure;
+
+ template <typename... Args>
+ closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
+ return closure<Args...>(f, std::forward<Args>(args)...);
+ }
+
+ template <typename Sig, typename... Ps>
+ struct function_arguments {
+ std::tuple<Ps...> arguments;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
+ function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+ };
+
+ template <typename Sig = function_sig<>, typename... Args>
+ auto as_function(Args&&... args) {
+ return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
+ }
+
+ template <typename Sig = function_sig<>, typename... Args>
+ auto as_function_reference(Args&&... args) {
+ return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
+ }
+
+ template <typename T>
+ struct as_table_t : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ as_table_t() = default;
+ as_table_t(const as_table_t&) = default;
+ as_table_t(as_table_t&&) = default;
+ as_table_t& operator=(const as_table_t&) = default;
+ as_table_t& operator=(as_table_t&&) = default;
+ as_table_t(const meta::unqualified_t<T>& obj) noexcept(std::is_nothrow_constructible_v<base_t, const meta::unqualified_t<T>&>) : base_t(obj) {
+ }
+ as_table_t(meta::unqualified_t<T>&& obj) noexcept(std::is_nothrow_constructible_v<base_t, meta::unqualified_t<T>&&>) : base_t(std::move(obj)) {
+ }
+ template <typename Arg, typename... Args,
+ std::enable_if_t<
+ !std::is_same_v<as_table_t, meta::unqualified_t<Arg>> && !std::is_same_v<meta::unqualified_t<T>, meta::unqualified_t<Arg>>>* = nullptr>
+ as_table_t(Arg&& arg, Args&&... args) noexcept(std::is_nothrow_constructible_v<base_t, Arg, Args...>)
+ : base_t(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ using base_t::value;
+
+ operator std::add_lvalue_reference_t<T>() {
+ return this->base_t::value();
+ }
+
+ operator std::add_const_t<std::add_lvalue_reference_t<T>>() const {
+ return this->base_t::value();
+ }
+ };
+
+ template <typename T>
+ struct nested : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using nested_type = T;
+
+ nested() = default;
+ nested(const nested&) = default;
+ nested(nested&&) = default;
+ nested& operator=(const nested&) = default;
+ nested& operator=(nested&&) = default;
+ nested(const meta::unqualified_t<T>& obj) noexcept(std::is_nothrow_constructible_v<base_t, const meta::unqualified_t<T>&>) : base_t(obj) {
+ }
+ nested(meta::unqualified_t<T>&& obj) noexcept(std::is_nothrow_constructible_v<base_t, meta::unqualified_t<T>&&>) : base_t(std::move(obj)) {
+ }
+ template <typename Arg, typename... Args,
+ std::enable_if_t<
+ !std::is_same_v<nested, meta::unqualified_t<Arg>> && !std::is_same_v<meta::unqualified_t<T>, meta::unqualified_t<Arg>>>* = nullptr>
+ nested(Arg&& arg, Args&&... args) noexcept(std::is_nothrow_constructible_v<base_t, Arg, Args...>)
+ : base_t(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ using base_t::value;
+
+ operator std::add_lvalue_reference_t<T>() {
+ return this->base_t::value();
+ }
+
+ operator std::add_const_t<std::add_lvalue_reference_t<T>>() const {
+ return this->base_t::value();
+ }
+ };
+
+ struct nested_tag_t { };
+ constexpr inline nested_tag_t nested_tag {};
+
+ template <typename T>
+ as_table_t<T> as_table_ref(T&& container) {
+ return as_table_t<T>(std::forward<T>(container));
+ }
+
+ template <typename T>
+ as_table_t<meta::unqualified_t<T>> as_table(T&& container) {
+ return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container));
+ }
+
+ template <typename T>
+ nested<T> as_nested_ref(T&& container) {
+ return nested<T>(std::forward<T>(container));
+ }
+
+ template <typename T>
+ nested<meta::unqualified_t<T>> as_nested(T&& container) {
+ return nested<meta::unqualified_t<T>>(std::forward<T>(container));
+ }
+
+ template <typename T>
+ struct as_container_t : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using type = T;
+
+ as_container_t() = default;
+ as_container_t(const as_container_t&) = default;
+ as_container_t(as_container_t&&) = default;
+ as_container_t& operator=(const as_container_t&) = default;
+ as_container_t& operator=(as_container_t&&) = default;
+
+ using base_t::base_t;
+
+ using base_t::value;
+
+ operator std::add_lvalue_reference_t<T>() {
+ return value();
+ }
+ };
+
+ template <typename T>
+ auto as_container(T&& value) {
+ return as_container_t<T>(std::forward<T>(value));
+ }
+
+ template <typename T, std::size_t Limit = 15>
+ struct exhaustive_until : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+
+ using base_t::value;
+
+ operator std::add_pointer_t<std::remove_reference_t<T>>() {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_pointer_t<std::add_const_t<std::remove_reference_t<T>>>() const {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_lvalue_reference_t<T>() {
+ return this->base_t::value();
+ }
+
+ operator std::add_const_t<std::add_lvalue_reference_t<T>>&() const {
+ return this->base_t::value();
+ }
+ };
+
+ template <typename T>
+ using exhaustive = exhaustive_until<T, (std::numeric_limits<size_t>::max)()>;
+
+ template <typename T>
+ struct non_exhaustive : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+
+ using base_t::value;
+
+ operator std::add_pointer_t<std::remove_reference_t<T>>() {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_pointer_t<std::add_const_t<std::remove_reference_t<T>>>() const {
+ return std::addressof(this->base_t::value());
+ }
+
+ operator std::add_lvalue_reference_t<T>() {
+ return this->base_t::value();
+ }
+
+ operator std::add_const_t<std::add_lvalue_reference_t<T>>&() const {
+ return this->base_t::value();
+ }
+ };
+
+ template <typename T>
+ struct push_invoke_t : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ push_invoke_t() = default;
+ push_invoke_t(const push_invoke_t&) = default;
+ push_invoke_t(push_invoke_t&&) = default;
+ push_invoke_t& operator=(const push_invoke_t&) = default;
+ push_invoke_t& operator=(push_invoke_t&&) = default;
+
+ using base_t::base_t;
+
+ using base_t::value;
+ };
+
+ template <typename Fx>
+ auto push_invoke(Fx&& fx) {
+ return push_invoke_t<Fx>(std::forward<Fx>(fx));
+ }
+
+ template <typename T>
+ struct forward_as_value_t : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ forward_as_value_t() = default;
+ forward_as_value_t(const forward_as_value_t&) = default;
+ forward_as_value_t(forward_as_value_t&&) = default;
+ forward_as_value_t& operator=(const forward_as_value_t&) = default;
+ forward_as_value_t& operator=(forward_as_value_t&&) = default;
+
+ using base_t::base_t;
+
+ using base_t::value;
+ };
+
+ template <typename T>
+ auto pass_as_value(T& value_ref_) {
+ return forward_as_value_t<T>(value_ref_);
+ }
+
+ struct override_value_t { };
+ constexpr inline override_value_t override_value = override_value_t();
+ struct update_if_empty_t { };
+ constexpr inline update_if_empty_t update_if_empty = update_if_empty_t();
+ struct create_if_nil_t { };
+ constexpr inline create_if_nil_t create_if_nil = create_if_nil_t();
+
+ namespace detail {
+ enum insert_mode { none = 0x0, update_if_empty = 0x01, override_value = 0x02, create_if_nil = 0x04 };
+
+ template <typename T, typename...>
+ using is_insert_mode = std::integral_constant<bool,
+ std::is_same_v<T, override_value_t> || std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, create_if_nil_t>>;
+
+ template <typename T, typename...>
+ using is_not_insert_mode = meta::neg<is_insert_mode<T>>;
+ } // namespace detail
+
+ struct this_state {
+ lua_State* L;
+
+ this_state(lua_State* Ls) : L(Ls) {
+ }
+
+ operator lua_State*() const noexcept {
+ return lua_state();
+ }
+
+ lua_State* operator->() const noexcept {
+ return lua_state();
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ }
+ };
+
+ struct this_main_state {
+ lua_State* L;
+
+ this_main_state(lua_State* Ls) : L(Ls) {
+ }
+
+ operator lua_State*() const noexcept {
+ return lua_state();
+ }
+
+ lua_State* operator->() const noexcept {
+ return lua_state();
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ }
+ };
+
+ struct new_table {
+ int sequence_hint = 0;
+ int map_hint = 0;
+
+ new_table() = default;
+ new_table(const new_table&) = default;
+ new_table(new_table&&) = default;
+ new_table& operator=(const new_table&) = default;
+ new_table& operator=(new_table&&) = default;
+
+ new_table(int sequence_hint_, int map_hint_ = 0) noexcept : sequence_hint(sequence_hint_), map_hint(map_hint_) {
+ }
+ };
+
+ const new_table create = {};
+
+ enum class lib : unsigned char {
+ // print, assert, and other base functions
+ base,
+ // require and other package functions
+ package,
+ // coroutine functions and utilities
+ coroutine,
+ // string library
+ string,
+ // functionality from the OS
+ os,
+ // all things math
+ math,
+ // the table manipulator and observer functions
+ table,
+ // the debug library
+ debug,
+ // the bit library: different based on which you're using
+ bit32,
+ // input/output library
+ io,
+ // LuaJIT only
+ ffi,
+ // LuaJIT only
+ jit,
+ // library for handling utf8: new to Lua
+ utf8,
+ // do not use
+ count
+ };
+
+ enum class call_syntax { dot = 0, colon = 1 };
+
+ enum class load_mode {
+ any = 0,
+ text = 1,
+ binary = 2,
+ };
+
+ enum class call_status : int {
+ ok = LUA_OK,
+ yielded = LUA_YIELD,
+ runtime = LUA_ERRRUN,
+ memory = LUA_ERRMEM,
+ handler = LUA_ERRERR,
+ gc = LUA_ERRGCMM,
+ syntax = LUA_ERRSYNTAX,
+ file = LUA_ERRFILE,
+ };
+
+ enum class thread_status : int {
+ ok = LUA_OK,
+ yielded = LUA_YIELD,
+ runtime = LUA_ERRRUN,
+ memory = LUA_ERRMEM,
+ gc = LUA_ERRGCMM,
+ handler = LUA_ERRERR,
+ dead = -1,
+ };
+
+ enum class load_status : int {
+ ok = LUA_OK,
+ syntax = LUA_ERRSYNTAX,
+ memory = LUA_ERRMEM,
+ gc = LUA_ERRGCMM,
+ file = LUA_ERRFILE,
+ };
+
+ enum class gc_mode : int {
+ incremental = 0,
+ generational = 1,
+ default_value = incremental,
+ };
+
+ enum class type : int {
+ none = LUA_TNONE,
+ lua_nil = LUA_TNIL,
+#if SOL_IS_ON(SOL_NIL)
+ nil = lua_nil,
+#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
+ string = LUA_TSTRING,
+ number = LUA_TNUMBER,
+ thread = LUA_TTHREAD,
+ boolean = LUA_TBOOLEAN,
+ function = LUA_TFUNCTION,
+ userdata = LUA_TUSERDATA,
+ lightuserdata = LUA_TLIGHTUSERDATA,
+ table = LUA_TTABLE,
+ poly = -0xFFFF
+ };
+
+ inline const std::string& to_string(call_status c) {
+ static const std::array<std::string, 10> names { { "ok",
+ "yielded",
+ "runtime",
+ "memory",
+ "handler",
+ "gc",
+ "syntax",
+ "file",
+ "CRITICAL_EXCEPTION_FAILURE",
+ "CRITICAL_INDETERMINATE_STATE_FAILURE" } };
+ switch (c) {
+ case call_status::ok:
+ return names[0];
+ case call_status::yielded:
+ return names[1];
+ case call_status::runtime:
+ return names[2];
+ case call_status::memory:
+ return names[3];
+ case call_status::handler:
+ return names[4];
+ case call_status::gc:
+ return names[5];
+ case call_status::syntax:
+ return names[6];
+ case call_status::file:
+ return names[7];
+ }
+ if (static_cast<std::ptrdiff_t>(c) == -1) {
+ // One of the many cases where a critical exception error has occurred
+ return names[8];
+ }
+ return names[9];
+ }
+
+ inline bool is_indeterminate_call_failure(call_status c) {
+ switch (c) {
+ case call_status::ok:
+ case call_status::yielded:
+ case call_status::runtime:
+ case call_status::memory:
+ case call_status::handler:
+ case call_status::gc:
+ case call_status::syntax:
+ case call_status::file:
+ return false;
+ }
+ return true;
+ }
+
+ inline const std::string& to_string(load_status c) {
+ static const std::array<std::string, 7> names {
+ { "ok", "memory", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" }
+ };
+ switch (c) {
+ case load_status::ok:
+ return names[0];
+ case load_status::memory:
+ return names[1];
+ case load_status::gc:
+ return names[2];
+ case load_status::syntax:
+ return names[3];
+ case load_status::file:
+ return names[4];
+ }
+ if (static_cast<int>(c) == -1) {
+ // One of the many cases where a critical exception error has occurred
+ return names[5];
+ }
+ return names[6];
+ }
+
+ inline const std::string& to_string(load_mode c) {
+ static const std::array<std::string, 3> names { {
+ "bt",
+ "t",
+ "b",
+ } };
+ return names[static_cast<std::size_t>(c)];
+ }
+
+ enum class meta_function : unsigned {
+ construct,
+ index,
+ new_index,
+ mode,
+ call,
+ call_function = call,
+ metatable,
+ to_string,
+ length,
+ unary_minus,
+ addition,
+ subtraction,
+ multiplication,
+ division,
+ modulus,
+ power_of,
+ involution = power_of,
+ concatenation,
+ equal_to,
+ less_than,
+ less_than_or_equal_to,
+ garbage_collect,
+ floor_division,
+ bitwise_left_shift,
+ bitwise_right_shift,
+ bitwise_not,
+ bitwise_and,
+ bitwise_or,
+ bitwise_xor,
+ pairs,
+ ipairs,
+ next,
+ type,
+ type_info,
+ call_construct,
+ storage,
+ gc_names,
+ static_index,
+ static_new_index,
+ };
+
+ typedef meta_function meta_method;
+
+ inline const std::array<std::string, 37>& meta_function_names() {
+ static const std::array<std::string, 37> names = { { "new",
+ "__index",
+ "__newindex",
+ "__mode",
+ "__call",
+ "__metatable",
+ "__tostring",
+ "__len",
+ "__unm",
+ "__add",
+ "__sub",
+ "__mul",
+ "__div",
+ "__mod",
+ "__pow",
+ "__concat",
+ "__eq",
+ "__lt",
+ "__le",
+ "__gc",
+
+ "__idiv",
+ "__shl",
+ "__shr",
+ "__bnot",
+ "__band",
+ "__bor",
+ "__bxor",
+
+ "__pairs",
+ "__ipairs",
+ "next",
+
+ "__type",
+ "__typeinfo",
+ "__sol.call_new",
+ "__sol.storage",
+ "__sol.gc_names",
+ "__sol.static_index",
+ "__sol.static_new_index" } };
+ return names;
+ }
+
+ inline const std::string& to_string(meta_function mf) {
+ return meta_function_names()[static_cast<std::size_t>(mf)];
+ }
+
+ inline type type_of(lua_State* L, int index) {
+ return static_cast<type>(lua_type(L, index));
+ }
+
+ inline std::string type_name(lua_State* L, type t) {
+ return lua_typename(L, static_cast<int>(t));
+ }
+
+ template <typename T>
+ struct is_stateless_lua_reference
+ : std::integral_constant<bool,
+ (std::is_base_of_v<stateless_stack_reference, T> || std::is_base_of_v<stateless_reference, T>)&&(
+ !std::is_base_of_v<stack_reference, T> && !std::is_base_of_v<reference, T> && !std::is_base_of_v<main_reference, T>)> { };
+
+ template <typename T>
+ inline constexpr bool is_stateless_lua_reference_v = is_stateless_lua_reference<T>::value;
+
+ template <typename T>
+ struct is_lua_reference
+ : std::integral_constant<bool,
+ std::is_base_of_v<reference,
+ T> || std::is_base_of_v<main_reference, T> || std::is_base_of_v<stack_reference, T> || std::is_base_of_v<stateless_stack_reference, T> || std::is_base_of_v<stateless_reference, T>> {
+ };
+
+ template <typename T>
+ inline constexpr bool is_lua_reference_v = is_lua_reference<T>::value;
+
+ template <typename T>
+ struct is_lua_reference_or_proxy : std::integral_constant<bool, is_lua_reference_v<T> || meta::is_specialization_of_v<T, table_proxy>> { };
+
+ template <typename T>
+ inline constexpr bool is_lua_reference_or_proxy_v = is_lua_reference_or_proxy<T>::value;
+
+ template <typename T>
+ struct is_transparent_argument
+ : std::integral_constant<bool,
+ std::is_same_v<meta::unqualified_t<T>,
+ this_state> || std::is_same_v<meta::unqualified_t<T>, this_main_state> || std::is_same_v<meta::unqualified_t<T>, this_environment> || std::is_same_v<meta::unqualified_t<T>, variadic_args>> {
+ };
+
+ template <typename T>
+ constexpr inline bool is_transparent_argument_v = is_transparent_argument<T>::value;
+
+ template <typename T>
+ struct is_variadic_arguments : meta::any<std::is_same<T, variadic_args>, meta::is_optional<T>> { };
+
+ template <typename T>
+ struct is_container
+ : std::integral_constant<bool,
+ !std::is_same_v<state_view,
+ T> && !std::is_same_v<state, T> && !meta::is_initializer_list_v<T> && !meta::is_string_like_v<T> && !meta::is_string_literal_array_v<T> && !is_transparent_argument_v<T> && !is_lua_reference_v<T> && (meta::has_begin_end_v<T> || std::is_array_v<T>)> {
+ };
+
+ template <typename T>
+ constexpr inline bool is_container_v = is_container<T>::value;
+
+ template <typename T>
+ struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>,
+ meta::supports_op_left_shift<std::ostream, meta::unqualified_t<T>>> { };
+
+ template <typename T>
+ inline constexpr bool is_to_stringable_v = is_to_stringable<T>::value;
+
+ template <typename T>
+ struct is_callable : std::true_type { };
+
+ template <typename T>
+ inline constexpr bool is_callable_v = is_callable<T>::value;
+
+ namespace detail {
+ template <typename T, typename = void>
+ struct lua_type_of : std::integral_constant<type, type::userdata> { };
+
+ template <typename C, typename T, typename A>
+ struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> { };
+
+ template <typename C, typename T>
+ struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> { };
+
+ template <std::size_t N>
+ struct lua_type_of<char[N]> : std::integral_constant<type, type::string> { };
+
+ template <std::size_t N>
+ struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> { };
+
+#if SOL_IS_ON(SOL_CHAR8_T)
+ template <std::size_t N>
+ struct lua_type_of<char8_t[N]> : std::integral_constant<type, type::string> { };
+#endif
+
+ template <std::size_t N>
+ struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> { };
+
+ template <std::size_t N>
+ struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<char> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> { };
+
+#if SOL_IS_ON(SOL_CHAR8_T)
+ template <>
+ struct lua_type_of<char8_t> : std::integral_constant<type, type::string> { };
+#endif
+
+ template <>
+ struct lua_type_of<char16_t> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<char32_t> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<const char*> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<const wchar_t*> : std::integral_constant<type, type::string> { };
+
+#if SOL_IS_ON(SOL_CHAR8_T)
+ template <>
+ struct lua_type_of<const char8_t*> : std::integral_constant<type, type::string> { };
+#endif
+
+ template <>
+ struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> { };
+
+ template <>
+ struct lua_type_of<bool> : std::integral_constant<type, type::boolean> { };
+
+ template <>
+ struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<lua_value> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> { };
+
+ template <>
+ struct lua_type_of<error> : std::integral_constant<type, type::string> { };
+
+ template <bool b, typename Base>
+ struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_lua_table<Base>> : std::integral_constant<type, type::table> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_metatable<Base>> : std::integral_constant<type, type::table> { };
+
+ template <typename T, typename Base>
+ struct lua_type_of<basic_usertype<T, Base>> : std::integral_constant<type, type::table> { };
+
+ template <>
+ struct lua_type_of<metatable_key_t> : std::integral_constant<type, type::table> { };
+
+ template <typename B>
+ struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<env_key_t> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<new_table> : std::integral_constant<type, type::table> { };
+
+ template <typename T>
+ struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> { };
+
+ template <typename T>
+ struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> { };
+
+ template <bool b>
+ struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> { };
+
+ template <typename... Args>
+ struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> { };
+
+ template <typename A, typename B>
+ struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> { };
+
+ template <>
+ struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> { };
+
+ template <>
+ struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> { };
+
+ template <>
+ struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> { };
+
+ template <typename T>
+ struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> { };
+
+ template <typename T>
+ struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> { };
+
+ template <>
+ struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> { };
+
+ template <>
+ struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> { };
+
+ template <typename Base, bool aligned>
+ struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> { };
+
+ template <typename Base, bool aligned, typename Handler>
+ struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> { };
+
+ template <typename Base>
+ struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> { };
+
+ template <typename Signature>
+ struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> { };
+
+ template <typename T>
+ struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> { };
+
+ template <typename T>
+ struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<this_state> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> { };
+
+ template <>
+ struct lua_type_of<type> : std::integral_constant<type, type::poly> { };
+
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ template <typename T>
+ struct lua_type_of<T*> : std::integral_constant<type, std::is_function_v<T> ? type::function : type::userdata> { };
+#else
+ template <typename T>
+ struct lua_type_of<T*> : std::integral_constant<type, type::userdata> { };
+#endif
+
+ template <typename T>
+ struct lua_type_of<T, std::enable_if_t<std::is_arithmetic_v<T> || std::is_same_v<T, lua_Number> || std::is_same_v<T, lua_Integer>>>
+ : std::integral_constant<type, type::number> { };
+
+ template <typename T>
+ struct lua_type_of<T, std::enable_if_t<std::is_function_v<T>>> : std::integral_constant<type, type::function> { };
+
+ template <typename T>
+ struct lua_type_of<T, std::enable_if_t<std::is_enum_v<T>>> : std::integral_constant<type, type::number> { };
+
+ template <>
+ struct lua_type_of<meta_function> : std::integral_constant<type, type::string> { };
+
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ template <typename... Tn>
+ struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> { };
+#endif // std::variant deployment sucks on Clang
+
+ template <typename T>
+ struct lua_type_of<nested<T>> : meta::conditional_t<::sol::is_container_v<T>, std::integral_constant<type, type::table>, lua_type_of<T>> { };
+
+ template <typename C, C v, template <typename...> class V, typename... Args>
+ struct accumulate : std::integral_constant<C, v> { };
+
+ template <typename C, C v, template <typename...> class V, typename T, typename... Args>
+ struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> { };
+
+ template <typename C, C v, template <typename...> class V, typename List>
+ struct accumulate_list;
+
+ template <typename C, C v, template <typename...> class V, typename... Args>
+ struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> { };
+ } // namespace detail
+
+ template <typename T>
+ struct lua_type_of : detail::lua_type_of<T> {
+ typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
+ };
+
+ template <typename T>
+ inline constexpr type lua_type_of_v = lua_type_of<T>::value;
+
+ template <typename T>
+ struct lua_size : std::integral_constant<int, 1> {
+ typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
+ };
+
+ template <typename A, typename B>
+ struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> { };
+
+ template <typename... Args>
+ struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> { };
+
+ template <typename T>
+ inline constexpr int lua_size_v = lua_size<T>::value;
+
+ namespace detail {
+ // MSVC's decltype detection is broken, which breaks other
+ // parts of the code. So we add more workarounds. The moment it's fixed,
+ // we take it away and break everyone that doesn't upgrade.
+ template <typename T>
+ using is_msvc_callable_rigged = meta::any<meta::is_specialization_of<T, push_invoke_t>, meta::is_specialization_of<T, as_table_t>,
+ meta::is_specialization_of<T, forward_as_value_t>, meta::is_specialization_of<T, as_container_t>, meta::is_specialization_of<T, nested>,
+ meta::is_specialization_of<T, yielding_t>>;
+
+ template <typename T>
+ inline constexpr bool is_msvc_callable_rigged_v = is_msvc_callable_rigged<T>::value;
+ } // namespace detail
+
+ template <typename T>
+ struct is_lua_primitive : std::integral_constant<bool,
+ type::userdata != lua_type_of_v<T> // cf
+ || ((type::userdata == lua_type_of_v<T>) // cf
+ &&meta::meta_detail::has_internal_marker_v<lua_type_of<T>> // cf
+ && !meta::meta_detail::has_internal_marker_v<lua_size<T>>) // cf
+ || is_lua_reference_or_proxy_v<T> // cf
+ || meta::is_specialization_of_v<T, std::tuple> // cf
+ || meta::is_specialization_of_v<T, std::pair>> { };
+
+ template <typename T>
+ constexpr inline bool is_lua_primitive_v = is_lua_primitive<T>::value;
+
+ template <typename T>
+ struct is_value_semantic_for_function
+#if SOL_IS_ON(SOL_FUNCTION_CALL_VALUE_SEMANTICS)
+ : std::true_type {
+ };
+#else
+ : std::false_type {
+ };
+#endif
+
+ template <typename T>
+ constexpr inline bool is_value_semantic_for_function_v = is_value_semantic_for_function<T>::value;
+
+ template <typename T>
+ struct is_main_threaded : std::is_base_of<main_reference, T> { };
+
+ template <typename T>
+ inline constexpr bool is_main_threaded_v = is_main_threaded<T>::value;
+
+ template <typename T>
+ struct is_stack_based : std::is_base_of<stack_reference, T> { };
+ template <>
+ struct is_stack_based<variadic_args> : std::true_type { };
+ template <>
+ struct is_stack_based<unsafe_function_result> : std::true_type { };
+ template <>
+ struct is_stack_based<protected_function_result> : std::true_type { };
+ template <>
+ struct is_stack_based<stack_proxy> : std::true_type { };
+ template <>
+ struct is_stack_based<stack_proxy_base> : std::true_type { };
+ template <>
+ struct is_stack_based<stack_count> : std::true_type { };
+
+ template <typename T>
+ constexpr inline bool is_stack_based_v = is_stack_based<T>::value;
+
+ template <typename T>
+ struct is_lua_primitive<T*> : std::true_type { };
+ template <>
+ struct is_lua_primitive<unsafe_function_result> : std::true_type { };
+ template <>
+ struct is_lua_primitive<protected_function_result> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<user<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<light<T>> : is_lua_primitive<T*> { };
+ template <typename T>
+ struct is_lua_primitive<optional<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<std::optional<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<as_table_t<T>> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<nested<T>> : std::true_type { };
+ template <>
+ struct is_lua_primitive<userdata_value> : std::true_type { };
+ template <>
+ struct is_lua_primitive<lightuserdata_value> : std::true_type { };
+ template <>
+ struct is_lua_primitive<stack_proxy> : std::true_type { };
+ template <>
+ struct is_lua_primitive<stack_proxy_base> : std::true_type { };
+ template <typename T>
+ struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> { };
+
+ template <typename T>
+ struct is_lua_index : std::is_integral<T> { };
+ template <>
+ struct is_lua_index<raw_index> : std::true_type { };
+ template <>
+ struct is_lua_index<absolute_index> : std::true_type { };
+ template <>
+ struct is_lua_index<ref_index> : std::true_type { };
+ template <>
+ struct is_lua_index<upvalue_index> : std::true_type { };
+
+ template <typename Signature>
+ struct lua_bind_traits : meta::bind_traits<Signature> {
+ private:
+ typedef meta::bind_traits<Signature> base_t;
+
+ public:
+ typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
+ static const std::size_t true_arity = base_t::arity;
+ static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value
+ - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
+ static const std::size_t true_free_arity = base_t::free_arity;
+ static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value
+ - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
+ };
+
+ template <typename T>
+ struct is_table : std::false_type { };
+ template <bool x, typename T>
+ struct is_table<basic_table_core<x, T>> : std::true_type { };
+ template <typename T>
+ struct is_table<basic_lua_table<T>> : std::true_type { };
+
+ template <typename T>
+ inline constexpr bool is_table_v = is_table<T>::value;
+
+ template <typename T>
+ struct is_global_table : std::false_type { };
+ template <typename T>
+ struct is_global_table<basic_table_core<true, T>> : std::true_type { };
+
+ template <typename T>
+ inline constexpr bool is_global_table_v = is_global_table<T>::value;
+
+ template <typename T>
+ struct is_stack_table : std::false_type { };
+ template <bool x, typename T>
+ struct is_stack_table<basic_table_core<x, T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
+ template <typename T>
+ struct is_stack_table<basic_lua_table<T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
+
+ template <typename T>
+ inline constexpr bool is_stack_table_v = is_stack_table<T>::value;
+
+ template <typename T>
+ struct is_function : std::false_type { };
+ template <typename T, bool aligned>
+ struct is_function<basic_function<T, aligned>> : std::true_type { };
+ template <typename T, bool aligned, typename Handler>
+ struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type { };
+
+ template <typename T>
+ using is_lightuserdata = meta::is_specialization_of<T, basic_lightuserdata>;
+
+ template <typename T>
+ inline constexpr bool is_lightuserdata_v = is_lightuserdata<T>::value;
+
+ template <typename T>
+ using is_userdata = meta::is_specialization_of<T, basic_userdata>;
+
+ template <typename T>
+ inline constexpr bool is_userdata_v = is_userdata<T>::value;
+
+ template <typename T>
+ using is_environment = std::integral_constant<bool, is_userdata_v<T> || is_table_v<T> || meta::is_specialization_of_v<T, basic_environment>>;
+
+ template <typename T>
+ inline constexpr bool is_environment_v = is_environment<T>::value;
+
+ template <typename T>
+ using is_table_like = std::integral_constant<bool, is_table_v<T> || is_environment_v<T> || is_userdata_v<T>>;
+
+ template <typename T>
+ inline constexpr bool is_table_like_v = is_table_like<T>::value;
+
+ template <typename T>
+ struct is_automagical
+ : std::integral_constant<bool,
+ (SOL_IS_ON(SOL_DEFAULT_AUTOMAGICAL_USERTYPES))
+ || (std::is_array_v<
+ meta::unqualified_t<T>> || (!std::is_same_v<meta::unqualified_t<T>, state> && !std::is_same_v<meta::unqualified_t<T>, state_view>))> {
+ };
+
+ template <typename T>
+ inline type type_of() {
+ return lua_type_of<meta::unqualified_t<T>>::value;
+ }
+
+ namespace detail {
+ template <typename T>
+ struct is_non_factory_constructor : std::false_type { };
+
+ template <typename... Args>
+ struct is_non_factory_constructor<constructors<Args...>> : std::true_type { };
+
+ template <typename... Args>
+ struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type { };
+
+ template <>
+ struct is_non_factory_constructor<no_construction> : std::true_type { };
+
+ template <typename T>
+ inline constexpr bool is_non_factory_constructor_v = is_non_factory_constructor<T>::value;
+
+ template <typename T>
+ struct is_constructor : is_non_factory_constructor<T> { };
+
+ template <typename... Args>
+ struct is_constructor<factory_wrapper<Args...>> : std::true_type { };
+
+ template <typename T>
+ struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> { };
+
+ template <typename F, typename... Policies>
+ struct is_constructor<policy_wrapper<F, Policies...>> : is_constructor<meta::unqualified_t<F>> { };
+
+ template <typename T>
+ inline constexpr bool is_constructor_v = is_constructor<T>::value;
+
+ template <typename... Args>
+ using any_is_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
+
+ template <typename... Args>
+ inline constexpr bool any_is_constructor_v = any_is_constructor<Args...>::value;
+
+ template <typename T>
+ struct is_destructor : std::false_type { };
+
+ template <typename Fx>
+ struct is_destructor<destructor_wrapper<Fx>> : std::true_type { };
+
+ template <typename... Args>
+ using any_is_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
+
+ template <typename... Args>
+ inline constexpr bool any_is_destructor_v = any_is_destructor<Args...>::value;
+ } // namespace detail
+
+ template <typename T>
+ using is_lua_c_function = meta::any<std::is_same<lua_CFunction, T>, std::is_same<detail::lua_CFunction_noexcept, T>, std::is_same<lua_CFunction_ref, T>>;
+
+ template <typename T>
+ inline constexpr bool is_lua_c_function_v = is_lua_c_function<T>::value;
+
+ enum class automagic_flags : unsigned {
+ none = 0x000u,
+ default_constructor = 0x001,
+ destructor = 0x002u,
+ pairs_operator = 0x004u,
+ to_string_operator = 0x008u,
+ call_operator = 0x010u,
+ less_than_operator = 0x020u,
+ less_than_or_equal_to_operator = 0x040u,
+ length_operator = 0x080u,
+ equal_to_operator = 0x100u,
+ all = default_constructor | destructor | pairs_operator | to_string_operator | call_operator | less_than_operator | less_than_or_equal_to_operator
+ | length_operator | equal_to_operator
+ };
+
+ inline constexpr automagic_flags operator|(automagic_flags left, automagic_flags right) noexcept {
+ return static_cast<automagic_flags>(
+ static_cast<std::underlying_type_t<automagic_flags>>(left) | static_cast<std::underlying_type_t<automagic_flags>>(right));
+ }
+
+ inline constexpr automagic_flags operator&(automagic_flags left, automagic_flags right) noexcept {
+ return static_cast<automagic_flags>(
+ static_cast<std::underlying_type_t<automagic_flags>>(left) & static_cast<std::underlying_type_t<automagic_flags>>(right));
+ }
+
+ inline constexpr automagic_flags& operator|=(automagic_flags& left, automagic_flags right) noexcept {
+ left = left | right;
+ return left;
+ }
+
+ inline constexpr automagic_flags& operator&=(automagic_flags& left, automagic_flags right) noexcept {
+ left = left & right;
+ return left;
+ }
+
+ template <typename Left, typename Right>
+ constexpr bool has_flag(Left left, Right right) noexcept {
+ return (left & right) == right;
+ }
+
+ template <typename Left, typename Right>
+ constexpr bool has_any_flag(Left left, Right right) noexcept {
+ return (left & right) != static_cast<Left>(static_cast<std::underlying_type_t<Left>>(0));
+ }
+
+ template <typename Left, typename Right>
+ constexpr auto clear_flags(Left left, Right right) noexcept {
+ return static_cast<Left>(static_cast<std::underlying_type_t<Left>>(left) & ~static_cast<std::underlying_type_t<Right>>(right));
+ }
+
+ struct automagic_enrollments {
+ bool default_constructor = true;
+ bool destructor = true;
+ bool pairs_operator = true;
+ bool to_string_operator = true;
+ bool call_operator = true;
+ bool less_than_operator = true;
+ bool less_than_or_equal_to_operator = true;
+ bool length_operator = true;
+ bool equal_to_operator = true;
+ };
+
+ template <automagic_flags compile_time_defaults = automagic_flags::all>
+ struct constant_automagic_enrollments : public automagic_enrollments { };
+
+} // namespace sol
+
+// end of sol/types.hpp
+
+#include <exception>
+#include <cstring>
+
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+#include <iostream>
+#endif
+
+namespace sol {
+ // must push a single object to be the error object
+ // NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error
+ // break this convention at your own risk
+ using exception_handler_function = int (*)(lua_State*, optional<const std::exception&>, string_view);
+
+ namespace detail {
+ inline const char (&default_exception_handler_name())[11] {
+ static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2";
+ return name;
+ }
+
+ // must push at least 1 object on the stack
+ inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) {
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+ std::cerr << "[sol2] An exception occurred: ";
+ std::cerr.write(what.data(), static_cast<std::streamsize>(what.size()));
+ std::cerr << std::endl;
+#endif
+ lua_pushlstring(L, what.data(), what.size());
+ return 1;
+ }
+
+ inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) {
+ lua_getglobal(L, default_exception_handler_name());
+ type t = static_cast<type>(lua_type(L, -1));
+ if (t != type::lightuserdata) {
+ lua_pop(L, 1);
+ return default_exception_handler(L, std::move(maybe_ex), std::move(what));
+ }
+ void* vfunc = lua_touserdata(L, -1);
+ lua_pop(L, 1);
+ if (vfunc == nullptr) {
+ return default_exception_handler(L, std::move(maybe_ex), std::move(what));
+ }
+ exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc);
+ return exfunc(L, std::move(maybe_ex), std::move(what));
+ }
+
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ template <lua_CFunction f>
+ int static_trampoline(lua_State* L) noexcept {
+ return f(L);
+ }
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ template <lua_CFunction_noexcept f>
+ int static_trampoline_noexcept(lua_State* L) noexcept {
+ return f(L);
+ }
+#else
+ template <lua_CFunction f>
+ int static_trampoline_noexcept(lua_State* L) noexcept {
+ return f(L);
+ }
+#endif
+
+ template <typename Fx, typename... Args>
+ int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept {
+ return f(L, std::forward<Args>(args)...);
+ }
+
+ inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept {
+ return trampoline(L, f);
+ }
+#else
+
+ inline int lua_cfunction_trampoline(lua_State* L, lua_CFunction f) {
+#if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS)
+ return f(L);
+#else
+ try {
+ return f(L);
+ }
+ catch (const char* cs) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
+ }
+ catch (const std::string& s) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
+ }
+ catch (const std::exception& e) {
+ call_exception_handler(L, optional<const std::exception&>(e), e.what());
+ }
+#if SOL_IS_ON(SOL_EXCEPTIONS_CATCH_ALL)
+ // LuaJIT cannot have the catchall when the safe propagation is on
+ // but LuaJIT will swallow all C++ errors
+ // if we don't at least catch std::exception ones
+ catch (...) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
+ }
+#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it
+ return lua_error(L);
+#endif // Safe exceptions
+ }
+
+ template <lua_CFunction f>
+ int static_trampoline(lua_State* L) {
+ return lua_cfunction_trampoline(L, f);
+ }
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ template <lua_CFunction_noexcept f>
+ int static_trampoline_noexcept(lua_State* L) noexcept {
+ return f(L);
+ }
+#else
+ template <lua_CFunction f>
+ int static_trampoline_noexcept(lua_State* L) noexcept {
+ return f(L);
+ }
+#endif
+
+ template <typename Fx, typename... Args>
+ int trampoline(lua_State* L, Fx&& f, Args&&... args) {
+ if constexpr (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) {
+ return f(L, std::forward<Args>(args)...);
+ }
+ else {
+#if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS)
+ return f(L, std::forward<Args>(args)...);
+#else
+ try {
+ return f(L, std::forward<Args>(args)...);
+ }
+ catch (const char* cs) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
+ }
+ catch (const std::string& s) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
+ }
+ catch (const std::exception& e) {
+ call_exception_handler(L, optional<const std::exception&>(e), e.what());
+ }
+#if SOL_IS_ON(SOL_EXCEPTIONS_CATCH_ALL)
+ // LuaJIT cannot have the catchall when the safe propagation is on
+ // but LuaJIT will swallow all C++ errors
+ // if we don't at least catch std::exception ones
+ catch (...) {
+ call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
+ }
+#endif
+ return lua_error(L);
+#endif
+ }
+ }
+
+ inline int c_trampoline(lua_State* L, lua_CFunction f) {
+ return trampoline(L, f);
+ }
+#endif // Exceptions vs. No Exceptions
+
+ template <typename F, F fx>
+ inline int typed_static_trampoline(lua_State* L) {
+#if 0
+ // TODO: you must evaluate the get/check_get of every
+ // argument, to ensure it doesn't throw
+ // (e.g., for the sol_lua_check_access extension point!)
+ // This incluudes properly noexcept-ing all the above
+ // trampolines / safety nets
+ if constexpr (meta::bind_traits<F>::is_noexcept) {
+ return static_trampoline_noexcept<fx>(L);
+ }
+ else
+#endif
+ { return static_trampoline<fx>(L); }
+ }
+ } // namespace detail
+
+ inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) {
+ static_assert(sizeof(void*) >= sizeof(exception_handler_function),
+ "void* storage is too small to transport the exception handler: please file a bug on the sol2 issue tracker to get this looked at!");
+ void* storage;
+ std::memcpy(&storage, &exf, sizeof(exception_handler_function));
+ lua_pushlightuserdata(L, storage);
+ lua_setglobal(L, detail::default_exception_handler_name());
+ }
+} // namespace sol
+
+// end of sol/trampoline.hpp
+
+// beginning of sol/stack_core.hpp
+
+// beginning of sol/inheritance.hpp
+
+// beginning of sol/usertype_traits.hpp
+
+// beginning of sol/demangle.hpp
+
+#include <string>
+#include <array>
+#include <cctype>
+#if SOL_IS_ON(SOL_MINGW_CCTYPE_IS_POISONED)
+extern "C" {
+#include <ctype.h>
+}
+#endif // MinGW is on some stuff
+#include <locale>
+
+namespace sol { namespace detail {
+ inline constexpr std::array<string_view, 9> removals { { "{anonymous}",
+ "(anonymous namespace)",
+ "public:",
+ "private:",
+ "protected:",
+ "struct ",
+ "class ",
+ "`anonymous-namespace'",
+ "`anonymous namespace'" } };
+
+#if SOL_IS_ON(SOL_COMPILER_GCC) || SOL_IS_ON(SOL_COMPILER_CLANG)
+ inline std::string ctti_get_type_name_from_sig(std::string name) {
+ // cardinal sins from MINGW
+ using namespace std;
+ std::size_t start = name.find_first_of('[');
+ start = name.find_first_of('=', start);
+ std::size_t end = name.find_last_of(']');
+ if (end == std::string::npos)
+ end = name.size();
+ if (start == std::string::npos)
+ start = 0;
+ if (start < name.size() - 1)
+ start += 1;
+ name = name.substr(start, end - start);
+ start = name.rfind("seperator_mark");
+ if (start != std::string::npos) {
+ name.erase(start - 2, name.length());
+ }
+ while (!name.empty() && isblank(name.front()))
+ name.erase(name.begin());
+ while (!name.empty() && isblank(name.back()))
+ name.pop_back();
+
+ for (std::size_t r = 0; r < removals.size(); ++r) {
+ auto found = name.find(removals[r]);
+ while (found != std::string::npos) {
+ name.erase(found, removals[r].size());
+ found = name.find(removals[r]);
+ }
+ }
+
+ return name;
+ }
+
+ template <typename T, class seperator_mark = int>
+ inline std::string ctti_get_type_name() {
+ return ctti_get_type_name_from_sig(__PRETTY_FUNCTION__);
+ }
+#elif SOL_IS_ON(SOL_COMPILER_VCXX)
+ inline std::string ctti_get_type_name_from_sig(std::string name) {
+ std::size_t start = name.find("get_type_name");
+ if (start == std::string::npos)
+ start = 0;
+ else
+ start += 13;
+ if (start < name.size() - 1)
+ start += 1;
+ std::size_t end = name.find_last_of('>');
+ if (end == std::string::npos)
+ end = name.size();
+ name = name.substr(start, end - start);
+ if (name.find("struct", 0) == 0)
+ name.replace(0, 6, "", 0);
+ if (name.find("class", 0) == 0)
+ name.replace(0, 5, "", 0);
+ while (!name.empty() && isblank(name.front()))
+ name.erase(name.begin());
+ while (!name.empty() && isblank(name.back()))
+ name.pop_back();
+
+ for (std::size_t r = 0; r < removals.size(); ++r) {
+ auto found = name.find(removals[r]);
+ while (found != std::string::npos) {
+ name.erase(found, removals[r].size());
+ found = name.find(removals[r]);
+ }
+ }
+
+ return name;
+ }
+
+ template <typename T>
+ std::string ctti_get_type_name() {
+ return ctti_get_type_name_from_sig(__FUNCSIG__);
+ }
+#else
+#error Compiler not supported for demangling
+#endif // compilers
+
+ template <typename T>
+ std::string demangle_once() {
+ std::string realname = ctti_get_type_name<T>();
+ return realname;
+ }
+
+ inline std::string short_demangle_from_type_name(std::string realname) {
+ // This isn't the most complete but it'll do for now...?
+ static const std::array<std::string, 10> ops = {
+ { "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" }
+ };
+ int level = 0;
+ std::size_t idx = 0;
+ for (idx = static_cast<std::size_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
+ if (level == 0 && realname[idx] == ':') {
+ break;
+ }
+ bool isleft = realname[idx] == '<';
+ bool isright = realname[idx] == '>';
+ if (!isleft && !isright)
+ continue;
+ bool earlybreak = false;
+ for (const auto& op : ops) {
+ std::size_t nisop = realname.rfind(op, idx);
+ if (nisop == std::string::npos)
+ continue;
+ std::size_t nisopidx = idx - op.size() + 1;
+ if (nisop == nisopidx) {
+ idx = static_cast<std::size_t>(nisopidx);
+ earlybreak = true;
+ }
+ break;
+ }
+ if (earlybreak) {
+ continue;
+ }
+ level += isleft ? -1 : 1;
+ }
+ if (idx > 0) {
+ realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
+ }
+ return realname;
+ }
+
+ template <typename T>
+ std::string short_demangle_once() {
+ std::string realname = ctti_get_type_name<T>();
+ return short_demangle_from_type_name(realname);
+ }
+
+ template <typename T>
+ const std::string& demangle() {
+ static const std::string d = demangle_once<T>();
+ return d;
+ }
+
+ template <typename T>
+ const std::string& short_demangle() {
+ static const std::string d = short_demangle_once<T>();
+ return d;
+ }
+}} // namespace sol::detail
+
+// end of sol/demangle.hpp
+
+namespace sol {
+
+ template <typename T>
+ struct usertype_traits {
+ static const std::string& name() {
+ static const std::string& n = detail::short_demangle<T>();
+ return n;
+ }
+ static const std::string& qualified_name() {
+ static const std::string& q_n = detail::demangle<T>();
+ return q_n;
+ }
+ static const std::string& metatable() {
+ static const std::string m = std::string("sol.").append(detail::demangle<T>());
+ return m;
+ }
+ static const std::string& user_metatable() {
+ static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
+ return u_m;
+ }
+ static const std::string& user_gc_metatable() {
+ static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
+ return u_g_m;
+ }
+ static const std::string& gc_table() {
+ static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
+ return g_t;
+ }
+ };
+
+} // namespace sol
+
+// end of sol/usertype_traits.hpp
+
+// beginning of sol/unique_usertype_traits.hpp
+
+#include <memory>
+
+namespace sol {
+
+ namespace detail {
+ template <typename T>
+ struct unique_fallback {
+ using SOL_INTERNAL_UNSPECIALIZED_MARKER_ = int;
+ };
+
+ template <typename T>
+ struct unique_fallback<std::shared_ptr<T>> {
+ private:
+ using pointer = typename std::pointer_traits<std::shared_ptr<T>>::element_type*;
+
+ public:
+ // rebind is non-void
+ // if and only if unique usertype
+ // is cast-capable
+ template <typename X>
+ using rebind_actual_type = std::shared_ptr<X>;
+
+ static bool is_null(lua_State*, const std::shared_ptr<T>& p) noexcept {
+ return p == nullptr;
+ }
+
+ static pointer get(lua_State*, const std::shared_ptr<T>& p) noexcept {
+ return p.get();
+ }
+ };
+
+ template <typename T, typename D>
+ struct unique_fallback<std::unique_ptr<T, D>> {
+ private:
+ using pointer = typename std::unique_ptr<T, D>::pointer;
+
+ public:
+ static bool is_null(lua_State*, const std::unique_ptr<T, D>& p) noexcept {
+ return p == nullptr;
+ }
+
+ static pointer get(lua_State*, const std::unique_ptr<T, D>& p) noexcept {
+ return p.get();
+ }
+ };
+ } // namespace detail
+
+ namespace meta { namespace meta_detail {
+ template <typename T, typename = void>
+ struct unique_actual_type;
+
+ template <typename T>
+ struct unique_actual_type<T, meta::void_t<typename T::actual_type>> {
+ using type = typename T::actual_type;
+ };
+
+ template <typename T, typename... Rest, template <typename...> class Templ>
+ struct unique_actual_type<Templ<T, Rest...>> {
+ using type = T;
+ };
+
+ }} // namespace meta::meta_detail
+
+ template <typename T>
+ using unique_usertype_actual_t = typename meta::meta_detail::unique_actual_type<unique_usertype_traits<T>>::type;
+
+ namespace meta { namespace meta_detail {
+ template <typename T>
+ using value_test_t = decltype(T::value);
+
+ template <typename T>
+ using type_test_t = typename T::type;
+
+ template <typename T>
+ using type_element_type_t = typename T::element_type;
+
+ template <typename T, typename = void>
+ struct unique_element_type {
+ using type = typename std::pointer_traits<typename unique_actual_type<T>::type>::element_type;
+ };
+
+ template <typename T>
+ struct unique_element_type<T, std::enable_if_t<meta::is_detected_v<type_element_type_t, T>>> {
+ using type = typename T::element_type;
+ };
+
+ template <typename T>
+ struct unique_element_type<T, std::enable_if_t<meta::is_detected_v<type_test_t, T>>> {
+ using type = typename T::type;
+ };
+
+ template <typename T, typename = void>
+ struct unique_valid : std::integral_constant<bool, !has_internal_marker_v<T>> { };
+
+ template <typename T>
+ struct unique_valid<T, meta::void_t<decltype(T::value)>> : std::integral_constant<bool, T::value> { };
+ }} // namespace meta::meta_detail
+
+ template <typename T>
+ using unique_usertype_element_t = typename meta::meta_detail::unique_element_type<unique_usertype_traits<T>>::type;
+
+ template <typename T, typename Element = void>
+ using unique_usertype_rebind_actual_t = typename unique_usertype_traits<T>::template rebind_actual_type<Element>;
+
+ template <typename T>
+ struct unique_usertype_traits : public detail::unique_fallback<T> { };
+
+ template <typename T>
+ struct is_unique_usertype : std::integral_constant<bool, meta::meta_detail::unique_valid<unique_usertype_traits<T>>::value> { };
+
+ template <typename T>
+ inline constexpr bool is_unique_usertype_v = is_unique_usertype<T>::value;
+
+ namespace meta { namespace meta_detail {
+ template <typename T>
+ using adl_sol_lua_check_access_test_t
+ = decltype(sol_lua_check_access(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_check_access_v = meta::is_detected_v<adl_sol_lua_check_access_test_t, T>;
+
+ template <typename T>
+ using unique_usertype_get_with_state_test_t
+ = decltype(unique_usertype_traits<T>::get(static_cast<lua_State*>(nullptr), std::declval<unique_usertype_actual_t<T>>()));
+
+ template <typename T>
+ inline constexpr bool unique_usertype_get_with_state_v = meta::is_detected_v<unique_usertype_get_with_state_test_t, T>;
+
+ template <typename T>
+ using unique_usertype_is_null_with_state_test_t
+ = decltype(unique_usertype_traits<T>::is_null(static_cast<lua_State*>(nullptr), std::declval<unique_usertype_actual_t<T>>()));
+
+ template <typename T>
+ inline constexpr bool unique_usertype_is_null_with_state_v = meta::is_detected_v<unique_usertype_is_null_with_state_test_t, T>;
+ }} // namespace meta::meta_detail
+
+ namespace detail {
+ template <typename T>
+ constexpr bool unique_is_null_noexcept() noexcept {
+ if constexpr (meta::meta_detail::unique_usertype_is_null_with_state_v<std::remove_cv_t<T>>) {
+ return noexcept(
+ unique_usertype_traits<T>::is_null(static_cast<lua_State*>(nullptr), std::declval<unique_usertype_actual_t<std::remove_cv_t<T>>>()));
+ }
+ else {
+ return noexcept(unique_usertype_traits<T>::is_null(std::declval<unique_usertype_actual_t<std::remove_cv_t<T>>>()));
+ }
+ }
+
+ template <typename T>
+ bool unique_is_null(lua_State* L_, T& value_) noexcept(unique_is_null_noexcept<std::remove_cv_t<T>>()) {
+ using Tu = std::remove_cv_t<T>;
+ if constexpr (meta::meta_detail::unique_usertype_is_null_with_state_v<Tu>) {
+ return unique_usertype_traits<Tu>::is_null(L_, value_);
+ }
+ else {
+ return unique_usertype_traits<Tu>::is_null(value_);
+ }
+ }
+
+ template <typename T>
+ constexpr bool unique_get_noexcept() noexcept {
+ if constexpr (meta::meta_detail::unique_usertype_get_with_state_v<std::remove_cv_t<T>>) {
+ return noexcept(
+ unique_usertype_traits<T>::get(static_cast<lua_State*>(nullptr), std::declval<unique_usertype_actual_t<std::remove_cv_t<T>>>()));
+ }
+ else {
+ return noexcept(unique_usertype_traits<T>::get(std::declval<unique_usertype_actual_t<std::remove_cv_t<T>>>()));
+ }
+ }
+
+ template <typename T>
+ auto unique_get(lua_State* L_, T& value_) noexcept(unique_get_noexcept<std::remove_cv_t<T>>()) {
+ using Tu = std::remove_cv_t<T>;
+ if constexpr (meta::meta_detail::unique_usertype_get_with_state_v<Tu>) {
+ return unique_usertype_traits<Tu>::get(L_, value_);
+ }
+ else {
+ return unique_usertype_traits<Tu>::get(value_);
+ }
+ }
+ } // namespace detail
+
+ namespace meta { namespace meta_detail {
+ template <typename T, typename Element = void>
+ using is_rebind_actual_type_test_t = typename T::template rebind_actual_type<Element>;
+
+ template <typename T, typename Element = void>
+ using is_rebind_actual_type = meta::is_detected<is_rebind_actual_type_test_t, T, Element>;
+
+ template <typename T, typename Element = void>
+ inline constexpr bool is_rebind_actual_type_v = is_rebind_actual_type<T, Element>::value;
+
+ template <typename T, typename Element, bool = is_rebind_actual_type_v<T, Element>>
+ struct is_actual_type_rebindable_for_test : std::false_type { };
+
+ template <typename T, typename Element>
+ struct is_actual_type_rebindable_for_test<T, Element, true>
+ : std::integral_constant<bool, !std::is_void_v<typename T::template rebind_actual_type<Element>>> { };
+ }} // namespace meta::meta_detail
+
+ template <typename T, typename Element = void>
+ using is_actual_type_rebindable_for = typename meta::meta_detail::is_actual_type_rebindable_for_test<unique_usertype_traits<T>, Element>::type;
+
+ template <typename T, typename Element = void>
+ inline constexpr bool is_actual_type_rebindable_for_v = is_actual_type_rebindable_for<T, Element>::value;
+
+} // namespace sol
+
+// end of sol/unique_usertype_traits.hpp
+
+namespace sol {
+ template <typename... Args>
+ struct base_list { };
+ template <typename... Args>
+ using bases = base_list<Args...>;
+
+ typedef bases<> base_classes_tag;
+ const auto base_classes = base_classes_tag();
+
+ template <typename... Args>
+ struct is_to_stringable<base_list<Args...>> : std::false_type { };
+
+ namespace detail {
+
+ inline decltype(auto) base_class_check_key() {
+ static const auto& key = "class_check";
+ return key;
+ }
+
+ inline decltype(auto) base_class_cast_key() {
+ static const auto& key = "class_cast";
+ return key;
+ }
+
+ inline decltype(auto) base_class_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
+ return key;
+ }
+
+ inline decltype(auto) base_class_new_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
+ return key;
+ }
+
+ template <typename T>
+ struct inheritance {
+ typedef typename base<T>::type bases_t;
+
+ static bool type_check_bases(types<>, const string_view&) {
+ return false;
+ }
+
+ template <typename Base, typename... Args>
+ static bool type_check_bases(types<Base, Args...>, const string_view& ti) {
+ return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti);
+ }
+
+ static bool type_check(const string_view& ti) {
+ return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti);
+ }
+
+ template <typename... Bases>
+ static bool type_check_with(const string_view& ti) {
+ return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti);
+ }
+
+ static void* type_cast_bases(types<>, T*, const string_view&) {
+ return nullptr;
+ }
+
+ template <typename Base, typename... Args>
+ static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) {
+ // Make sure to convert to T first, and then dynamic cast to the proper type
+ return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti)
+ : static_cast<void*>(static_cast<Base*>(data));
+ }
+
+ static void* type_cast(void* voiddata, const string_view& ti) {
+ T* data = static_cast<T*>(voiddata);
+ return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data);
+ }
+
+ template <typename... Bases>
+ static void* type_cast_with(void* voiddata, const string_view& ti) {
+ T* data = static_cast<T*>(voiddata);
+ return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data);
+ }
+
+ template <typename U>
+ static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) {
+ return 0;
+ }
+
+ template <typename U, typename Base, typename... Args>
+ static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) {
+ using uu_traits = unique_usertype_traits<U>;
+ using base_ptr = typename uu_traits::template rebind_actual_type<Base>;
+ string_view base_ti = usertype_traits<Base>::qualified_name();
+ if (base_ti == ti) {
+ if (target_data != nullptr) {
+ U* source = static_cast<U*>(source_data);
+ base_ptr* target = static_cast<base_ptr*>(target_data);
+ // perform proper derived -> base conversion
+ *target = *source;
+ }
+ return 2;
+ }
+ return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti);
+ }
+
+ template <typename U>
+ static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
+ if constexpr (is_actual_type_rebindable_for_v<U>) {
+ using rebound_actual_type = unique_usertype_rebind_actual_t<U>;
+ using maybe_bases_or_empty = meta::conditional_t<std::is_void_v<rebound_actual_type>, types<>, bases_t>;
+ string_view this_rebind_ti = usertype_traits<rebound_actual_type>::qualified_name();
+ if (rebind_ti != this_rebind_ti) {
+ // this is not even of the same unique type
+ return 0;
+ }
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(maybe_bases_or_empty(), source_data, target_data, ti);
+ }
+ else {
+ (void)rebind_ti;
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
+ }
+ }
+
+ template <typename U, typename... Bases>
+ static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
+ using uc_bases_t = types<Bases...>;
+ if constexpr (is_actual_type_rebindable_for_v<U>) {
+ using rebound_actual_type = unique_usertype_rebind_actual_t<U>;
+ using cond_bases_t = meta::conditional_t<std::is_void_v<rebound_actual_type>, types<>, uc_bases_t>;
+ string_view this_rebind_ti = usertype_traits<rebound_actual_type>::qualified_name();
+ if (rebind_ti != this_rebind_ti) {
+ // this is not even of the same unique type
+ return 0;
+ }
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
+ }
+ else {
+ (void)rebind_ti;
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
+ }
+ }
+ };
+
+ using inheritance_check_function = decltype(&inheritance<void>::type_check);
+ using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
+ using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>);
+ } // namespace detail
+} // namespace sol
+
+// end of sol/inheritance.hpp
+
+// beginning of sol/error_handler.hpp
+
+#include <cstdio>
+
+namespace sol {
+
+ namespace detail {
+ constexpr const char* not_a_number = "not a numeric type";
+ constexpr const char* not_a_number_or_number_string = "not a numeric type or numeric string";
+ constexpr const char* not_a_number_integral = "not a numeric type that fits exactly an integer (number maybe has significant decimals)";
+ constexpr const char* not_a_number_or_number_string_integral
+ = "not a numeric type or a numeric string that fits exactly an integer (e.g. number maybe has significant decimals)";
+
+ constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
+ constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
+ constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
+ constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
+ constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
+ constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol2 userdata";
+ constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
+ constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
+ constexpr const char* protected_function_error = "caught (...) unknown error during protected_function call";
+
+ inline void accumulate_and_mark(const std::string& n, std::string& aux_message, int& marker) {
+ if (marker > 0) {
+ aux_message += ", ";
+ }
+ aux_message += n;
+ ++marker;
+ }
+ } // namespace detail
+
+ inline std::string associated_type_name(lua_State* L, int index, type t) {
+ switch (t) {
+ case type::poly:
+ return "anything";
+ case type::userdata: {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 2, "not enough space to push get the type name");
+#endif // make sure stack doesn't overflow
+ if (lua_getmetatable(L, index) == 0) {
+ break;
+ }
+ lua_pushlstring(L, "__name", 6);
+ lua_rawget(L, -2);
+ size_t sz;
+ const char* name = lua_tolstring(L, -1, &sz);
+ std::string tn(name, static_cast<std::string::size_type>(sz));
+ lua_pop(L, 2);
+ return tn;
+ }
+ default:
+ break;
+ }
+ return lua_typename(L, static_cast<int>(t));
+ }
+
+ inline int push_type_panic_string(lua_State* L, int index, type expected, type actual, string_view message, string_view aux_message) noexcept {
+ const char* err = message.size() == 0
+ ? (aux_message.size() == 0 ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s")
+ : "stack index %d, expected %s, received %s: %s %s";
+ const char* type_name = expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected));
+ {
+ std::string actual_name = associated_type_name(L, index, actual);
+ lua_pushfstring(L, err, index, type_name, actual_name.c_str(), message.data(), aux_message.data());
+ }
+ return 1;
+ }
+
+ inline int type_panic_string(lua_State* L, int index, type expected, type actual, string_view message = "") noexcept(false) {
+ push_type_panic_string(L, index, expected, actual, message, "");
+ return lua_error(L);
+ }
+
+ inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) {
+ push_type_panic_string(L, index, expected, actual, message == nullptr ? "" : message, "");
+ return lua_error(L);
+ }
+
+ struct type_panic_t {
+ int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) {
+ return type_panic_c_str(L, index, expected, actual, nullptr);
+ }
+ int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
+ return type_panic_c_str(L, index, expected, actual, message.data());
+ }
+ };
+
+ const type_panic_t type_panic = {};
+
+ struct constructor_handler {
+ int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
+ push_type_panic_string(L, index, expected, actual, message, "(type check failed in constructor)");
+ return lua_error(L);
+ }
+ };
+
+ template <typename F = void>
+ struct argument_handler {
+ int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
+ push_type_panic_string(L, index, expected, actual, message, "(bad argument to variable or function call)");
+ return lua_error(L);
+ }
+ };
+
+ template <typename R, typename... Args>
+ struct argument_handler<types<R, Args...>> {
+ int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
+ {
+ std::string aux_message = "(bad argument into '";
+ aux_message += detail::demangle<R>();
+ aux_message += "(";
+ int marker = 0;
+ (void)detail::swallow { int(), (detail::accumulate_and_mark(detail::demangle<Args>(), aux_message, marker), int())... };
+ aux_message += ")')";
+ push_type_panic_string(L, index, expected, actual, message, aux_message);
+ }
+ return lua_error(L);
+ }
+ };
+
+ // Specify this function as the handler for lua::check if you know there's nothing wrong
+ inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept {
+ return 0;
+ }
+
+ inline void type_error(lua_State* L, int expected, int actual) noexcept(false) {
+ luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
+ }
+
+ inline void type_error(lua_State* L, type expected, type actual) noexcept(false) {
+ type_error(L, static_cast<int>(expected), static_cast<int>(actual));
+ }
+
+ inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) {
+ if (expected != type::poly && expected != actual) {
+ type_panic_c_str(L, index, expected, actual, nullptr);
+ }
+ }
+
+ inline void type_assert(lua_State* L, int index, type expected) {
+ type actual = type_of(L, index);
+ type_assert(L, index, expected, actual);
+ }
+
+} // namespace sol
+
+// end of sol/error_handler.hpp
+
+// beginning of sol/reference.hpp
+
+// beginning of sol/stack_reference.hpp
+
+namespace sol {
+ namespace detail {
+ inline bool xmovable(lua_State* leftL, lua_State* rightL) {
+ if (rightL == nullptr || leftL == nullptr || leftL == rightL) {
+ return false;
+ }
+ const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX);
+ const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX);
+ return leftregistry == rightregistry;
+ }
+ } // namespace detail
+
+ class stateless_stack_reference {
+ private:
+ friend class stack_reference;
+
+ int m_index = 0;
+
+ int registry_index() const noexcept {
+ return LUA_NOREF;
+ }
+
+ public:
+ stateless_stack_reference() noexcept = default;
+ stateless_stack_reference(lua_nil_t) noexcept : stateless_stack_reference() {};
+ stateless_stack_reference(lua_State* L_, int index_) noexcept : stateless_stack_reference(absolute_index(L_, index_)) {
+ }
+ stateless_stack_reference(lua_State*, absolute_index index_) noexcept : stateless_stack_reference(index_) {
+ }
+ stateless_stack_reference(lua_State*, raw_index index_) noexcept : stateless_stack_reference(index_) {
+ }
+ stateless_stack_reference(absolute_index index_) noexcept : m_index(index_) {
+ }
+ stateless_stack_reference(raw_index index_) noexcept : m_index(index_) {
+ }
+ stateless_stack_reference(lua_State*, ref_index) noexcept = delete;
+ stateless_stack_reference(ref_index) noexcept = delete;
+ stateless_stack_reference(const reference&) noexcept = delete;
+ stateless_stack_reference(const stateless_stack_reference&) noexcept = default;
+ stateless_stack_reference(stateless_stack_reference&& o) noexcept = default;
+ stateless_stack_reference& operator=(stateless_stack_reference&&) noexcept = default;
+ stateless_stack_reference& operator=(const stateless_stack_reference&) noexcept = default;
+
+ int push(lua_State* L_) const noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push a single reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L_, m_index);
+ return 1;
+ }
+
+ void pop(lua_State* L_, int pop_count = 1) const noexcept {
+ lua_pop(L_, pop_count);
+ }
+
+ int stack_index() const noexcept {
+ return m_index;
+ }
+
+ const void* pointer(lua_State* L_) const noexcept {
+ const void* pointer_id = lua_topointer(L_, stack_index());
+ return pointer_id;
+ }
+
+ type get_type(lua_State* L_) const noexcept {
+ int untyped_value = lua_type(L_, stack_index());
+ return static_cast<type>(untyped_value);
+ }
+
+ bool valid(lua_State* L) const noexcept {
+ type t = get_type(L);
+ return t != type::lua_nil && t != type::none;
+ }
+
+ void reset(lua_State*) noexcept {
+ m_index = 0;
+ }
+
+ void reset(lua_State* L_, int index_) noexcept {
+ m_index = absolute_index(L_, index_);
+ }
+
+ void abandon(lua_State* = nullptr) noexcept {
+ m_index = 0;
+ }
+
+ stateless_stack_reference copy(lua_State* L_) const noexcept {
+ return stateless_stack_reference(L_, raw_index(m_index));
+ }
+
+ void copy_assign(lua_State*, const stateless_stack_reference& right) noexcept {
+ m_index = right.m_index;
+ }
+
+ bool equals(lua_State* L_, const stateless_stack_reference& r) const noexcept {
+ return lua_compare(L_, this->stack_index(), r.stack_index(), LUA_OPEQ) == 1;
+ }
+
+ bool equals(lua_State* L_, lua_nil_t) const noexcept {
+ return valid(L_);
+ }
+ };
+
+ class stack_reference : public stateless_stack_reference {
+ private:
+ lua_State* luastate = nullptr;
+
+ public:
+ stack_reference() noexcept = default;
+ stack_reference(lua_nil_t) noexcept : stack_reference() {};
+ stack_reference(lua_State* L, lua_nil_t) noexcept : stateless_stack_reference(L, 0), luastate(L) {
+ }
+ stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(L, i), luastate(L) {
+ }
+ stack_reference(lua_State* L, absolute_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
+ }
+ stack_reference(lua_State* L, raw_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
+ }
+ stack_reference(lua_State* L, ref_index i) noexcept = delete;
+ stack_reference(lua_State* L, const reference& r) noexcept = delete;
+ stack_reference(lua_State* L, const stack_reference& r) noexcept : luastate(L) {
+ if (!r.valid()) {
+ m_index = 0;
+ return;
+ }
+ int i = r.stack_index();
+ if (detail::xmovable(lua_state(), r.lua_state())) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(r.lua_state(), r.stack_index());
+ lua_xmove(r.lua_state(), luastate, 1);
+ i = absolute_index(luastate, -1);
+ }
+ m_index = i;
+ }
+ stack_reference(stack_reference&& o) noexcept = default;
+ stack_reference& operator=(stack_reference&&) noexcept = default;
+ stack_reference(const stack_reference&) noexcept = default;
+ stack_reference& operator=(const stack_reference&) noexcept = default;
+
+ int push() const noexcept {
+ return push(lua_state());
+ }
+
+ int push(lua_State* L_) const noexcept {
+ return stateless_stack_reference::push(L_);
+ }
+
+ void pop() const noexcept {
+ pop(lua_state());
+ }
+
+ void pop(lua_State* L_, int pop_count_ = 1) const noexcept {
+ stateless_stack_reference::pop(L_, pop_count_);
+ }
+
+ const void* pointer() const noexcept {
+ return stateless_stack_reference::pointer(lua_state());
+ }
+
+ type get_type() const noexcept {
+ return stateless_stack_reference::get_type(lua_state());
+ }
+
+ lua_State* lua_state() const noexcept {
+ return luastate;
+ }
+
+ bool valid() const noexcept {
+ return stateless_stack_reference::valid(lua_state());
+ }
+
+ void abandon() {
+ stateless_stack_reference::abandon(lua_state());
+ }
+ };
+
+ inline bool operator==(const stack_reference& l, const stack_reference& r) {
+ return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 1;
+ }
+
+ inline bool operator!=(const stack_reference& l, const stack_reference& r) {
+ return !operator==(l, r);
+ }
+
+ inline bool operator==(const stack_reference& lhs, const lua_nil_t&) {
+ return !lhs.valid();
+ }
+
+ inline bool operator==(const lua_nil_t&, const stack_reference& rhs) {
+ return !rhs.valid();
+ }
+
+ inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) {
+ return lhs.valid();
+ }
+
+ inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) {
+ return rhs.valid();
+ }
+
+ inline bool operator==(const stateless_stack_reference& l, const stateless_stack_reference& r) {
+ return l.stack_index() == r.stack_index();
+ }
+
+ inline bool operator!=(const stateless_stack_reference& l, const stateless_stack_reference& r) {
+ return l.stack_index() != r.stack_index();
+ }
+
+ struct stateless_stack_reference_equals {
+ using is_transparent = std::true_type;
+
+ stateless_stack_reference_equals(lua_State* L_) noexcept : m_L(L_) {
+ }
+
+ lua_State* lua_state() const noexcept {
+ return m_L;
+ }
+
+ bool operator()(const stateless_stack_reference& lhs, const stateless_stack_reference& rhs) const {
+ return lhs.equals(lua_state(), rhs);
+ }
+
+ bool operator()(lua_nil_t lhs, const stateless_stack_reference& rhs) const {
+ return rhs.equals(lua_state(), lhs);
+ }
+
+ bool operator()(const stateless_stack_reference& lhs, lua_nil_t rhs) const {
+ return lhs.equals(lua_state(), rhs);
+ }
+
+ private:
+ lua_State* m_L;
+ };
+
+ struct stack_reference_equals {
+ using is_transparent = std::true_type;
+
+ bool operator()(const lua_nil_t& lhs, const stack_reference& rhs) const {
+ return lhs == rhs;
+ }
+
+ bool operator()(const stack_reference& lhs, const lua_nil_t& rhs) const {
+ return lhs == rhs;
+ }
+
+ bool operator()(const stack_reference& lhs, const stack_reference& rhs) const {
+ return lhs == rhs;
+ }
+ };
+
+ struct stateless_stack_reference_hash {
+ using argument_type = stateless_stack_reference;
+ using result_type = std::size_t;
+ using is_transparent = std::true_type;
+
+ stateless_stack_reference_hash(lua_State* L_) noexcept : m_L(L_) {
+ }
+
+ lua_State* lua_state() const noexcept {
+ return m_L;
+ }
+
+ result_type operator()(const argument_type& lhs) const noexcept {
+ std::hash<const void*> h;
+ return h(lhs.pointer(lua_state()));
+ }
+
+ private:
+ lua_State* m_L;
+ };
+
+ struct stack_reference_hash {
+ using argument_type = stack_reference;
+ using result_type = std::size_t;
+ using is_transparent = std::true_type;
+
+ result_type operator()(const argument_type& lhs) const noexcept {
+ std::hash<const void*> h;
+ return h(lhs.pointer());
+ }
+ };
+} // namespace sol
+
+// end of sol/stack_reference.hpp
+
+#include <functional>
+
+namespace sol {
+ namespace detail {
+ inline const char (&default_main_thread_name())[9] {
+ static const char name[9] = "sol.\xF0\x9F\x93\x8C";
+ return name;
+ }
+ } // namespace detail
+
+ namespace stack {
+ inline void remove(lua_State* L_, int rawindex, int count) {
+ if (count < 1)
+ return;
+ int top = lua_gettop(L_);
+ if (top < 1) {
+ return;
+ }
+ if (rawindex == -count || top == rawindex) {
+ // Slice them right off the top
+ lua_pop(L_, static_cast<int>(count));
+ return;
+ }
+
+ // Remove each item one at a time using stack operations
+ // Probably slower, maybe, haven't benchmarked,
+ // but necessary
+ int index = lua_absindex(L_, rawindex);
+ if (index < 0) {
+ index = lua_gettop(L_) + (index + 1);
+ }
+ int last = index + count;
+ for (int i = index; i < last; ++i) {
+ lua_remove(L_, index);
+ }
+ }
+
+ struct push_popper_at {
+ lua_State* L;
+ int index;
+ int count;
+ push_popper_at(lua_State* L_, int index_ = -1, int count_ = 1) : L(L_), index(index_), count(count_) {
+ }
+ ~push_popper_at() {
+ remove(L, index, count);
+ }
+ };
+
+ template <bool top_level>
+ struct push_popper_n {
+ lua_State* L;
+ int pop_count;
+ push_popper_n(lua_State* L_, int pop_count_) : L(L_), pop_count(pop_count_) {
+ }
+ push_popper_n(const push_popper_n&) = delete;
+ push_popper_n(push_popper_n&&) = default;
+ push_popper_n& operator=(const push_popper_n&) = delete;
+ push_popper_n& operator=(push_popper_n&&) = default;
+ ~push_popper_n() {
+ lua_pop(L, pop_count);
+ }
+ };
+
+ template <>
+ struct push_popper_n<true> {
+ push_popper_n(lua_State*, int) {
+ }
+ };
+
+ template <bool, typename T, typename = void>
+ struct push_popper {
+ using Tu = meta::unqualified_t<T>;
+ T m_object;
+ int m_index;
+
+ push_popper(T object_) noexcept : m_object(object_), m_index(lua_absindex(m_object.lua_state(), -m_object.push())) {
+ }
+
+ int index_of(const Tu&) const noexcept {
+ return m_index;
+ }
+
+ ~push_popper() {
+ m_object.pop();
+ }
+ };
+
+ template <typename T, typename C>
+ struct push_popper<true, T, C> {
+ using Tu = meta::unqualified_t<T>;
+
+ push_popper(T) noexcept {
+ }
+
+ int index_of(const Tu&) const noexcept {
+ return -1;
+ }
+
+ ~push_popper() {
+ }
+ };
+
+ template <typename T>
+ struct push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> {
+ using Tu = meta::unqualified_t<T>;
+
+ push_popper(T) noexcept {
+ }
+
+ int index_of(const Tu& object_) const noexcept {
+ return object_.stack_index();
+ }
+
+ ~push_popper() {
+ }
+ };
+
+ template <bool, typename T, typename = void>
+ struct stateless_push_popper {
+ using Tu = meta::unqualified_t<T>;
+ lua_State* m_L;
+ T m_object;
+ int m_index;
+
+ stateless_push_popper(lua_State* L_, T object_) noexcept : m_L(L_), m_object(object_), m_index(lua_absindex(m_L, -m_object.push(m_L))) {
+ }
+
+ int index_of(const Tu&) const noexcept {
+ return m_index;
+ }
+
+ ~stateless_push_popper() {
+ m_object.pop(m_L);
+ }
+ };
+
+ template <typename T, typename C>
+ struct stateless_push_popper<true, T, C> {
+ using Tu = meta::unqualified_t<T>;
+
+ stateless_push_popper(lua_State*, T) noexcept {
+ }
+
+ int index_of(lua_State*, const Tu&) const noexcept {
+ return -1;
+ }
+
+ ~stateless_push_popper() {
+ }
+ };
+
+ template <typename T>
+ struct stateless_push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> {
+ using Tu = meta::unqualified_t<T>;
+ lua_State* m_L;
+
+ stateless_push_popper(lua_State* L_, T) noexcept : m_L(L_) {
+ }
+
+ int index_of(const Tu& object_) const noexcept {
+ return object_.stack_index();
+ }
+
+ ~stateless_push_popper() {
+ }
+ };
+
+ template <bool top_level = false, typename T>
+ push_popper<top_level, T> push_pop(T&& x) {
+ return push_popper<top_level, T>(std::forward<T>(x));
+ }
+
+ template <bool top_level = false, typename T>
+ stateless_push_popper<top_level, T> push_pop(lua_State* L_, T&& object_) {
+ return stateless_push_popper<top_level, T>(L_, std::forward<T>(object_));
+ }
+
+ template <typename T>
+ push_popper_at push_pop_at(T&& object_) {
+ int push_count = object_.push();
+ lua_State* L = object_.lua_state();
+ return push_popper_at(L, lua_absindex(L, -push_count), push_count);
+ }
+
+ template <bool top_level = false>
+ push_popper_n<top_level> pop_n(lua_State* L_, int pop_count_) {
+ return push_popper_n<top_level>(L_, pop_count_);
+ }
+ } // namespace stack
+
+ inline lua_State* main_thread(lua_State* L_, lua_State* backup_if_unsupported_ = nullptr) {
+#if SOL_LUA_VERSION_I_ < 502
+ if (L_ == nullptr)
+ return backup_if_unsupported_;
+ lua_getglobal(L_, detail::default_main_thread_name());
+ auto pp = stack::pop_n(L_, 1);
+ if (type_of(L_, -1) == type::thread) {
+ return lua_tothread(L_, -1);
+ }
+ return backup_if_unsupported_;
+#else
+ if (L_ == nullptr)
+ return backup_if_unsupported_;
+ lua_rawgeti(L_, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
+ lua_State* Lmain = lua_tothread(L_, -1);
+ lua_pop(L_, 1);
+ return Lmain;
+#endif // Lua 5.2+ has the main thread unqualified_getter
+ }
+
+ namespace detail {
+ struct no_safety_tag {
+ } inline constexpr no_safety {};
+
+ template <bool b>
+ inline lua_State* pick_main_thread(lua_State* L_, lua_State* backup_if_unsupported = nullptr) {
+ (void)L_;
+ (void)backup_if_unsupported;
+ if (b) {
+ return main_thread(L_, backup_if_unsupported);
+ }
+ return L_;
+ }
+ } // namespace detail
+
+ class stateless_reference {
+ private:
+ template <bool o_main_only>
+ friend class basic_reference;
+
+ int ref = LUA_NOREF;
+
+ int copy_ref(lua_State* L_) const noexcept {
+ if (ref == LUA_NOREF)
+ return LUA_NOREF;
+ push(L_);
+ return luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+
+ lua_State* copy_assign_ref(lua_State* L_, lua_State* rL, const stateless_reference& r) {
+ if (valid(L_)) {
+ deref(L_);
+ }
+ ref = r.copy_ref(L_);
+ return rL;
+ }
+
+ lua_State* move_assign(lua_State* L_, lua_State* rL, stateless_reference&& r) {
+ if (valid(L_)) {
+ deref(L_);
+ }
+ ref = r.ref;
+ r.ref = LUA_NOREF;
+ return rL;
+ }
+
+ protected:
+ int stack_index() const noexcept {
+ return -1;
+ }
+
+ stateless_reference(lua_State* L_, global_tag_t) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushglobaltable(L_);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+
+ stateless_reference(int raw_ref_index) noexcept : ref(raw_ref_index) {
+ }
+
+ public:
+ stateless_reference() noexcept = default;
+ stateless_reference(lua_nil_t) noexcept : stateless_reference() {
+ }
+ stateless_reference(const stack_reference& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
+ }
+ stateless_reference(stack_reference&& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
+ }
+ stateless_reference(lua_State* L_, const stateless_reference& r) noexcept {
+ if (r.ref == LUA_REFNIL) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF || L_ == nullptr) {
+ ref = LUA_NOREF;
+ return;
+ }
+ ref = r.copy_ref(L_);
+ }
+
+ stateless_reference(lua_State* L_, stateless_reference&& r) noexcept {
+ if (r.ref == LUA_REFNIL) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF || L_ == nullptr) {
+ ref = LUA_NOREF;
+ return;
+ }
+ ref = r.ref;
+ r.ref = LUA_NOREF;
+ }
+
+ stateless_reference(lua_State* L_, const stack_reference& r) noexcept {
+ if (L_ == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
+ ref = LUA_NOREF;
+ return;
+ }
+ if (r.get_type() == type::lua_nil) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (L_ != r.lua_state() && !detail::xmovable(L_, r.lua_state())) {
+ return;
+ }
+ r.push(L_);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+
+ stateless_reference(lua_State* L_, const stateless_stack_reference& r) noexcept : stateless_reference(L_, r.stack_index()) {
+ }
+
+ stateless_reference(lua_State* L_, int index = -1) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L_, index);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+ stateless_reference(lua_State* L_, absolute_index index_) noexcept : stateless_reference(L_, index_.index) {
+ }
+ stateless_reference(lua_State* L_, ref_index index_) noexcept {
+ lua_rawgeti(L_, LUA_REGISTRYINDEX, index_.index);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+ stateless_reference(lua_State*, lua_nil_t) noexcept {
+ }
+
+ ~stateless_reference() noexcept = default;
+
+ stateless_reference(const stateless_reference& o) noexcept = delete;
+ stateless_reference& operator=(const stateless_reference& r) noexcept = delete;
+
+ stateless_reference(stateless_reference&& o) noexcept : ref(o.ref) {
+ o.ref = LUA_NOREF;
+ }
+
+ stateless_reference& operator=(stateless_reference&& o) noexcept {
+ ref = o.ref;
+ o.ref = LUA_NOREF;
+ return *this;
+ }
+
+ int push(lua_State* L_) const noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ lua_rawgeti(L_, LUA_REGISTRYINDEX, ref);
+ return 1;
+ }
+
+ void pop(lua_State* L_, int n = 1) const noexcept {
+ lua_pop(L_, n);
+ }
+
+ int registry_index() const noexcept {
+ return ref;
+ }
+
+ void reset(lua_State* L_) noexcept {
+ if (valid(L_)) {
+ deref(L_);
+ }
+ ref = LUA_NOREF;
+ }
+
+ void reset(lua_State* L_, int index_) noexcept {
+ reset(L_);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L_, index_);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+
+ bool valid(lua_State*) const noexcept {
+ return !(ref == LUA_NOREF || ref == LUA_REFNIL);
+ }
+
+ const void* pointer(lua_State* L_) const noexcept {
+ int si = push(L_);
+ const void* vp = lua_topointer(L_, -si);
+ lua_pop(L_, si);
+ return vp;
+ }
+
+ type get_type(lua_State* L_) const noexcept {
+ int p = push(L_);
+ int result = lua_type(L_, -1);
+ pop(L_, p);
+ return static_cast<type>(result);
+ }
+
+ void abandon(lua_State* = nullptr) {
+ ref = LUA_NOREF;
+ }
+
+ void deref(lua_State* L_) const noexcept {
+ luaL_unref(L_, LUA_REGISTRYINDEX, ref);
+ }
+
+ stateless_reference copy(lua_State* L_) const noexcept {
+ if (!valid(L_)) {
+ return {};
+ }
+ return stateless_reference(copy_ref(L_));
+ }
+
+ void copy_assign(lua_State* L_, const stateless_reference& right) noexcept {
+ if (valid(L_)) {
+ deref(L_);
+ }
+ if (!right.valid(L_)) {
+ return;
+ }
+ ref = right.copy_ref(L_);
+ }
+
+ bool equals(lua_State* L_, const stateless_reference& r) const noexcept {
+ auto ppl = stack::push_pop(L_, *this);
+ auto ppr = stack::push_pop(L_, r);
+ return lua_compare(L_, -1, -2, LUA_OPEQ) == 1;
+ }
+
+ bool equals(lua_State* L_, const stateless_stack_reference& r) const noexcept {
+ auto ppl = stack::push_pop(L_, *this);
+ return lua_compare(L_, -1, r.stack_index(), LUA_OPEQ) == 1;
+ }
+
+ bool equals(lua_State* L_, lua_nil_t) const noexcept {
+ return valid(L_);
+ }
+ };
+
+ template <bool main_only = false>
+ class basic_reference : public stateless_reference {
+ private:
+ template <bool o_main_only>
+ friend class basic_reference;
+ lua_State* luastate = nullptr; // non-owning
+
+ template <bool r_main_only>
+ void copy_assign_complex(const basic_reference<r_main_only>& r) {
+ if (valid()) {
+ deref();
+ }
+ if (r.ref == LUA_REFNIL) {
+ luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF) {
+ luastate = r.luastate;
+ ref = LUA_NOREF;
+ return;
+ }
+ if (detail::xmovable(lua_state(), r.lua_state())) {
+ r.push(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ return;
+ }
+ luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
+ ref = r.copy_ref();
+ }
+
+ template <bool r_main_only>
+ void move_assign(basic_reference<r_main_only>&& r) {
+ if (valid()) {
+ deref();
+ }
+ if (r.ref == LUA_REFNIL) {
+ luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF) {
+ luastate = r.luastate;
+ ref = LUA_NOREF;
+ return;
+ }
+ if (detail::xmovable(lua_state(), r.lua_state())) {
+ r.push(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ return;
+ }
+
+ luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
+ ref = r.ref;
+ r.ref = LUA_NOREF;
+ r.luastate = nullptr;
+ }
+
+ protected:
+ basic_reference(lua_State* L_, global_tag_t) noexcept : basic_reference(detail::pick_main_thread<main_only>(L_, L_), global_tag, global_tag) {
+ }
+
+ basic_reference(lua_State* L_, global_tag_t, global_tag_t) noexcept : stateless_reference(L_, global_tag), luastate(L_) {
+ }
+
+ basic_reference(lua_State* oL, const basic_reference<!main_only>& o) noexcept : stateless_reference(oL, o), luastate(oL) {
+ }
+
+ void deref() const noexcept {
+ return stateless_reference::deref(lua_state());
+ }
+
+ int copy_ref() const noexcept {
+ return copy_ref(lua_state());
+ }
+
+ int copy_ref(lua_State* L_) const noexcept {
+ return stateless_reference::copy_ref(L_);
+ }
+
+ public:
+ basic_reference() noexcept = default;
+ basic_reference(lua_nil_t) noexcept : basic_reference() {
+ }
+ basic_reference(const stack_reference& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
+ }
+ basic_reference(stack_reference&& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
+ }
+ template <bool r_main_only>
+ basic_reference(lua_State* L_, const basic_reference<r_main_only>& r) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ if (r.ref == LUA_REFNIL) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF || lua_state() == nullptr) {
+ ref = LUA_NOREF;
+ return;
+ }
+ if (detail::xmovable(lua_state(), r.lua_state())) {
+ r.push(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ return;
+ }
+ ref = r.copy_ref();
+ }
+
+ template <bool r_main_only>
+ basic_reference(lua_State* L_, basic_reference<r_main_only>&& r) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ if (r.ref == LUA_REFNIL) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (r.ref == LUA_NOREF || lua_state() == nullptr) {
+ ref = LUA_NOREF;
+ return;
+ }
+ if (detail::xmovable(lua_state(), r.lua_state())) {
+ r.push(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ return;
+ }
+ ref = r.ref;
+ r.ref = LUA_NOREF;
+ r.luastate = nullptr;
+ }
+
+ basic_reference(lua_State* L_, const stack_reference& r) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
+ ref = LUA_NOREF;
+ return;
+ }
+ if (r.get_type() == type::lua_nil) {
+ ref = LUA_REFNIL;
+ return;
+ }
+ if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) {
+ return;
+ }
+ r.push(lua_state());
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+ basic_reference(lua_State* L_, int index = -1) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ // use L_ to stick with that state's execution stack
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L_, index);
+ ref = luaL_ref(L_, LUA_REGISTRYINDEX);
+ }
+ basic_reference(lua_State* L_, ref_index index) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index);
+ ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
+ }
+ basic_reference(lua_State* L_, lua_nil_t) noexcept : luastate(detail::pick_main_thread<main_only>(L_, L_)) {
+ }
+
+ ~basic_reference() noexcept {
+ if (lua_state() == nullptr || ref == LUA_NOREF)
+ return;
+ deref();
+ }
+
+ basic_reference(const basic_reference& o) noexcept : stateless_reference(o.copy_ref()), luastate(o.lua_state()) {
+ }
+
+ basic_reference(basic_reference&& o) noexcept : stateless_reference(std::move(o)), luastate(o.lua_state()) {
+ o.luastate = nullptr;
+ }
+
+ basic_reference(const basic_reference<!main_only>& o) noexcept
+ : basic_reference(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state()), o) {
+ }
+
+ basic_reference(basic_reference<!main_only>&& o) noexcept
+ : stateless_reference(std::move(o)), luastate(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state())) {
+ o.luastate = nullptr;
+ o.ref = LUA_NOREF;
+ }
+
+ basic_reference& operator=(basic_reference&& r) noexcept {
+ move_assign(std::move(r));
+ return *this;
+ }
+
+ basic_reference& operator=(const basic_reference& r) noexcept {
+ copy_assign_complex(r);
+ return *this;
+ }
+
+ basic_reference& operator=(basic_reference<!main_only>&& r) noexcept {
+ move_assign(std::move(r));
+ return *this;
+ }
+
+ basic_reference& operator=(const basic_reference<!main_only>& r) noexcept {
+ copy_assign_complex(r);
+ return *this;
+ }
+
+ basic_reference& operator=(const lua_nil_t&) noexcept {
+ reset();
+ return *this;
+ }
+
+ template <typename Super>
+ basic_reference& operator=(proxy_base<Super>&& r);
+
+ template <typename Super>
+ basic_reference& operator=(const proxy_base<Super>& r);
+
+ int push() const noexcept {
+ return push(lua_state());
+ }
+
+ void reset() noexcept {
+ stateless_reference::reset(luastate);
+ luastate = nullptr;
+ }
+
+ int push(lua_State* L_) const noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, "not enough Lua stack space to push this reference value");
+#endif // make sure stack doesn't overflow
+ if (lua_state() == nullptr) {
+ lua_pushnil(L_);
+ return 1;
+ }
+ lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref);
+ if (L_ != lua_state()) {
+ lua_xmove(lua_state(), L_, 1);
+ }
+ return 1;
+ }
+
+ void pop() const noexcept {
+ pop(lua_state());
+ }
+
+ void pop(lua_State* L_, int n = 1) const noexcept {
+ stateless_reference::pop(L_, n);
+ }
+
+ int registry_index() const noexcept {
+ return stateless_reference::registry_index();
+ }
+
+ bool valid() const noexcept {
+ return stateless_reference::valid(lua_state());
+ }
+
+ bool valid(lua_State* L_) const noexcept {
+ return stateless_reference::valid(L_);
+ }
+
+ const void* pointer() const noexcept {
+ return stateless_reference::pointer(lua_state());
+ }
+
+ explicit operator bool() const noexcept {
+ return valid();
+ }
+
+ type get_type() const noexcept {
+ return stateless_reference::get_type(lua_state());
+ }
+
+ lua_State* lua_state() const noexcept {
+ return luastate;
+ }
+ };
+
+ template <bool lb, bool rb>
+ inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) noexcept {
+ auto ppl = stack::push_pop(l);
+ auto ppr = stack::push_pop(r);
+ return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
+ }
+
+ template <bool lb, bool rb>
+ inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) noexcept {
+ return !operator==(l, r);
+ }
+
+ template <bool lb>
+ inline bool operator==(const basic_reference<lb>& l, const stack_reference& r) noexcept {
+ auto ppl = stack::push_pop(l);
+ return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
+ }
+
+ template <bool lb>
+ inline bool operator!=(const basic_reference<lb>& l, const stack_reference& r) noexcept {
+ return !operator==(l, r);
+ }
+
+ template <bool rb>
+ inline bool operator==(const stack_reference& l, const basic_reference<rb>& r) noexcept {
+ auto ppr = stack::push_pop(r);
+ return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
+ }
+
+ template <bool rb>
+ inline bool operator!=(const stack_reference& l, const basic_reference<rb>& r) noexcept {
+ return !operator==(l, r);
+ }
+
+ template <bool lb>
+ inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) noexcept {
+ return !lhs.valid();
+ }
+
+ template <bool rb>
+ inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) noexcept {
+ return !rhs.valid();
+ }
+
+ template <bool lb>
+ inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) noexcept {
+ return lhs.valid();
+ }
+
+ template <bool rb>
+ inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) noexcept {
+ return rhs.valid();
+ }
+
+ inline bool operator==(const stateless_reference& l, const stateless_reference& r) noexcept {
+ return l.registry_index() == r.registry_index();
+ }
+
+ inline bool operator!=(const stateless_reference& l, const stateless_reference& r) noexcept {
+ return l.registry_index() != r.registry_index();
+ }
+
+ inline bool operator==(const stateless_reference& lhs, const lua_nil_t&) noexcept {
+ return lhs.registry_index() == LUA_REFNIL;
+ }
+
+ inline bool operator==(const lua_nil_t&, const stateless_reference& rhs) noexcept {
+ return rhs.registry_index() == LUA_REFNIL;
+ }
+
+ inline bool operator!=(const stateless_reference& lhs, const lua_nil_t&) noexcept {
+ return lhs.registry_index() != LUA_REFNIL;
+ }
+
+ inline bool operator!=(const lua_nil_t&, const stateless_reference& rhs) noexcept {
+ return rhs.registry_index() != LUA_REFNIL;
+ }
+
+ struct stateless_reference_equals : public stateless_stack_reference_equals {
+ using is_transparent = std::true_type;
+
+ stateless_reference_equals(lua_State* L_) noexcept : stateless_stack_reference_equals(L_) {
+ }
+
+ bool operator()(const lua_nil_t& lhs, const stateless_reference& rhs) const noexcept {
+ return rhs.equals(lua_state(), lhs);
+ }
+
+ bool operator()(const stateless_reference& lhs, const lua_nil_t& rhs) const noexcept {
+ return lhs.equals(lua_state(), rhs);
+ }
+
+ bool operator()(const stateless_reference& lhs, const stateless_reference& rhs) const noexcept {
+ return lhs.equals(lua_state(), rhs);
+ }
+ };
+
+ struct reference_equals : public stack_reference_equals {
+ using is_transparent = std::true_type;
+
+ template <bool rb>
+ bool operator()(const lua_nil_t& lhs, const basic_reference<rb>& rhs) const noexcept {
+ return lhs == rhs;
+ }
+
+ template <bool lb>
+ bool operator()(const basic_reference<lb>& lhs, const lua_nil_t& rhs) const noexcept {
+ return lhs == rhs;
+ }
+
+ template <bool lb, bool rb>
+ bool operator()(const basic_reference<lb>& lhs, const basic_reference<rb>& rhs) const noexcept {
+ return lhs == rhs;
+ }
+
+ template <bool lb>
+ bool operator()(const basic_reference<lb>& lhs, const stack_reference& rhs) const noexcept {
+ return lhs == rhs;
+ }
+
+ template <bool rb>
+ bool operator()(const stack_reference& lhs, const basic_reference<rb>& rhs) const noexcept {
+ return lhs == rhs;
+ }
+ };
+
+ struct stateless_reference_hash : public stateless_stack_reference_hash {
+ using argument_type = stateless_reference;
+ using result_type = std::size_t;
+ using is_transparent = std::true_type;
+
+ stateless_reference_hash(lua_State* L_) noexcept : stateless_stack_reference_hash(L_) {
+ }
+
+ result_type operator()(const stateless_reference& lhs) const noexcept {
+ std::hash<const void*> h;
+ return h(lhs.pointer(lua_state()));
+ }
+ };
+
+ struct reference_hash : public stack_reference_hash {
+ using argument_type = reference;
+ using result_type = std::size_t;
+ using is_transparent = std::true_type;
+
+ template <bool lb>
+ result_type operator()(const basic_reference<lb>& lhs) const noexcept {
+ std::hash<const void*> h;
+ return h(lhs.pointer());
+ }
+ };
+} // namespace sol
+
+// end of sol/reference.hpp
+
+// beginning of sol/tie.hpp
+
+namespace sol {
+
+ namespace detail {
+ template <typename T>
+ struct is_speshul : std::false_type { };
+ } // namespace detail
+
+ template <typename T>
+ struct tie_size : std::tuple_size<T> { };
+
+ template <typename T>
+ struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> { };
+
+ template <typename... Tn>
+ struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
+ private:
+ typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
+
+ template <typename T>
+ void set(std::false_type, T&& target) {
+ std::get<0>(*this) = std::forward<T>(target);
+ }
+
+ template <typename T>
+ void set(std::true_type, T&& target) {
+ typedef tie_size<meta::unqualified_t<T>> value_size;
+ typedef tie_size<std::tuple<Tn...>> tie_size;
+ typedef meta::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
+ typedef std::make_index_sequence<indices_size::value> indices;
+ set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
+ }
+
+ template <std::size_t... I, typename T>
+ void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
+ using std::get;
+ (void)detail::swallow { 0, (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0 };
+ }
+
+ template <std::size_t... I, typename T>
+ void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
+ using std::get;
+ (void)detail::swallow { 0, (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0 };
+ }
+
+ public:
+ using base_t::base_t;
+
+ template <typename T>
+ tie_t& operator=(T&& value) {
+ typedef is_tieable<meta::unqualified_t<T>> tieable;
+ set(tieable(), std::forward<T>(value));
+ return *this;
+ }
+ };
+
+ template <typename... Tn>
+ struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> { };
+
+ namespace adl_barrier_detail {
+ template <typename... Tn>
+ inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
+ return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
+ }
+ } // namespace adl_barrier_detail
+
+ using namespace adl_barrier_detail;
+
+} // namespace sol
+
+// end of sol/tie.hpp
+
+// beginning of sol/stack_guard.hpp
+
+#include <functional>
+
+namespace sol {
+ namespace detail {
+ inline void stack_fail(int, int) {
+#if SOL_IS_ON(SOL_EXCEPTIONS)
+ throw error(detail::direct_error, "imbalanced stack after operation finish");
+#else
+ // Lol, what do you want, an error printout? :3c
+ // There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
+ // hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
+#endif // No Exceptions
+ }
+ } // namespace detail
+
+ struct stack_guard {
+ lua_State* L;
+ int top;
+ std::function<void(int, int)> on_mismatch;
+
+ stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) {
+ }
+ stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) {
+ }
+ bool check_stack(int modification = 0) const {
+ int bottom = lua_gettop(L) + modification;
+ if (top == bottom) {
+ return true;
+ }
+ on_mismatch(top, bottom);
+ return false;
+ }
+ ~stack_guard() {
+ check_stack();
+ }
+ };
+} // namespace sol
+
+// end of sol/stack_guard.hpp
+
+#include <vector>
+#include <bitset>
+#include <forward_list>
+#include <string>
+#include <limits>
+#include <algorithm>
+#include <sstream>
+#include <optional>
+#include <type_traits>
+
+namespace sol {
+ namespace detail {
+ struct with_function_tag { };
+ struct as_reference_tag { };
+ template <typename T>
+ struct as_pointer_tag { };
+ template <typename T>
+ struct as_value_tag { };
+ template <typename T>
+ struct as_unique_tag { };
+ template <typename T>
+ struct as_table_tag { };
+
+ template <typename Tag>
+ inline constexpr bool is_tagged_v
+ = meta::is_specialization_of_v<Tag,
+ detail::
+ as_pointer_tag> || meta::is_specialization_of_v<Tag, as_value_tag> || meta::is_specialization_of_v<Tag, as_unique_tag> || meta::is_specialization_of_v<Tag, as_table_tag> || std::is_same_v<Tag, as_reference_tag> || std::is_same_v<Tag, with_function_tag>;
+
+ using lua_reg_table = luaL_Reg[64];
+
+ using unique_destructor = void (*)(void*);
+ using unique_tag = detail::inheritance_unique_cast_function;
+
+ inline void* alloc_newuserdata(lua_State* L, std::size_t bytesize) {
+#if SOL_LUA_VERSION_I_ >= 504
+ return lua_newuserdatauv(L, bytesize, 1);
+#else
+ return lua_newuserdata(L, bytesize);
+#endif
+ }
+
+ constexpr std::uintptr_t align(std::size_t alignment, std::uintptr_t ptr, std::size_t& space) {
+ // this handles arbitrary alignments...
+ // make this into a power-of-2-only?
+ // actually can't: this is a C++14-compatible framework,
+ // power of 2 alignment is C++17
+ std::uintptr_t offby = static_cast<std::uintptr_t>(ptr % alignment);
+ std::uintptr_t padding = (alignment - offby) % alignment;
+ ptr += padding;
+ space -= padding;
+ return ptr;
+ }
+
+ inline void* align(std::size_t alignment, void* ptr, std::size_t& space) {
+ return reinterpret_cast<void*>(align(alignment, reinterpret_cast<std::uintptr_t>(ptr), space));
+ }
+
+ constexpr std::uintptr_t align_one(std::size_t alignment, std::size_t size, std::uintptr_t ptr) {
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(alignment, ptr, space) + size;
+ }
+
+ template <typename... Args>
+ constexpr std::size_t aligned_space_for(std::uintptr_t ptr) {
+ std::uintptr_t end = ptr;
+ ((end = align_one(alignof(Args), sizeof(Args), end)), ...);
+ return static_cast<std::size_t>(end - ptr);
+ }
+
+ template <typename... Args>
+ constexpr std::size_t aligned_space_for() {
+ static_assert(sizeof...(Args) > 0);
+
+ constexpr std::size_t max_arg_alignment = (std::max)({ alignof(Args)... });
+ if constexpr (max_arg_alignment <= alignof(std::max_align_t)) {
+ // If all types are `good enough`, simply calculate alignment in case of the worst allocator
+ std::size_t worst_required_size = 0;
+ for (std::size_t ptr = 0; ptr < max_arg_alignment; ptr++) {
+ worst_required_size = (std::max)(worst_required_size, aligned_space_for<Args...>(ptr));
+ }
+ return worst_required_size;
+ }
+ else {
+ // For over-aligned types let's assume that every Arg in Args starts at the worst aligned address
+ return (aligned_space_for<Args>(0x1) + ...);
+ }
+ }
+
+ inline void* align_usertype_pointer(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<void*>::value > 1)
+#endif
+ >;
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<void*>::value, ptr, space);
+ }
+
+ template <bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique_destructor(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<unique_destructor>::value > 1)
+#endif
+ >;
+ if (!pre_aligned) {
+ ptr = align_usertype_pointer(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
+ }
+ if (!use_align::value) {
+ return static_cast<void*>(static_cast<void**>(ptr) + 1);
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<unique_destructor>::value, ptr, space);
+ }
+
+ template <bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique_tag(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<unique_tag>::value > 1)
+#endif
+ >;
+ if (!pre_aligned) {
+ ptr = align_usertype_unique_destructor(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
+ }
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<unique_tag>::value, ptr, space);
+ }
+
+ template <typename T, bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique(void* ptr) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of_v<T> > 1)
+#endif
+ >
+ use_align;
+ if (!pre_aligned) {
+ ptr = align_usertype_unique_tag(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
+ }
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of_v<T>, ptr, space);
+ }
+
+ template <typename T>
+ void* align_user(void* ptr) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of_v<T> > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of_v<T>, ptr, space);
+ }
+
+ template <typename T>
+ T** usertype_allocate_pointer(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<T*>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T** pointerpointer = static_cast<T**>(alloc_newuserdata(L, sizeof(T*)));
+ return pointerpointer;
+ }
+ constexpr std::size_t initial_size = aligned_space_for<T*>();
+
+ std::size_t allocated_size = initial_size;
+ void* unadjusted = alloc_newuserdata(L, initial_size);
+ void* adjusted = align(std::alignment_of<T*>::value, unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ // trash allocator can burn in hell
+ lua_pop(L, 1);
+ // luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
+ // worse job than malloc/realloc and should go read some books, yeah?");
+ luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
+ }
+ return static_cast<T**>(adjusted);
+ }
+
+ inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align,
+ std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
+ void* adjusted = alloc_newuserdata(L, allocated_size);
+ pointer_adjusted = align(ptr_align, adjusted, allocated_size);
+ if (pointer_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ // subtract size of what we're going to allocate there
+ allocated_size -= ptr_size;
+ adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
+ data_adjusted = align(value_align, adjusted, allocated_size);
+ if (data_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ return true;
+ }
+
+ inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align,
+ std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
+ void* adjusted = alloc_newuserdata(L, allocated_size);
+ pointer_adjusted = align(ptr_align, adjusted, allocated_size);
+ if (pointer_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= ptr_size;
+
+ adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
+ dx_adjusted = align(std::alignment_of_v<unique_destructor>, adjusted, allocated_size);
+ if (dx_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= sizeof(unique_destructor);
+
+ adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
+
+ id_adjusted = align(std::alignment_of_v<unique_tag>, adjusted, allocated_size);
+ if (id_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= sizeof(unique_tag);
+
+ adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
+ data_adjusted = align(real_align, adjusted, allocated_size);
+ if (data_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ return true;
+ }
+
+ template <typename T>
+ T* usertype_allocate(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<T*>::value > 1 || std::alignment_of_v<T> > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T** pointerpointer = static_cast<T**>(alloc_newuserdata(L, sizeof(T*) + sizeof(T)));
+ T*& pointerreference = *pointerpointer;
+ T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
+ pointerreference = allocationtarget;
+ return allocationtarget;
+ }
+
+ constexpr std::size_t initial_size = aligned_space_for<T*, T>();
+
+ void* pointer_adjusted;
+ void* data_adjusted;
+ bool result
+ = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, initial_size, pointer_adjusted, data_adjusted);
+ if (!result) {
+ if (pointer_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else {
+ luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ return nullptr;
+ }
+
+ T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
+ T*& pointerreference = *pointerpointer;
+ T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
+ pointerreference = allocationtarget;
+ return allocationtarget;
+ }
+
+ template <typename T, typename Real>
+ Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
+ || std::alignment_of<Real>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ pref = static_cast<T**>(alloc_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
+ dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
+ id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
+ Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
+ return mem;
+ }
+
+ constexpr std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>();
+
+ void* pointer_adjusted = nullptr;
+ void* dx_adjusted = nullptr;
+ void* id_adjusted = nullptr;
+ void* data_adjusted = nullptr;
+ bool result = attempt_alloc_unique(L,
+ std::alignment_of_v<T*>,
+ sizeof(T*),
+ std::alignment_of_v<Real>,
+ initial_size,
+ pointer_adjusted,
+ dx_adjusted,
+ id_adjusted,
+ data_adjusted);
+ if (!result) {
+ if (pointer_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else if (dx_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else {
+ luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ return nullptr;
+ }
+
+ pref = static_cast<T**>(pointer_adjusted);
+ dx = static_cast<detail::unique_destructor*>(dx_adjusted);
+ id = static_cast<unique_tag*>(id_adjusted);
+ Real* mem = static_cast<Real*>(data_adjusted);
+ return mem;
+ }
+
+ template <typename T>
+ T* user_allocate(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if SOL_IS_OFF(SOL_ALIGN_MEMORY)
+ false
+#else
+ (std::alignment_of_v<T> > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T* pointer = static_cast<T*>(alloc_newuserdata(L, sizeof(T)));
+ return pointer;
+ }
+
+ constexpr std::size_t initial_size = aligned_space_for<T>();
+
+ std::size_t allocated_size = initial_size;
+ void* unadjusted = alloc_newuserdata(L, allocated_size);
+ void* adjusted = align(std::alignment_of_v<T>, unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ lua_pop(L, 1);
+ luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
+ }
+ return static_cast<T*>(adjusted);
+ }
+
+ template <typename T>
+ int usertype_alloc_destroy(lua_State* L) noexcept {
+ void* memory = lua_touserdata(L, 1);
+ memory = align_usertype_pointer(memory);
+ T** pdata = static_cast<T**>(memory);
+ T* data = *pdata;
+ std::allocator<T> alloc {};
+ std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
+ return 0;
+ }
+
+ template <typename T>
+ int unique_destroy(lua_State* L) noexcept {
+ void* memory = lua_touserdata(L, 1);
+ memory = align_usertype_unique_destructor(memory);
+ unique_destructor& dx = *static_cast<unique_destructor*>(memory);
+ memory = align_usertype_unique_tag<true>(memory);
+ (dx)(memory);
+ return 0;
+ }
+
+ template <typename T>
+ int user_alloc_destroy(lua_State* L) noexcept {
+ void* memory = lua_touserdata(L, 1);
+ void* aligned_memory = align_user<T>(memory);
+ T* typed_memory = static_cast<T*>(aligned_memory);
+ std::allocator<T> alloc;
+ std::allocator_traits<std::allocator<T>>::destroy(alloc, typed_memory);
+ return 0;
+ }
+
+ template <typename T, typename Real>
+ void usertype_unique_alloc_destroy(void* memory) {
+ void* aligned_memory = align_usertype_unique<Real, true>(memory);
+ Real* typed_memory = static_cast<Real*>(aligned_memory);
+ std::allocator<Real> alloc;
+ std::allocator_traits<std::allocator<Real>>::destroy(alloc, typed_memory);
+ }
+
+ template <typename T>
+ int cannot_destroy(lua_State* L) {
+ return luaL_error(L,
+ "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
+ "delete' and thusly this type is being destroyed without properly destroying, invoking undefined "
+ "behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
+ detail::demangle<T>().data());
+ }
+
+ template <typename T>
+ void reserve(T&, std::size_t) {
+ }
+
+ template <typename T, typename Al>
+ void reserve(std::vector<T, Al>& vec, std::size_t hint) {
+ vec.reserve(hint);
+ }
+
+ template <typename T, typename Tr, typename Al>
+ void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
+ str.reserve(hint);
+ }
+
+ inline bool property_always_true(meta_function) {
+ return true;
+ }
+
+ struct properties_enrollment_allowed {
+ int& times_through;
+ std::bitset<64>& properties;
+ automagic_enrollments& enrollments;
+
+ properties_enrollment_allowed(int& times_through_, std::bitset<64>& properties_, automagic_enrollments& enrollments_)
+ : times_through(times_through_), properties(properties_), enrollments(enrollments_) {
+ }
+
+ bool operator()(meta_function mf) const {
+ bool p = properties[static_cast<std::size_t>(mf)];
+ if (times_through > 0) {
+ return p;
+ }
+ switch (mf) {
+ case meta_function::length:
+ return enrollments.length_operator && !p;
+ case meta_function::pairs:
+ return enrollments.pairs_operator && !p;
+ case meta_function::call:
+ return enrollments.call_operator && !p;
+ case meta_function::less_than:
+ return enrollments.less_than_operator && !p;
+ case meta_function::less_than_or_equal_to:
+ return enrollments.less_than_or_equal_to_operator && !p;
+ case meta_function::equal_to:
+ return enrollments.equal_to_operator && !p;
+ default:
+ break;
+ }
+ return !p;
+ }
+ };
+
+ struct indexed_insert {
+ lua_reg_table& registration_table;
+ int& index;
+
+ indexed_insert(lua_reg_table& registration_table_, int& index_ref_) : registration_table(registration_table_), index(index_ref_) {
+ }
+ void operator()(meta_function meta_function_name_, lua_CFunction c_function_) {
+ registration_table[index] = luaL_Reg { to_string(meta_function_name_).c_str(), c_function_ };
+ ++index;
+ }
+ };
+ } // namespace detail
+
+ namespace stack {
+
+ template <typename T, bool global = false, bool raw = false, typename = void>
+ struct field_getter;
+ template <typename T, typename P, bool global = false, bool raw = false, typename = void>
+ struct probe_field_getter;
+
+ template <typename T, bool global = false, bool raw = false, typename = void>
+ struct field_setter;
+
+ template <typename T, typename = void>
+ struct unqualified_getter;
+ template <typename T, typename = void>
+ struct qualified_getter;
+
+ template <typename T, typename = void>
+ struct qualified_interop_getter;
+ template <typename T, typename = void>
+ struct unqualified_interop_getter;
+
+ template <typename T, typename = void>
+ struct popper;
+
+ template <typename T, typename = void>
+ struct unqualified_pusher;
+
+ template <typename T, type t, typename = void>
+ struct unqualified_checker;
+ template <typename T, type t, typename = void>
+ struct qualified_checker;
+
+ template <typename T, typename = void>
+ struct unqualified_check_getter;
+ template <typename T, typename = void>
+ struct qualified_check_getter;
+
+ struct probe {
+ bool success;
+ int levels;
+
+ probe(bool s, int l) : success(s), levels(l) {
+ }
+
+ operator bool() const {
+ return success;
+ };
+ };
+
+ struct record {
+ int last;
+ int used;
+
+ record() noexcept : last(), used() {
+ }
+ void use(int count) noexcept {
+ last = count;
+ used += count;
+ }
+ };
+
+ namespace stack_detail {
+ template <typename Function>
+ Function* get_function_pointer(lua_State*, int, record&) noexcept;
+ template <typename Function, typename Handler>
+ bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept;
+ } // namespace stack_detail
+
+ } // namespace stack
+
+ namespace meta { namespace meta_detail {
+ template <typename T>
+ using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_interop_get_test_t
+ = decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, &no_panic, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_interop_check_test_t
+ = decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, &no_panic, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_check_get_test_t
+ = decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, &no_panic, std::declval<stack::record&>()));
+
+ template <typename... Args>
+ using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));
+
+ template <typename T, typename... Args>
+ using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;
+
+ template <typename... Args>
+ inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;
+
+ template <typename T, typename... Args>
+ inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
+ }} // namespace meta::meta_detail
+
+ namespace stack {
+ namespace stack_detail {
+ constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
+ constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
+ constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
+ constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
+ constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
+ constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol2 userdata";
+ constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
+ constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
+
+ template <typename T>
+ struct strip {
+ typedef T type;
+ };
+ template <typename T>
+ struct strip<std::reference_wrapper<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<user<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<non_null<T>> {
+ typedef T type;
+ };
+ template <typename T>
+ using strip_t = typename strip<T>::type;
+
+ template <typename C>
+ static int get_size_hint(C& c) {
+ return static_cast<int>(c.size());
+ }
+
+ template <typename V, typename Al>
+ static int get_size_hint(const std::forward_list<V, Al>&) {
+ // forward_list makes me sad
+ return static_cast<int>(32);
+ }
+
+ template <typename T>
+ decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
+ return sol_lua_get(types<Tu>(), L, index, tracking);
+ }
+ else {
+ unqualified_getter<Tu> g {};
+ return g.get(L, index, tracking);
+ }
+ }
+
+ template <typename T>
+ decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
+ return sol_lua_get(types<T>(), L, index, tracking);
+ }
+ else {
+ qualified_getter<T> g {};
+ return g.get(L, index, tracking);
+ }
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
+ return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
+ }
+ else {
+ (void)L;
+ (void)index;
+ (void)unadjusted_pointer;
+ (void)tracking;
+ using Ti = stack_detail::strip_t<Tu>;
+ return std::pair<bool, Ti*> { false, nullptr };
+ }
+ }
+
+ template <typename T>
+ decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
+ return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
+ }
+ else {
+ return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
+ return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ (void)L;
+ (void)index;
+ (void)index_type;
+ (void)handler;
+ (void)tracking;
+ return false;
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
+ return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ using undefined_method_func = void (*)(stack_reference);
+
+ struct undefined_metatable {
+ lua_State* L;
+ const char* key;
+ undefined_method_func on_new_table;
+
+ undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
+ }
+
+ void operator()() const {
+ if (luaL_newmetatable(L, key) == 1) {
+ on_new_table(stack_reference(L, -1));
+ }
+ lua_setmetatable(L, -2);
+ }
+ };
+ } // namespace stack_detail
+
+ inline bool maybe_indexable(lua_State* L, int index = -1) {
+ type t = type_of(L, index);
+ return t == type::userdata || t == type::table;
+ }
+
+ inline int top(lua_State* L) {
+ return lua_gettop(L);
+ }
+
+ inline bool is_main_thread(lua_State* L) {
+ int ismainthread = lua_pushthread(L);
+ lua_pop(L, 1);
+ return ismainthread == 1;
+ }
+
+ inline void coroutine_create_guard(lua_State* L) {
+ if (is_main_thread(L)) {
+ return;
+ }
+ int stacksize = lua_gettop(L);
+ if (stacksize < 1) {
+ return;
+ }
+ if (type_of(L, 1) != type::function) {
+ return;
+ }
+ // well now we're screwed...
+ // we can clean the stack and pray it doesn't destroy anything?
+ lua_pop(L, stacksize);
+ }
+
+ inline void clear(lua_State* L, int table_index) {
+ lua_pushnil(L);
+ while (lua_next(L, table_index) != 0) {
+ // remove value
+ lua_pop(L, 1);
+ // duplicate key to protect form rawset
+ lua_pushvalue(L, -1);
+ // push new value
+ lua_pushnil(L);
+ // table_index%[key] = nil
+ lua_rawset(L, table_index);
+ }
+ }
+
+ inline void clear(reference& r) {
+ auto pp = push_pop<false>(r);
+ int stack_index = pp.index_of(r);
+ clear(r.lua_state(), stack_index);
+ }
+
+ inline void clear(stack_reference& r) {
+ clear(r.lua_state(), r.stack_index());
+ }
+
+ inline void clear(lua_State* L_, stateless_reference& r) {
+ r.push(L_);
+ int stack_index = absolute_index(L_, -1);
+ clear(L_, stack_index);
+ r.pop(L_);
+ }
+
+ inline void clear(lua_State* L_, stateless_stack_reference& r) {
+ clear(L_, r.stack_index());
+ }
+
+ template <typename T, typename... Args>
+ int push(lua_State* L, T&& t, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
+ return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
+ return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
+ return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else {
+ unqualified_pusher<Tu> p {};
+ return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ }
+
+ // overload allows to use a pusher of a specific type, but pass in any kind of args
+ template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
+ int push(lua_State* L, Arg&& arg, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
+ return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
+ return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...> && !detail::is_tagged_v<Tu>) {
+ return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else {
+ unqualified_pusher<Tu> p {};
+ return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ template <typename T, typename... Args>
+ int push_userdata(lua_State* L, T&& t, Args&&... args) {
+ using U = meta::unqualified_t<T>;
+ using Tr = meta::conditional_t<std::is_pointer_v<U>,
+ detail::as_pointer_tag<std::remove_pointer_t<U>>,
+ meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
+ return stack::push<Tr>(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename Arg, typename... Args>
+ int push_userdata(lua_State* L, Arg&& arg, Args&&... args) {
+ using U = meta::unqualified_t<T>;
+ using Tr = meta::conditional_t<std::is_pointer_v<U>,
+ detail::as_pointer_tag<std::remove_pointer_t<U>>,
+ meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
+ return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ namespace stack_detail {
+
+ template <typename T, typename Arg, typename... Args>
+ int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
+ // clang-format off
+ using use_reference_tag =
+ meta::all<
+ meta::neg<is_value_semantic_for_function<T>>
+#if SOL_IS_OFF(SOL_FUNCTION_CALL_VALUE_SEMANTICS)
+ , std::is_lvalue_reference<T>,
+ meta::neg<std::is_const<std::remove_reference_t<T>>>,
+ meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
+ meta::neg<is_unique_usertype<meta::unqualified_t<T>>>
+#endif
+ >;
+ // clang-format on
+ using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
+ return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ } // namespace stack_detail
+
+ template <typename T, typename... Args>
+ int push_reference(lua_State* L, T&& t, Args&&... args) {
+ return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename Arg, typename... Args>
+ int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
+ return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ inline int multi_push(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template <typename T, typename... Args>
+ int multi_push(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = push(L, std::forward<T>(t));
+ void(detail::swallow { (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ inline int multi_push_reference(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template <typename T, typename... Args>
+ int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = stack::push_reference(L, std::forward<T>(t));
+ void(detail::swallow { (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
+ return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ unqualified_checker<Tu, lua_type_of_v<Tu>> c{};
+ return c.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_check(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = &no_panic;
+ return unqualified_check<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
+ return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ using Tu = meta::unqualified_t<T>;
+ qualified_checker<T, lua_type_of_v<Tu>> c{};
+ return c.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return check<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = &no_panic;
+ return check<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
+ return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
+ return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = &no_panic;
+ return check_usertype<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
+ return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
+ return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ unqualified_check_getter<Tu> cg {};
+ return cg.get(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return unqualified_check_get<T>(L, index, handler, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = &no_panic;
+ return unqualified_check_get<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
+ return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ qualified_check_getter<T> cg {};
+ return cg.get(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return check_get<T>(L, index, handler, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = &no_panic;
+ return check_get<T>(L, index, handler);
+ }
+
+ namespace stack_detail {
+
+ template <typename Handler>
+ bool check_types(lua_State*, int, Handler&&, record&) {
+ return true;
+ }
+
+ template <typename T, typename... Args, typename Handler>
+ bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
+ if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
+ return false;
+ return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args, typename Handler>
+ bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
+ return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ } // namespace stack_detail
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler) {
+ record tracking {};
+ return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args>
+ bool multi_check(lua_State* L, int index) {
+ return multi_check<Args...>(L, index);
+ }
+
+ template <typename T>
+ auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
+#if SOL_IS_ON(SOL_SAFE_GETTER)
+ static constexpr bool is_op = meta::is_optional_v<T>;
+ if constexpr (is_op) {
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ else {
+ if (is_lua_reference<T>::value) {
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
+ return *std::move(op);
+ }
+#else
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+#endif
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking {};
+ return unqualified_get<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
+#if SOL_IS_ON(SOL_SAFE_GETTER)
+ static constexpr bool is_op = meta::is_optional_v<T>;
+ if constexpr (is_op) {
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ else {
+ if (is_lua_reference<T>::value) {
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ auto op = check_get<T>(L, index, type_panic_c_str, tracking);
+ return *std::move(op);
+ }
+#else
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+#endif
+ }
+
+ template <typename T>
+ decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking {};
+ return get<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
+ using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
+ return get<UT>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) get_usertype(lua_State* L, int index = -lua_size_v<meta::unqualified_t<T>>) {
+ record tracking {};
+ return get_usertype<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) pop(lua_State* L) {
+ return popper<T> {}.pop(L);
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key) {
+ field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key, int tableindex) {
+ field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key) {
+ get_field<global, true>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ get_field<global, true>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key) {
+ return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key) {
+ return probe_get_field<global, true, C>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value) {
+ field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+
+ template <typename T, typename F>
+ void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
+ void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
+ void* ptr_memory = detail::align_usertype_pointer(raw);
+ void* uu_memory = detail::align_usertype_unique<T>(raw);
+ T& uu = *static_cast<T*>(uu_memory);
+ f(uu);
+ *static_cast<void**>(ptr_memory) = static_cast<void*>(detail::unique_get(obj.lua_state(), uu));
+ }
+
+ template <typename F>
+ void modify_unique_usertype(const stack_reference& obj, F&& f) {
+ using bt = meta::bind_traits<meta::unqualified_t<F>>;
+ using T = typename bt::template arg_at<0>;
+ using Tu = meta::unqualified_t<T>;
+ modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
+ }
+
+ namespace stack_detail {
+ template <typename T, typename Handler>
+ decltype(auto) check_get_arg(lua_State* L_, int index_, Handler&& handler_, record& tracking_) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_access_v<T>) {
+ sol_lua_check_access(types<meta::unqualified_t<T>>(), L_, index_, tracking_);
+ }
+ return check_get<T>(L_, index_, std::forward<Handler>(handler_), tracking_);
+ }
+
+ template <typename T>
+ decltype(auto) unchecked_get_arg(lua_State* L_, int index_, record& tracking_) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_access_v<T>) {
+ sol_lua_check_access(types<meta::unqualified_t<T>>(), L_, index_, tracking_);
+ }
+ return unchecked_get<T>(L_, index_, tracking_);
+ }
+ } // namespace stack_detail
+
+ } // namespace stack
+
+ namespace detail {
+
+ template <typename T>
+ lua_CFunction make_destructor(std::true_type) {
+ if constexpr (is_unique_usertype_v<T>) {
+ return &unique_destroy<T>;
+ }
+ else if constexpr (!std::is_pointer_v<T>) {
+ return &usertype_alloc_destroy<T>;
+ }
+ else {
+ return &cannot_destroy<T>;
+ }
+ }
+
+ template <typename T>
+ lua_CFunction make_destructor(std::false_type) {
+ return &cannot_destroy<T>;
+ }
+
+ template <typename T>
+ lua_CFunction make_destructor() {
+ return make_destructor<T>(std::is_destructible<T>());
+ }
+
+ struct no_comp {
+ template <typename A, typename B>
+ bool operator()(A&&, B&&) const {
+ return false;
+ }
+ };
+
+ template <typename T>
+ int is_check(lua_State* L) {
+ return stack::push(L, stack::check<T>(L, 1, &no_panic));
+ }
+
+ template <typename T>
+ int member_default_to_string(std::true_type, lua_State* L) {
+ decltype(auto) ts = stack::get<T>(L, 1).to_string();
+ return stack::push(L, std::forward<decltype(ts)>(ts));
+ }
+
+ template <typename T>
+ int member_default_to_string(std::false_type, lua_State* L) {
+ return luaL_error(L,
+ "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
+ "function, or operator<<(ostream&, ...) present",
+ detail::demangle<T>().data());
+ }
+
+ template <typename T>
+ int adl_default_to_string(std::true_type, lua_State* L) {
+ using namespace std;
+ decltype(auto) ts = to_string(stack::get<T>(L, 1));
+ return stack::push(L, std::forward<decltype(ts)>(ts));
+ }
+
+ template <typename T>
+ int adl_default_to_string(std::false_type, lua_State* L) {
+ return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
+ }
+
+ template <typename T>
+ int oss_default_to_string(std::true_type, lua_State* L) {
+ std::ostringstream oss;
+ oss << stack::unqualified_get<T>(L, 1);
+ return stack::push(L, oss.str());
+ }
+
+ template <typename T>
+ int oss_default_to_string(std::false_type, lua_State* L) {
+ return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
+ }
+
+ template <typename T>
+ int default_to_string(lua_State* L) {
+ return oss_default_to_string<T>(meta::supports_op_left_shift<std::ostream, T>(), L);
+ }
+
+ template <typename T>
+ int default_size(lua_State* L) {
+ decltype(auto) self = stack::unqualified_get<T>(L, 1);
+ return stack::push(L, self.size());
+ }
+
+ template <typename T, typename Op>
+ int comparsion_operator_wrap(lua_State* L) {
+ if constexpr (std::is_void_v<T>) {
+ return stack::push(L, false);
+ }
+ else {
+ auto maybel = stack::unqualified_check_get<T>(L, 1);
+ if (!maybel) {
+ return stack::push(L, false);
+ }
+ auto mayber = stack::unqualified_check_get<T>(L, 2);
+ if (!mayber) {
+ return stack::push(L, false);
+ }
+ decltype(auto) l = *maybel;
+ decltype(auto) r = *mayber;
+ if constexpr (std::is_same_v<no_comp, Op>) {
+ std::equal_to<> op;
+ return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
+ }
+ else {
+ if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
+ || std::is_same_v<std::less_equal<>, Op> //
+ || std::is_same_v<std::less_equal<>, Op>) { //
+ if (detail::ptr(l) == detail::ptr(r)) {
+ return stack::push(L, true);
+ }
+ }
+ Op op;
+ return stack::push(L, op(detail::deref(l), detail::deref(r)));
+ }
+ }
+ }
+
+ template <typename T, typename IFx, typename Fx>
+ void insert_default_registrations(IFx&& ifx, Fx&& fx);
+
+ template <typename T, bool, bool>
+ struct get_is_primitive : is_lua_primitive<T> { };
+
+ template <typename T>
+ struct get_is_primitive<T, true, false>
+ : meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> { };
+
+ template <typename T>
+ struct get_is_primitive<T, false, true>
+ : meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> { };
+
+ template <typename T>
+ struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> { };
+
+ } // namespace detail
+
+ template <typename T>
+ struct is_proxy_primitive
+ : detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> { };
+
+} // namespace sol
+
+// end of sol/stack_core.hpp
+
+// beginning of sol/stack_check.hpp
+
+// beginning of sol/stack_check_unqualified.hpp
+
+#include <memory>
+#include <functional>
+#include <utility>
+#include <cmath>
+#include <optional>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // variant shenanigans
+
+namespace sol { namespace stack {
+ template <typename Handler>
+ bool loose_table_check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ if (t == type::table) {
+ return true;
+ }
+ if (t != type::userdata) {
+ handler(L_, index, type::table, t, "value is not a table or a userdata that can behave like one");
+ return false;
+ }
+ return true;
+ }
+
+ namespace stack_detail {
+ inline bool impl_check_metatable(lua_State* L_, int index, const std::string& metakey, bool poptable) {
+ luaL_getmetatable(L_, &metakey[0]);
+ const type expectedmetatabletype = static_cast<type>(lua_type(L_, -1));
+ if (expectedmetatabletype != type::lua_nil) {
+ if (lua_rawequal(L_, -1, index) == 1) {
+ lua_pop(L_, 1 + static_cast<int>(poptable));
+ return true;
+ }
+ }
+ lua_pop(L_, 1);
+ return false;
+ }
+
+ template <typename T, bool poptable = true>
+ inline bool check_metatable(lua_State* L_, int index = -2) {
+ return impl_check_metatable(L_, index, usertype_traits<T>::metatable(), poptable);
+ }
+
+ template <type expected, int (*check_func)(lua_State*, int)>
+ struct basic_check {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ tracking.use(1);
+ bool success = check_func(L_, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, expected, type_of(L_, index), "");
+ }
+ return success;
+ }
+ };
+ } // namespace stack_detail
+
+ template <typename T, typename>
+ struct unqualified_interop_checker {
+ template <typename Handler>
+ static bool check(lua_State*, int, type, Handler&&, record&) {
+ return false;
+ }
+ };
+
+ template <typename T, typename>
+ struct qualified_interop_checker {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, type index_type, Handler&& handler, record& tracking) {
+ return stack_detail::unqualified_interop_check<T>(L_, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename T, type expected, typename>
+ struct unqualified_checker {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ if constexpr (std::is_same_v<T, bool>) {
+ tracking.use(1);
+ bool success = lua_isboolean(L_, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, expected, type_of(L_, index), "");
+ }
+ return success;
+ }
+ else if constexpr (meta::any_same_v<T,
+ char
+#if SOL_IS_ON(SOL_CHAR8_T)
+ ,
+ char8_t
+#endif
+ ,
+ char16_t,
+ char32_t>) {
+ return stack::check<std::basic_string<T>>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
+ tracking.use(1);
+#if SOL_LUA_VERSION_I_ >= 503
+ // Lua 5.3 and greater checks for numeric precision
+#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS)
+ // imprecise, sloppy conversions
+ int isnum = 0;
+ lua_tointegerx(L_, index, &isnum);
+ const bool success = isnum != 0;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::number, type_of(L_, index), detail::not_a_number_or_number_string_integral);
+ }
+#elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS)
+ // this check is precise, do not convert
+ if (lua_isinteger(L_, index) == 1) {
+ return true;
+ }
+ const bool success = false;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::number, type_of(L_, index), detail::not_a_number_integral);
+ }
+#else
+ // Numerics are neither safe nor string-convertible
+ type t = type_of(L_, index);
+ const bool success = t == type::number;
+#endif
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::number, type_of(L_, index), detail::not_a_number);
+ }
+ return success;
+#else
+ // Lua 5.2 and below checks
+#if SOL_IS_OFF(SOL_STRINGS_ARE_NUMBERS)
+ // must pre-check, because it will convert
+ type t = type_of(L_, index);
+ if (t != type::number) {
+ // expected type, actual type
+ handler(L_, index, type::number, t, detail::not_a_number);
+ return false;
+ }
+#endif // Do not allow strings to be numbers
+
+#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS)
+ int isnum = 0;
+ const lua_Number v = lua_tonumberx(L_, index, &isnum);
+ const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v;
+#else
+ const bool success = true;
+#endif // Safe numerics and number precision checking
+ if (!success) {
+ // Use defines to provide a better error message!
+#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS)
+ handler(L_, index, type::number, type_of(L_, index), detail::not_a_number_or_number_string);
+#elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS)
+ handler(L_, index, type::number, t, detail::not_a_number_or_number_string);
+#else
+ handler(L_, index, type::number, t, detail::not_a_number);
+#endif
+ }
+ return success;
+#endif
+ }
+ else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
+ tracking.use(1);
+#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS)
+ bool success = lua_isnumber(L_, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::number, type_of(L_, index), detail::not_a_number_or_number_string);
+ }
+ return success;
+#else
+ type t = type_of(L_, index);
+ bool success = t == type::number;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::number, t, detail::not_a_number);
+ }
+ return success;
+#endif // Strings are Numbers
+ }
+ else if constexpr (meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) {
+ (void)L_;
+ (void)index;
+ (void)handler;
+ tracking.use(0);
+ return true;
+ }
+ else if constexpr (is_unique_usertype_v<T>) {
+ using element = unique_usertype_element_t<T>;
+ using actual = unique_usertype_actual_t<T>;
+ const type indextype = type_of(L_, index);
+ tracking.use(1);
+ if (indextype != type::userdata) {
+ handler(L_, index, type::userdata, indextype, "value is not a userdata");
+ return false;
+ }
+ if (lua_getmetatable(L_, index) == 0) {
+ return true;
+ }
+ int metatableindex = lua_gettop(L_);
+ if (stack_detail::check_metatable<d::u<element>>(L_, metatableindex)) {
+ void* memory = lua_touserdata(L_, index);
+ memory = detail::align_usertype_unique_destructor(memory);
+ detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
+ bool success = &detail::usertype_unique_alloc_destroy<element, actual> == pdx;
+ if (!success) {
+ memory = detail::align_usertype_unique_tag<true>(memory);
+#if 0
+ // New version, one day
+#else
+ const char*& name_tag = *static_cast<const char**>(memory);
+ success = usertype_traits<T>::qualified_name() == name_tag;
+#endif
+ if (!success) {
+ handler(L_, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
+ }
+ }
+ return success;
+ }
+ lua_pop(L_, 1);
+ handler(L_, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)");
+ return false;
+ }
+ else if constexpr (meta::any_same_v<T, lua_nil_t, std::nullopt_t, nullopt_t>) {
+ bool success = lua_isnil(L_, index);
+ if (success) {
+ tracking.use(1);
+ return success;
+ }
+ tracking.use(0);
+ success = lua_isnone(L_, index);
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, expected, type_of(L_, index), "");
+ }
+ return success;
+ }
+ else if constexpr (std::is_same_v<T, env_key_t>) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) {
+ return true;
+ }
+ handler(L_, index, type::table, t, "value cannot not have a valid environment");
+ return true;
+ }
+ else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) {
+ return !stack::unqualified_check<lua_nil_t>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ if (t != type::table) {
+ handler(L_, index, type::table, t, "value is not a table");
+ return false;
+ }
+ return true;
+ }
+ else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ if (t != type::function) {
+ handler(L_, index, type::function, t, "value is not a function that can be dumped");
+ return false;
+ }
+ return true;
+ }
+ else if constexpr (meta::is_specialization_of_v<T, basic_environment>) {
+ tracking.use(1);
+ if (lua_getmetatable(L_, index) == 0) {
+ return true;
+ }
+ type t = type_of(L_, -1);
+ if (t == type::table || t == type::none || t == type::lua_nil) {
+ lua_pop(L_, 1);
+ return true;
+ }
+ if (t != type::userdata) {
+ lua_pop(L_, 1);
+ handler(L_, index, type::table, t, "value does not have a valid metatable");
+ return false;
+ }
+ return true;
+ }
+ else if constexpr (std::is_same_v<T, metatable_key_t>) {
+ tracking.use(1);
+ if (lua_getmetatable(L_, index) == 0) {
+ return true;
+ }
+ type t = type_of(L_, -1);
+ if (t == type::table || t == type::none || t == type::lua_nil) {
+ lua_pop(L_, 1);
+ return true;
+ }
+ if (t != type::userdata) {
+ lua_pop(L_, 1);
+ handler(L_, index, expected, t, "value does not have a valid metatable");
+ return false;
+ }
+ return true;
+ }
+ else if constexpr (std::is_same_v<T, luaL_Stream*> || std::is_same_v<T, luaL_Stream>) {
+ if (lua_getmetatable(L_, index) == 0) {
+ type t = type_of(L_, index);
+ handler(L_, index, expected, t, "value is not a valid luaL_Stream (has no metatable/is not a valid value)");
+ return false;
+ }
+ luaL_getmetatable(L_, LUA_FILEHANDLE);
+ if (type_of(L_, index) != type::table) {
+ type t = type_of(L_, index);
+ lua_pop(L_, 1);
+ handler(L_,
+ index,
+ expected,
+ t,
+ "value is not a valid luaL_Stream (there is no metatable for luaL_Stream -- did you forget to "
+ "my_lua_state.open_libraries(sol::lib::state) or equivalent?)");
+ return false;
+ }
+ int is_stream_table = lua_compare(L_, -1, -2, LUA_OPEQ);
+ lua_pop(L_, 2);
+ if (is_stream_table == 0) {
+ type t = type_of(L_, index);
+ handler(L_, index, expected, t, "value is not a valid luaL_Stream (incorrect metatable)");
+ return false;
+ }
+ return true;
+ }
+ else if constexpr (meta::is_optional_v<T>) {
+ using ValueType = typename T::value_type;
+ (void)handler;
+ type t = type_of(L_, index);
+ if (t == type::none) {
+ tracking.use(0);
+ return true;
+ }
+ if (t == type::lua_nil) {
+ tracking.use(1);
+ return true;
+ }
+ return stack::unqualified_check<ValueType>(L_, index, &no_panic, tracking);
+ }
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
+ return stack_detail::check_function_pointer<std::remove_pointer_t<T>>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+#endif
+ else if constexpr (expected == type::userdata) {
+ if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ bool success = t == type::userdata;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::userdata, t, "");
+ }
+ return success;
+ }
+ else if constexpr (meta::is_specialization_of_v<T, user>) {
+ unqualified_checker<lightuserdata_value, type::userdata> c;
+ (void)c;
+ return c.check(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ if constexpr (std::is_pointer_v<T>) {
+ return check_usertype<T>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) {
+ using T_internal = typename T::type;
+ return stack::check<T_internal>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ return check_usertype<T>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+ }
+ else if constexpr (expected == type::poly) {
+ tracking.use(1);
+ bool success = is_lua_reference_v<T> || !lua_isnone(L_, index);
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::poly, type_of(L_, index), "");
+ }
+ return success;
+ }
+ else if constexpr (expected == type::lightuserdata) {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ bool success = t == type::userdata || t == type::lightuserdata;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, type::lightuserdata, t, "");
+ }
+ return success;
+ }
+ else if constexpr (expected == type::function) {
+ if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) {
+ tracking.use(1);
+ bool success = lua_iscfunction(L_, index) == 1;
+ if (!success) {
+ // expected type, actual type
+ handler(L_, index, expected, type_of(L_, index), "");
+ }
+ return success;
+ }
+ else {
+ tracking.use(1);
+ type t = type_of(L_, index);
+ if (t == type::lua_nil || t == type::none || t == type::function) {
+ // allow for lua_nil to be returned
+ return true;
+ }
+ if (t != type::userdata && t != type::table) {
+ handler(L_, index, type::function, t, "must be a function or table or a userdata");
+ return false;
+ }
+ // Do advanced check for call-style userdata?
+ static const auto& callkey = to_string(meta_function::call);
+ if (lua_getmetatable(L_, index) == 0) {
+ // No metatable, no __call key possible
+ handler(L_, index, type::function, t, "value is not a function and does not have overriden metatable");
+ return false;
+ }
+ if (lua_isnoneornil(L_, -1)) {
+ lua_pop(L_, 1);
+ handler(L_, index, type::function, t, "value is not a function and does not have valid metatable");
+ return false;
+ }
+ lua_getfield(L_, -1, &callkey[0]);
+ if (lua_isnoneornil(L_, -1)) {
+ lua_pop(L_, 2);
+ handler(L_, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type");
+ return false;
+ }
+ // has call, is definitely a function
+ lua_pop(L_, 2);
+ return true;
+ }
+ }
+ else if constexpr (expected == type::table) {
+ return stack::loose_table_check(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ tracking.use(1);
+ const type indextype = type_of(L_, index);
+ bool success = expected == indextype;
+ if (!success) {
+ // expected type, actual type, message
+ handler(L_, index, expected, indextype, "");
+ }
+ return success;
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> { };
+
+ template <typename T>
+ struct unqualified_checker<detail::as_value_tag<T>, type::userdata> {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ const type indextype = type_of(L_, index);
+ return check(types<T>(), L_, index, indextype, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename U, typename Handler>
+ static bool check(types<U>, lua_State* L_, int index, type indextype, Handler&& handler, record& tracking) {
+ if constexpr (
+ std::is_same_v<T,
+ lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) {
+ tracking.use(1);
+ if (indextype != type::userdata) {
+ handler(L_, index, type::userdata, indextype, "value is not a valid userdata");
+ return false;
+ }
+ return true;
+ }
+ else {
+#if SOL_IS_ON(SOL_USE_INTEROP)
+ if (stack_detail::interop_check<U>(L_, index, indextype, handler, tracking)) {
+ return true;
+ }
+#endif // interop extensibility
+ tracking.use(1);
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ if (lua_iscfunction(L_, index) != 0) {
+ // a potential match...
+ return true;
+ }
+#endif
+ if (indextype != type::userdata) {
+ handler(L_, index, type::userdata, indextype, "value is not a valid userdata");
+ return false;
+ }
+ if (lua_getmetatable(L_, index) == 0) {
+ return true;
+ }
+ int metatableindex = lua_gettop(L_);
+ if (stack_detail::check_metatable<U>(L_, metatableindex))
+ return true;
+ if (stack_detail::check_metatable<U*>(L_, metatableindex))
+ return true;
+ if (stack_detail::check_metatable<d::u<U>>(L_, metatableindex))
+ return true;
+ if (stack_detail::check_metatable<as_container_t<U>>(L_, metatableindex))
+ return true;
+ bool success = false;
+ bool has_derived = derive<T>::value || weak_derive<T>::value;
+ if (has_derived) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L_, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ auto pn = stack::pop_n(L_, 1);
+ lua_pushstring(L_, &detail::base_class_check_key()[0]);
+ lua_rawget(L_, metatableindex);
+ if (type_of(L_, -1) != type::lua_nil) {
+ void* basecastdata = lua_touserdata(L_, -1);
+ detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata);
+ success = ic(usertype_traits<T>::qualified_name());
+ }
+ }
+ lua_pop(L_, 1);
+ if (!success) {
+ handler(L_, index, type::userdata, indextype, "value at this index does not properly reflect the desired type");
+ return false;
+ }
+ return true;
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, type indextype, Handler&& handler, record& tracking) {
+ if (indextype == type::lua_nil) {
+ tracking.use(1);
+ return true;
+ }
+ return check_usertype<std::remove_pointer_t<T>>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ const type indextype = type_of(L_, index);
+ return check(L_, index, indextype, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename T, std::size_t N, type expect>
+ struct unqualified_checker<exhaustive_until<T, N>, expect> {
+ template <typename K, typename V, typename Handler>
+ static bool check_two(types<K, V>, lua_State* arg_L, int relindex, type, Handler&& handler, record& tracking) {
+ tracking.use(1);
+
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(arg_L, 3, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+
+ int index = lua_absindex(arg_L, relindex);
+ lua_pushnil(arg_L);
+ while (lua_next(arg_L, index) != 0) {
+ const bool is_key_okay = stack::check<K>(arg_L, -2, std::forward<Handler>(handler), tracking);
+ if (!is_key_okay) {
+ lua_pop(arg_L, 2);
+ return false;
+ }
+ const bool is_value_okay = stack::check<V>(arg_L, -1, std::forward<Handler>(handler), tracking);
+ if (!is_value_okay) {
+ lua_pop(arg_L, 2);
+ return false;
+ }
+ lua_pop(arg_L, 1);
+ }
+ return true;
+ }
+
+ template <typename V, typename Handler>
+ static bool check_one(types<V>, lua_State* arg_L, int relindex, type, Handler&& handler, record& tracking) {
+ tracking.use(1);
+
+ size_t index = lua_absindex(arg_L, relindex);
+ // Zzzz slower but necessary thanks to the lower version API and missing functions qq
+ std::size_t idx = 0;
+ int vi = 0;
+ for (lua_Integer i = 0;; (void)(i += lua_size<V>::value), lua_pop(arg_L, static_cast<int>(vi))) {
+ vi = 0;
+ if (idx >= N) {
+ return true;
+ }
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(arg_L, 2, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ bool isnil = false;
+ for (; vi < static_cast<int>(lua_size<V>::value); ++vi) {
+ lua_pushinteger(arg_L, i);
+ lua_gettable(arg_L, static_cast<int>(index));
+ type vt = type_of(arg_L, -1);
+ isnil = vt == type::lua_nil;
+ if (isnil) {
+ if (i == 0) {
+ vi += 1;
+ goto loop_continue;
+ }
+ lua_pop(arg_L, static_cast<int>(vi + 1));
+ return true;
+ }
+ }
+ if (!stack::check<V>(arg_L, -lua_size<V>::value, std::forward<Handler>(handler), tracking)) {
+ lua_pop(arg_L, lua_size<V>::value);
+ return false;
+ }
+ ++idx;
+ loop_continue:;
+ }
+ }
+
+ template <typename Handler>
+ static bool check(lua_State* arg_L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (is_container_v<Tu>) {
+ if constexpr (meta::is_associative<Tu>::value) {
+ typedef typename Tu::value_type P;
+ typedef typename P::first_type K;
+ typedef typename P::second_type V;
+ return check_two(types<K, V>(), arg_L, index, expect, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ typedef typename Tu::value_type V;
+ return check_one(types<V>(), arg_L, index, expect, std::forward<Handler>(handler), tracking);
+ }
+ }
+ else {
+ unqualified_checker<Tu, expect> c {};
+ return c.check(arg_L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+ };
+
+ template <typename T, type expect>
+ struct unqualified_checker<non_exhaustive<T>, expect> {
+ template <typename Handler>
+ static bool check(lua_State* arg_L, int index, Handler&& handler, record& tracking) {
+ return stack::check<T>(arg_L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename... Args>
+ struct unqualified_checker<std::tuple<Args...>, type::poly> {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ return stack::multi_check<Args...>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename A, typename B>
+ struct unqualified_checker<std::pair<A, B>, type::poly> {
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ return stack::multi_check<A, B>(L_, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+#if SOL_IS_ON(SOL_STD_VARIANT)
+
+ template <typename... Tn>
+ struct unqualified_checker<std::variant<Tn...>, type::poly> {
+ typedef std::variant<Tn...> V;
+ typedef std::variant_size<V> V_size;
+ typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
+
+ template <typename Handler>
+ static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L_, int index, Handler&& handler, record& tracking) {
+ if constexpr (V_is_empty::value) {
+ if (lua_isnone(L_, index)) {
+ return true;
+ }
+ }
+ tracking.use(1);
+ handler(L_, index, type::poly, type_of(L_, index), "value does not fit any type present in the variant");
+ return false;
+ }
+
+ template <std::size_t I, typename Handler>
+ static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L_, int index, Handler&& handler, record& tracking) {
+ typedef std::variant_alternative_t<I - 1, V> T;
+ record temp_tracking = tracking;
+ if (stack::check<T>(L_, index, &no_panic, temp_tracking)) {
+ tracking = temp_tracking;
+ return true;
+ }
+ return is_one(std::integral_constant<std::size_t, I - 1>(), L_, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename Handler>
+ static bool check(lua_State* L_, int index, Handler&& handler, record& tracking) {
+ return is_one(std::integral_constant<std::size_t, V_size::value>(), L_, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+#endif // variant shenanigans
+
+}} // namespace sol::stack
+
+// end of sol/stack_check_unqualified.hpp
+
+// beginning of sol/stack_check_qualified.hpp
+
+namespace sol { namespace stack {
+
+ template <typename X, type expected, typename>
+ struct qualified_checker {
+ template <typename Handler>
+ static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using no_cv_X = meta::unqualified_t<X>;
+ if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<no_cv_X>) {
+ using element = unique_usertype_element_t<no_cv_X>;
+ if constexpr (is_actual_type_rebindable_for_v<no_cv_X>) {
+ using rebound_actual_type = unique_usertype_rebind_actual_t<no_cv_X>;
+ // we have a unique pointer type that can be
+ // rebound to a base/derived type
+ const type indextype = type_of(L, index);
+ tracking.use(1);
+ if (indextype != type::userdata) {
+ handler(L, index, type::userdata, indextype, "value is not a userdata");
+ return false;
+ }
+ void* memory = lua_touserdata(L, index);
+ memory = detail::align_usertype_unique_destructor(memory);
+ detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
+ if (&detail::usertype_unique_alloc_destroy<element, no_cv_X> == pdx) {
+ return true;
+ }
+ if constexpr (derive<element>::value) {
+ memory = detail::align_usertype_unique_tag<true, false>(memory);
+ detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
+ string_view ti = usertype_traits<element>::qualified_name();
+ string_view rebind_ti = usertype_traits<rebound_actual_type>::qualified_name();
+ if (ic(nullptr, nullptr, ti, rebind_ti) != 0) {
+ return true;
+ }
+ }
+ handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
+ return false;
+ }
+ else {
+ return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+ else if constexpr (!std::is_reference_v<X> && is_container_v<no_cv_X>) {
+ if (type_of(L, index) == type::userdata) {
+ return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+ else if constexpr (!std::is_reference_v<X> && meta::is_specialization_of_v<X, nested>) {
+ using NestedX = typename meta::unqualified_t<X>::nested_type;
+ return stack::check<NestedX>(L, index, ::std::forward<Handler>(handler), tracking);
+ }
+ else {
+ return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+ };
+}} // namespace sol::stack
+
+// end of sol/stack_check_qualified.hpp
+
+// end of sol/stack_check.hpp
+
+// beginning of sol/stack_get.hpp
+
+// beginning of sol/stack_get_unqualified.hpp
+
+// beginning of sol/overload.hpp
+
+#include <utility>
+
+namespace sol {
+ template <typename... Functions>
+ struct overload_set {
+ std::tuple<Functions...> functions;
+ template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
+ overload_set(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+ overload_set(const overload_set&) = default;
+ overload_set(overload_set&&) = default;
+ overload_set& operator=(const overload_set&) = default;
+ overload_set& operator=(overload_set&&) = default;
+ };
+
+ template <typename... Args>
+ decltype(auto) overload(Args&&... args) {
+ return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
+ }
+} // namespace sol
+
+// end of sol/overload.hpp
+
+// beginning of sol/unicode.hpp
+
+#include <array>
+#include <cstring>
+
+namespace sol {
+ // Everything here was lifted pretty much straight out of
+ // ogonek, because fuck figuring it out=
+ namespace unicode {
+ enum class error_code {
+ ok = 0,
+ invalid_code_point,
+ invalid_code_unit,
+ invalid_leading_surrogate,
+ invalid_trailing_surrogate,
+ sequence_too_short,
+ overlong_sequence,
+ };
+
+ inline const string_view& to_string(error_code ec) {
+ static const string_view storage[7] = { "ok",
+ "invalid code points",
+ "invalid code unit",
+ "invalid leading surrogate",
+ "invalid trailing surrogate",
+ "sequence too short",
+ "overlong sequence" };
+ return storage[static_cast<std::size_t>(ec)];
+ }
+
+ template <typename It>
+ struct decoded_result {
+ error_code error;
+ char32_t codepoint;
+ It next;
+ };
+
+ template <typename C>
+ struct encoded_result {
+ error_code error;
+ std::size_t code_units_size;
+ std::array<C, 4> code_units;
+ };
+
+ struct unicode_detail {
+ // codepoint related
+ static constexpr char32_t last_code_point = 0x10FFFF;
+
+ static constexpr char32_t first_lead_surrogate = 0xD800;
+ static constexpr char32_t last_lead_surrogate = 0xDBFF;
+
+ static constexpr char32_t first_trail_surrogate = 0xDC00;
+ static constexpr char32_t last_trail_surrogate = 0xDFFF;
+
+ static constexpr char32_t first_surrogate = first_lead_surrogate;
+ static constexpr char32_t last_surrogate = last_trail_surrogate;
+
+ static constexpr bool is_lead_surrogate(char32_t u) {
+ return u >= first_lead_surrogate && u <= last_lead_surrogate;
+ }
+ static constexpr bool is_trail_surrogate(char32_t u) {
+ return u >= first_trail_surrogate && u <= last_trail_surrogate;
+ }
+ static constexpr bool is_surrogate(char32_t u) {
+ return u >= first_surrogate && u <= last_surrogate;
+ }
+
+ // utf8 related
+ static constexpr auto last_1byte_value = 0x7Fu;
+ static constexpr auto last_2byte_value = 0x7FFu;
+ static constexpr auto last_3byte_value = 0xFFFFu;
+
+ static constexpr auto start_2byte_mask = 0x80u;
+ static constexpr auto start_3byte_mask = 0xE0u;
+ static constexpr auto start_4byte_mask = 0xF0u;
+
+ static constexpr auto continuation_mask = 0xC0u;
+ static constexpr auto continuation_signature = 0x80u;
+
+ static constexpr bool is_invalid(unsigned char b) {
+ return b == 0xC0 || b == 0xC1 || b > 0xF4;
+ }
+
+ static constexpr bool is_continuation(unsigned char b) {
+ return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature;
+ }
+
+ static constexpr bool is_overlong(char32_t u, std::size_t bytes) {
+ return u <= unicode_detail::last_1byte_value || (u <= unicode_detail::last_2byte_value && bytes > 2)
+ || (u <= unicode_detail::last_3byte_value && bytes > 3);
+ }
+
+ static constexpr int sequence_length(unsigned char b) {
+ return (b & start_2byte_mask) == 0 ? 1
+ : (b & start_3byte_mask) != start_3byte_mask ? 2
+ : (b & start_4byte_mask) != start_4byte_mask ? 3
+ : 4;
+ }
+
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1) {
+ return (static_cast<char32_t>((b0 & 0x1Fu) << 6u) | static_cast<char32_t>(b1 & 0x3Fu));
+ }
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) {
+ return static_cast<char32_t>((b0 & 0x0Fu) << 12u) | static_cast<char32_t>((b1 & 0x3Fu) << 6u) | static_cast<char32_t>(b2 & 0x3Fu);
+ }
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) {
+ return static_cast<char32_t>(static_cast<char32_t>((b0 & 0x07u) << 18u) | static_cast<char32_t>((b1 & 0x3F) << 12)
+ | static_cast<char32_t>((b2 & 0x3Fu) << 6u) | static_cast<char32_t>(b3 & 0x3Fu));
+ }
+
+ // utf16 related
+ static constexpr char32_t last_bmp_value = 0xFFFF;
+ static constexpr char32_t normalizing_value = 0x10000;
+ static constexpr int lead_surrogate_bitmask = 0xFFC00;
+ static constexpr int trail_surrogate_bitmask = 0x3FF;
+ static constexpr int lead_shifted_bits = 10;
+ static constexpr char32_t replacement = 0xFFFD;
+
+ static char32_t combine_surrogates(char16_t lead, char16_t trail) {
+ auto hi = lead - first_lead_surrogate;
+ auto lo = trail - first_trail_surrogate;
+ return normalizing_value + ((hi << lead_shifted_bits) | lo);
+ }
+ };
+
+ inline encoded_result<char> code_point_to_utf8(char32_t codepoint) {
+ encoded_result<char> er;
+ er.error = error_code::ok;
+ if (codepoint <= unicode_detail::last_1byte_value) {
+ er.code_units_size = 1;
+ er.code_units = std::array<char, 4> { { static_cast<char>(codepoint) } };
+ }
+ else if (codepoint <= unicode_detail::last_2byte_value) {
+ er.code_units_size = 2;
+ er.code_units = std::array<char, 4> { {
+ static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ } };
+ }
+ else if (codepoint <= unicode_detail::last_3byte_value) {
+ er.code_units_size = 3;
+ er.code_units = std::array<char, 4> { {
+ static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)),
+ static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ } };
+ }
+ else {
+ er.code_units_size = 4;
+ er.code_units = std::array<char, 4> { {
+ static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)),
+ static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)),
+ static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ } };
+ }
+ return er;
+ }
+
+ inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) {
+ encoded_result<char16_t> er;
+
+ if (codepoint <= unicode_detail::last_bmp_value) {
+ er.code_units_size = 1;
+ er.code_units = std::array<char16_t, 4> { { static_cast<char16_t>(codepoint) } };
+ er.error = error_code::ok;
+ }
+ else {
+ auto normal = codepoint - unicode_detail::normalizing_value;
+ auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits);
+ auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask);
+ er.code_units = std::array<char16_t, 4> { { static_cast<char16_t>(lead), static_cast<char16_t>(trail) } };
+ er.code_units_size = 2;
+ er.error = error_code::ok;
+ }
+ return er;
+ }
+
+ inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) {
+ encoded_result<char32_t> er;
+ er.code_units_size = 1;
+ er.code_units[0] = codepoint;
+ er.error = error_code::ok;
+ return er;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf8_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+
+ unsigned char b0 = static_cast<unsigned char>(*it);
+ std::size_t length = static_cast<std::size_t>(unicode_detail::sequence_length(b0));
+
+ if (length == 1) {
+ dr.codepoint = static_cast<char32_t>(b0);
+ dr.error = error_code::ok;
+ ++it;
+ dr.next = it;
+ return dr;
+ }
+
+ if (unicode_detail::is_invalid(b0) || unicode_detail::is_continuation(b0)) {
+ dr.error = error_code::invalid_code_unit;
+ dr.next = it;
+ return dr;
+ }
+
+ ++it;
+ std::array<unsigned char, 4> b;
+ b[0] = b0;
+ for (std::size_t i = 1; i < length; ++i) {
+ b[i] = static_cast<unsigned char>(*it);
+ if (!unicode_detail::is_continuation(b[i])) {
+ dr.error = error_code::invalid_code_unit;
+ dr.next = it;
+ return dr;
+ }
+ ++it;
+ }
+
+ char32_t decoded;
+ switch (length) {
+ case 2:
+ decoded = unicode_detail::decode(b[0], b[1]);
+ break;
+ case 3:
+ decoded = unicode_detail::decode(b[0], b[1], b[2]);
+ break;
+ default:
+ decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]);
+ break;
+ }
+
+ if (unicode_detail::is_overlong(decoded, length)) {
+ dr.error = error_code::overlong_sequence;
+ return dr;
+ }
+ if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) {
+ dr.error = error_code::invalid_code_point;
+ return dr;
+ }
+
+ // then everything is fine
+ dr.codepoint = decoded;
+ dr.error = error_code::ok;
+ dr.next = it;
+ return dr;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf16_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+
+ char16_t lead = static_cast<char16_t>(*it);
+
+ if (!unicode_detail::is_surrogate(lead)) {
+ ++it;
+ dr.codepoint = static_cast<char32_t>(lead);
+ dr.next = it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+ if (!unicode_detail::is_lead_surrogate(lead)) {
+ dr.error = error_code::invalid_leading_surrogate;
+ dr.next = it;
+ return dr;
+ }
+
+ ++it;
+ auto trail = *it;
+ if (!unicode_detail::is_trail_surrogate(trail)) {
+ dr.error = error_code::invalid_trailing_surrogate;
+ dr.next = it;
+ return dr;
+ }
+
+ dr.codepoint = unicode_detail::combine_surrogates(lead, trail);
+ dr.next = ++it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf32_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+ dr.codepoint = static_cast<char32_t>(*it);
+ dr.next = ++it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+ } // namespace unicode
+} // namespace sol
+// end of sol/unicode.hpp
+
+// beginning of sol/abort.hpp
+
+#include <cstdlib>
+
+#if SOL_IS_ON(SOL_DEBUG_BUILD)
+ #if SOL_IS_ON(SOL_COMPILER_VCXX)
+ #define SOL_DEBUG_ABORT() \
+ if (true) { ::std::abort(); } \
+ static_assert(true, "")
+ #else
+ #define SOL_DEBUG_ABORT() ::std::abort()
+ #endif
+#else
+ #define SOL_DEBUG_ABORT() static_assert(true, "")
+#endif
+
+// end of sol/abort.hpp
+
+#include <memory>
+#include <functional>
+#include <utility>
+#include <cstdlib>
+#include <cmath>
+#include <string_view>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // Apple clang screwed up
+
+namespace sol { namespace stack {
+
+ namespace stack_detail {
+ template <typename Ch>
+ struct count_code_units_utf {
+ std::size_t needed_size;
+
+ count_code_units_utf() : needed_size(0) {
+ }
+
+ void operator()(const unicode::encoded_result<Ch> er) {
+ needed_size += er.code_units_size;
+ }
+ };
+
+ template <typename Ch, typename ErCh>
+ struct copy_code_units_utf {
+ Ch* target_;
+
+ copy_code_units_utf(Ch* target) : target_(target) {
+ }
+
+ void operator()(const unicode::encoded_result<ErCh> er) {
+ std::memcpy(target_, er.code_units.data(), er.code_units_size * sizeof(ErCh));
+ target_ += er.code_units_size;
+ }
+ };
+
+ template <typename Ch, typename F>
+ inline void convert(const char* strb, const char* stre, F&& f) {
+ char32_t cp = 0;
+ for (const char* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf8_to_code_point(strtarget, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ ++strtarget;
+ }
+ else {
+ cp = dr.codepoint;
+ strtarget = dr.next;
+ }
+ if constexpr (std::is_same_v<Ch, char32_t>) {
+ auto er = unicode::code_point_to_utf32(cp);
+ f(er);
+ }
+ else {
+ auto er = unicode::code_point_to_utf16(cp);
+ f(er);
+ }
+ }
+ }
+
+ template <typename BaseCh, typename S>
+ inline S get_into(lua_State* L, int index, record& tracking) {
+ using Ch = typename S::value_type;
+ tracking.use(1);
+ size_t len;
+ auto utf8p = lua_tolstring(L, index, &len);
+ if (len < 1)
+ return S();
+ const char* strb = utf8p;
+ const char* stre = utf8p + len;
+ stack_detail::count_code_units_utf<BaseCh> count_units;
+ convert<BaseCh>(strb, stre, count_units);
+ S r(count_units.needed_size, static_cast<Ch>(0));
+ r.resize(count_units.needed_size);
+ Ch* target = &r[0];
+ stack_detail::copy_code_units_utf<Ch, BaseCh> copy_units(target);
+ convert<BaseCh>(strb, stre, copy_units);
+ return r;
+ }
+ } // namespace stack_detail
+
+ template <typename T, typename>
+ struct unqualified_getter {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ if constexpr (std::is_same_v<T, bool>) {
+ tracking.use(1);
+ return lua_toboolean(L, index) != 0;
+ }
+ else if constexpr (std::is_enum_v<T>) {
+ tracking.use(1);
+ return static_cast<T>(lua_tointegerx(L, index, nullptr));
+ }
+ else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
+ tracking.use(1);
+#if SOL_LUA_VERSION_I_ >= 503
+ if (lua_isinteger(L, index) != 0) {
+ return static_cast<T>(lua_tointeger(L, index));
+ }
+#endif
+ return static_cast<T>(llround(lua_tonumber(L, index)));
+ }
+ else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
+ tracking.use(1);
+ return static_cast<T>(lua_tonumber(L, index));
+ }
+ else if constexpr (is_lua_reference_v<T>) {
+ if constexpr (is_global_table_v<T>) {
+ tracking.use(1);
+ return T(L, global_tag);
+ }
+ else {
+ tracking.use(1);
+ return T(L, index);
+ }
+ }
+ else if constexpr (is_unique_usertype_v<T>) {
+ using actual = unique_usertype_actual_t<T>;
+
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ void* aligned_memory = detail::align_usertype_unique<actual>(memory);
+ actual* typed_memory = static_cast<actual*>(aligned_memory);
+ return *typed_memory;
+ }
+ else if constexpr (meta::is_optional_v<T>) {
+ using ValueType = typename T::value_type;
+ return unqualified_check_getter<ValueType>::template get_using<T>(L, index, &no_panic, tracking);
+ }
+ else if constexpr (std::is_same_v<T, luaL_Stream*>) {
+ luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
+ return pstream;
+ }
+ else if constexpr (std::is_same_v<T, luaL_Stream>) {
+ luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
+ return *pstream;
+ }
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
+ return stack_detail::get_function_pointer<std::remove_pointer_t<T>>(L, index, tracking);
+ }
+#endif
+ else {
+ return stack_detail::unchecked_unqualified_get<detail::as_value_tag<T>>(L, index, tracking);
+ }
+ }
+ };
+
+ template <typename X, typename>
+ struct qualified_getter {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ using Tu = meta::unqualified_t<X>;
+ static constexpr bool is_maybe_userdata_of_some_kind
+ = !std::is_reference_v<
+ X> && is_container_v<Tu> && std::is_default_constructible_v<Tu> && !is_lua_primitive_v<Tu> && !is_transparent_argument_v<Tu>;
+ if constexpr (is_maybe_userdata_of_some_kind) {
+ if (type_of(L, index) == type::userdata) {
+ return static_cast<Tu>(stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking));
+ }
+ else {
+ return stack_detail::unchecked_unqualified_get<sol::nested<Tu>>(L, index, tracking);
+ }
+ }
+ else if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<Tu> && !is_actual_type_rebindable_for_v<Tu>) {
+ using element = unique_usertype_element_t<Tu>;
+ using actual = unique_usertype_actual_t<Tu>;
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ memory = detail::align_usertype_unique_destructor(memory);
+ detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
+ if (&detail::usertype_unique_alloc_destroy<element, Tu> == pdx) {
+ memory = detail::align_usertype_unique_tag<true, false>(memory);
+ memory = detail::align_usertype_unique<actual, true, false>(memory);
+ actual* mem = static_cast<actual*>(memory);
+ return static_cast<actual>(*mem);
+ }
+ actual r {};
+ if constexpr (!derive<element>::value) {
+ // In debug mode we would rather abort you for this grave failure rather
+ // than let you deref a null pointer and fuck everything over
+ SOL_DEBUG_ABORT();
+ return static_cast<actual>(std::move(r));
+ }
+ else {
+ memory = detail::align_usertype_unique_tag<true, false>(memory);
+ detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
+ memory = detail::align_usertype_unique<actual, true, false>(memory);
+ string_view ti = usertype_traits<element>::qualified_name();
+ int cast_operation;
+ if constexpr (is_actual_type_rebindable_for_v<Tu>) {
+ using rebound_actual_type = unique_usertype_rebind_actual_t<Tu, void>;
+ string_view rebind_ti = usertype_traits<rebound_actual_type>::qualified_name();
+ cast_operation = ic(memory, &r, ti, rebind_ti);
+ }
+ else {
+ string_view rebind_ti("");
+ cast_operation = ic(memory, &r, ti, rebind_ti);
+ }
+ switch (cast_operation) {
+ case 1: {
+ // it's a perfect match,
+ // alias memory directly
+ actual* mem = static_cast<actual*>(memory);
+ return static_cast<actual>(*mem);
+ }
+ case 2:
+ // it's a base match, return the
+ // aliased creation
+ return static_cast<actual>(std::move(r));
+ default:
+ // uh oh..
+ break;
+ }
+ SOL_DEBUG_ABORT();
+ return static_cast<actual>(r);
+ }
+ }
+ else {
+ return stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<as_table_t<T>> {
+ using Tu = meta::unqualified_t<T>;
+
+ template <typename V>
+ static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
+ cont.push_back(stack::get<V>(L, -lua_size<V>::value));
+ }
+
+ template <typename V>
+ static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& cont, std::size_t idx) {
+ insert_at_end(meta::has_insert<Tu>(), t, L, cont, idx);
+ }
+
+ template <typename V>
+ static void insert_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
+ using std::cend;
+ cont.insert(cend(cont), stack::get<V>(L, -lua_size<V>::value));
+ }
+
+ template <typename V>
+ static void insert_at_end(std::false_type, types<V>, lua_State* L, T& cont, std::size_t idx) {
+ cont[idx] = stack::get<V>(L, -lua_size<V>::value);
+ }
+
+ static bool max_size_check(std::false_type, T&, std::size_t) {
+ return false;
+ }
+
+ static bool max_size_check(std::true_type, T& cont, std::size_t idx) {
+ return idx >= cont.max_size();
+ }
+
+ static T get(lua_State* L, int relindex, record& tracking) {
+ return get(meta::is_associative<Tu>(), L, relindex, tracking);
+ }
+
+ static T get(std::false_type, lua_State* L, int relindex, record& tracking) {
+ typedef typename Tu::value_type V;
+ return get(types<V>(), L, relindex, tracking);
+ }
+
+ template <typename V>
+ static T get(types<V> t, lua_State* L, int relindex, record& tracking) {
+ tracking.use(1);
+
+ // the W4 flag is really great,
+ // so great that it can tell my for loops (twice nested)
+ // below never actually terminate
+ // without hitting where the gotos have infested
+
+ // so now I would get the error W4XXX unreachable
+ // me that the return cont at the end of this function
+ // which is fair until other compilers complain
+ // that there isn't a return and that based on
+ // SOME MAGICAL FORCE
+ // control flow falls off the end of a non-void function
+ // so it needs to be there for the compilers that are
+ // too flimsy to analyze the basic blocks...
+ // (I'm sure I should file a bug but those compilers are already
+ // in the wild; it doesn't matter if I fix them,
+ // someone else is still going to get some old-ass compiler
+ // and then bother me about the unclean build for the 30th
+ // time)
+
+ // "Why not an IIFE?"
+ // Because additional lambdas / functions which serve as
+ // capture-all-and-then-invoke bloat binary sizes
+ // by an actually detectable amount
+ // (one user uses sol2 pretty heavily and 22 MB of binary size
+ // was saved by reducing reliance on lambdas in templates)
+
+ // This would really be solved by having break N;
+ // be a real, proper thing...
+ // but instead, we have to use labels and gotos
+ // and earn the universal vitriol of the dogmatic
+ // programming community
+
+ // all in all: W4 is great!~
+
+ int index = lua_absindex(L, relindex);
+ T cont;
+ std::size_t idx = 0;
+#if SOL_LUA_VERSION_I_ >= 503
+ // This method is HIGHLY performant over regular table iteration
+ // thanks to the Lua API changes in 5.3
+ // Questionable in 5.4
+ for (lua_Integer i = 0;; i += lua_size<V>::value) {
+ if (max_size_check(meta::has_max_size<Tu>(), cont, idx)) {
+ // see above comment
+ goto done;
+ }
+ bool isnil = false;
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+#if SOL_IS_ON(SOL_LUA_NIL_IN_TABLES) && SOL_LUA_VERSION_I_ >= 600
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushinteger(L, static_cast<lua_Integer>(i + vi));
+ if (lua_keyin(L, index) == 0) {
+ // it's time to stop
+ isnil = true;
+ }
+ else {
+ // we have a key, have to get the value
+ lua_geti(L, index, i + vi);
+ }
+#else
+ type vt = static_cast<type>(lua_geti(L, index, i + vi));
+ isnil = vt == type::none || vt == type::lua_nil;
+#endif
+ if (isnil) {
+ if (i == 0) {
+ break;
+ }
+#if SOL_IS_ON(SOL_LUA_NIL_IN_TABLES) && SOL_LUA_VERSION_I_ >= 600
+ lua_pop(L, vi);
+#else
+ lua_pop(L, (vi + 1));
+#endif
+ // see above comment
+ goto done;
+ }
+ }
+ if (isnil) {
+#if SOL_IS_ON(SOL_LUA_NIL_IN_TABLES) && SOL_LUA_VERSION_I_ >= 600
+#else
+ lua_pop(L, lua_size<V>::value);
+#endif
+ continue;
+ }
+
+ push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
+ ++idx;
+ lua_pop(L, lua_size<V>::value);
+ }
+#else
+ // Zzzz slower but necessary thanks to the lower version API and missing functions qq
+ for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
+ if (idx >= cont.max_size()) {
+ // see above comment
+ goto done;
+ }
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 2, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ bool isnil = false;
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+ lua_pushinteger(L, i);
+ lua_gettable(L, index);
+ type vt = type_of(L, -1);
+ isnil = vt == type::lua_nil;
+ if (isnil) {
+ if (i == 0) {
+ break;
+ }
+ lua_pop(L, (vi + 1));
+ // see above comment
+ goto done;
+ }
+ }
+ if (isnil)
+ continue;
+ push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
+ ++idx;
+ }
+#endif
+ done:
+ return cont;
+ }
+
+ static T get(std::true_type, lua_State* L, int index, record& tracking) {
+ typedef typename Tu::value_type P;
+ typedef typename P::first_type K;
+ typedef typename P::second_type V;
+ return get(types<K, V>(), L, index, tracking);
+ }
+
+ template <typename K, typename V>
+ static T get(types<K, V>, lua_State* L, int relindex, record& tracking) {
+ tracking.use(1);
+
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+
+ T associative;
+ int index = lua_absindex(L, relindex);
+ lua_pushnil(L);
+ while (lua_next(L, index) != 0) {
+ decltype(auto) key = stack::check_get<K>(L, -2);
+ if (!key) {
+ lua_pop(L, 1);
+ continue;
+ }
+ associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
+ lua_pop(L, 1);
+ }
+ return associative;
+ }
+ };
+
+ template <typename T, typename Al>
+ struct unqualified_getter<as_table_t<std::forward_list<T, Al>>> {
+ typedef std::forward_list<T, Al> C;
+
+ static C get(lua_State* L, int relindex, record& tracking) {
+ return get(meta::has_key_value_pair<C>(), L, relindex, tracking);
+ }
+
+ static C get(std::true_type, lua_State* L, int index, record& tracking) {
+ typedef typename T::value_type P;
+ typedef typename P::first_type K;
+ typedef typename P::second_type V;
+ return get(types<K, V>(), L, index, tracking);
+ }
+
+ static C get(std::false_type, lua_State* L, int relindex, record& tracking) {
+ typedef typename C::value_type V;
+ return get(types<V>(), L, relindex, tracking);
+ }
+
+ template <typename V>
+ static C get(types<V>, lua_State* L, int relindex, record& tracking) {
+ tracking.use(1);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+
+ int index = lua_absindex(L, relindex);
+ C cont;
+ auto at = cont.cbefore_begin();
+ std::size_t idx = 0;
+#if SOL_LUA_VERSION_I_ >= 503
+ // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
+ for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
+ if (idx >= cont.max_size()) {
+ goto done;
+ }
+ bool isnil = false;
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+ type t = static_cast<type>(lua_geti(L, index, i + vi));
+ isnil = t == type::lua_nil;
+ if (isnil) {
+ if (i == 0) {
+ break;
+ }
+ lua_pop(L, (vi + 1));
+ goto done;
+ }
+ }
+ if (isnil)
+ continue;
+ at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
+ ++idx;
+ }
+#else
+ // Zzzz slower but necessary thanks to the lower version API and missing functions qq
+ for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
+ if (idx >= cont.max_size()) {
+ goto done;
+ }
+ bool isnil = false;
+ for (int vi = 0; vi < lua_size<V>::value; ++vi) {
+ lua_pushinteger(L, i);
+ lua_gettable(L, index);
+ type t = type_of(L, -1);
+ isnil = t == type::lua_nil;
+ if (isnil) {
+ if (i == 0) {
+ break;
+ }
+ lua_pop(L, (vi + 1));
+ goto done;
+ }
+ }
+ if (isnil)
+ continue;
+ at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
+ ++idx;
+ }
+#endif
+ done:
+ return cont;
+ }
+
+ template <typename K, typename V>
+ static C get(types<K, V>, lua_State* L, int relindex, record& tracking) {
+ tracking.use(1);
+
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+
+ C associative;
+ auto at = associative.cbefore_begin();
+ int index = lua_absindex(L, relindex);
+ lua_pushnil(L);
+ while (lua_next(L, index) != 0) {
+ decltype(auto) key = stack::check_get<K>(L, -2);
+ if (!key) {
+ lua_pop(L, 1);
+ continue;
+ }
+ at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
+ lua_pop(L, 1);
+ }
+ return associative;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<nested<T>> {
+ static T get(lua_State* L, int index, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (is_container_v<Tu>) {
+ if constexpr (meta::is_associative<Tu>::value) {
+ typedef typename Tu::value_type P;
+ typedef typename P::first_type K;
+ typedef typename P::second_type V;
+ unqualified_getter<as_table_t<T>> g {};
+ return g.get(types<K, nested<V>>(), L, index, tracking);
+ }
+ else {
+ typedef typename Tu::value_type V;
+ unqualified_getter<as_table_t<T>> g {};
+ return g.get(types<nested<V>>(), L, index, tracking);
+ }
+ }
+ else {
+ unqualified_getter<Tu> g {};
+ return g.get(L, index, tracking);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<as_container_t<T>> {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return stack::unqualified_get<T>(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<as_container_t<T>*> {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return stack::unqualified_get<T*>(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<exhaustive<T>> {
+ static decltype(auto) get(lua_State* arg_L, int index, record& tracking) {
+ return stack::get<T>(arg_L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<non_exhaustive<T>> {
+ static decltype(auto) get(lua_State* arg_L, int index, record& tracking) {
+ return stack::get<T>(arg_L, index, tracking);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<userdata_value> {
+ static userdata_value get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return userdata_value(lua_touserdata(L, index));
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lightuserdata_value> {
+ static lightuserdata_value get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lightuserdata_value(lua_touserdata(L, index));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<light<T>> {
+ static light<T> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ return light<T>(static_cast<T*>(memory));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<user<T>> {
+ static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ memory = detail::align_user<T>(memory);
+ return *static_cast<std::remove_reference_t<T>*>(memory);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<user<T*>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ memory = detail::align_user<T*>(memory);
+ return static_cast<T*>(memory);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<type> {
+ static type get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return static_cast<type>(lua_type(L, index));
+ }
+ };
+
+ template <>
+ struct unqualified_getter<std::string> {
+ static std::string get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ std::size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ return std::string(str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<const char*> {
+ static const char* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t sz;
+ return lua_tolstring(L, index, &sz);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<char> {
+ static char get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t len;
+ auto str = lua_tolstring(L, index, &len);
+ return len > 0 ? str[0] : '\0';
+ }
+ };
+
+ template <typename Traits>
+ struct unqualified_getter<basic_string_view<char, Traits>> {
+ static string_view get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t sz;
+ const char* str = lua_tolstring(L, index, &sz);
+ return basic_string_view<char, Traits>(str, sz);
+ }
+ };
+
+ template <typename Traits, typename Al>
+ struct unqualified_getter<std::basic_string<wchar_t, Traits, Al>> {
+ using S = std::basic_string<wchar_t, Traits, Al>;
+ static S get(lua_State* L, int index, record& tracking) {
+ using Ch = meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t>;
+ return stack_detail::get_into<Ch, S>(L, index, tracking);
+ }
+ };
+
+ template <typename Traits, typename Al>
+ struct unqualified_getter<std::basic_string<char16_t, Traits, Al>> {
+ static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
+ return stack_detail::get_into<char16_t, std::basic_string<char16_t, Traits, Al>>(L, index, tracking);
+ }
+ };
+
+ template <typename Traits, typename Al>
+ struct unqualified_getter<std::basic_string<char32_t, Traits, Al>> {
+ static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
+ return stack_detail::get_into<char32_t, std::basic_string<char32_t, Traits, Al>>(L, index, tracking);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<char16_t> {
+ static char16_t get(lua_State* L, int index, record& tracking) {
+ string_view utf8 = stack::get<string_view>(L, index, tracking);
+ const char* strb = utf8.data();
+ const char* stre = utf8.data() + utf8.size();
+ char32_t cp = 0;
+ auto dr = unicode::utf8_to_code_point(strb, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf16(cp);
+ return er.code_units[0];
+ }
+ };
+
+ template <>
+ struct unqualified_getter<char32_t> {
+ static char32_t get(lua_State* L, int index, record& tracking) {
+ string_view utf8 = stack::get<string_view>(L, index, tracking);
+ const char* strb = utf8.data();
+ const char* stre = utf8.data() + utf8.size();
+ char32_t cp = 0;
+ auto dr = unicode::utf8_to_code_point(strb, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf32(cp);
+ return er.code_units[0];
+ }
+ };
+
+ template <>
+ struct unqualified_getter<wchar_t> {
+ static wchar_t get(lua_State* L, int index, record& tracking) {
+ typedef meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch;
+ unqualified_getter<Ch> g;
+ (void)g;
+ auto c = g.get(L, index, tracking);
+ return static_cast<wchar_t>(c);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<meta_function> {
+ static meta_function get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ const char* name = unqualified_getter<const char*> {}.get(L, index, tracking);
+ const auto& mfnames = meta_function_names();
+ for (std::size_t i = 0; i < mfnames.size(); ++i)
+ if (mfnames[i] == name)
+ return static_cast<meta_function>(i);
+ return meta_function::construct;
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lua_nil_t> {
+ static lua_nil_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return lua_nil;
+ }
+ };
+
+ template <>
+ struct unqualified_getter<std::nullptr_t> {
+ static std::nullptr_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return nullptr;
+ }
+ };
+
+ template <>
+ struct unqualified_getter<nullopt_t> {
+ static nullopt_t get(lua_State*, int, record& tracking) {
+ tracking.use(1);
+ return nullopt;
+ }
+ };
+
+ template <>
+ struct unqualified_getter<this_state> {
+ static this_state get(lua_State* L, int, record& tracking) {
+ tracking.use(0);
+ return this_state(L);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<this_main_state> {
+ static this_main_state get(lua_State* L, int, record& tracking) {
+ tracking.use(0);
+ return this_main_state(main_thread(L, L));
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lua_CFunction> {
+ static lua_CFunction get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_tocfunction(L, index);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<c_closure> {
+ static c_closure get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return c_closure(lua_tocfunction(L, index), -1);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<error> {
+ static error get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ size_t sz = 0;
+ const char* err = lua_tolstring(L, index, &sz);
+ if (err == nullptr) {
+ return error(detail::direct_error, "");
+ }
+ return error(detail::direct_error, std::string(err, sz));
+ }
+ };
+
+ template <>
+ struct unqualified_getter<void*> {
+ static void* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_touserdata(L, index);
+ }
+ };
+
+ template <>
+ struct unqualified_getter<const void*> {
+ static const void* get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return lua_touserdata(L, index);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<detail::as_value_tag<T>> {
+ static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
+ void* memory = lua_touserdata(L, index);
+#if SOL_IS_ON(SOL_USE_INTEROP)
+ auto ugr = stack_detail::interop_get<T>(L, index, memory, tracking);
+ if (ugr.first) {
+ return ugr.second;
+ }
+#endif // interop extensibility
+ tracking.use(1);
+ void* rawdata = detail::align_usertype_pointer(memory);
+ void** pudata = static_cast<void**>(rawdata);
+ void* udata = *pudata;
+ return get_no_lua_nil_from(L, udata, index, tracking);
+ }
+
+ static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
+ bool has_derived = derive<T>::value || weak_derive<T>::value;
+ if (has_derived) {
+ if (lua_getmetatable(L, index) == 1) {
+ lua_getfield(L, -1, &detail::base_class_cast_key()[0]);
+ if (type_of(L, -1) != type::lua_nil) {
+ void* basecastdata = lua_touserdata(L, -1);
+ detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata);
+ // use the casting function to properly adjust the pointer for the desired T
+ udata = ic(udata, usertype_traits<T>::qualified_name());
+ }
+ lua_pop(L, 2);
+ }
+ }
+ if constexpr (std::is_function_v<T>) {
+ T* func = reinterpret_cast<T*>(udata);
+ return func;
+ }
+ else {
+ T* obj = static_cast<T*>(udata);
+ return obj;
+ }
+ }
+
+ static T& get(lua_State* L, int index, record& tracking) {
+ return *get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<detail::as_pointer_tag<T>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ type t = type_of(L, index);
+ if (t == type::lua_nil) {
+ tracking.use(1);
+ return nullptr;
+ }
+ unqualified_getter<detail::as_value_tag<T>> g{};
+ return g.get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<non_null<T*>> {
+ static T* get(lua_State* L, int index, record& tracking) {
+ unqualified_getter<detail::as_value_tag<T>> g{};
+ return g.get_no_lua_nil(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<T&> {
+ static T& get(lua_State* L, int index, record& tracking) {
+ unqualified_getter<detail::as_value_tag<T>> g{};
+ return g.get(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<std::reference_wrapper<T>> {
+ static T& get(lua_State* L, int index, record& tracking) {
+ unqualified_getter<T&> g{};
+ return g.get(L, index, tracking);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_getter<T*> {
+ static T* get(lua_State* L, int index, record& tracking) {
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ if constexpr (std::is_function_v<T>) {
+ return stack_detail::get_function_pointer<T>(L, index, tracking);
+ }
+ else {
+ unqualified_getter<detail::as_pointer_tag<T>> g{};
+ return g.get(L, index, tracking);
+ }
+#else
+ unqualified_getter<detail::as_pointer_tag<T>> g{};
+ return g.get(L, index, tracking);
+#endif
+ }
+ };
+
+ template <typename... Tn>
+ struct unqualified_getter<std::tuple<Tn...>> {
+ typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R;
+
+ template <typename... Args>
+ static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) {
+ // Fuck you too, VC++
+ return R { std::forward<Args>(args)... };
+ }
+
+ template <std::size_t I, std::size_t... Ix, typename... Args>
+ static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) {
+ // Fuck you too, VC++
+ typedef std::tuple_element_t<I, std::tuple<Tn...>> T;
+ return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking));
+ }
+
+ static R get(lua_State* L, int index, record& tracking) {
+ return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking);
+ }
+ };
+
+ template <typename A, typename B>
+ struct unqualified_getter<std::pair<A, B>> {
+ static decltype(auto) get(lua_State* L, int index, record& tracking) {
+ return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))> { stack::get<A>(L, index, tracking),
+ stack::get<B>(L, index + tracking.used, tracking) };
+ }
+ };
+
+#if SOL_IS_ON(SOL_STD_VARIANT)
+
+ template <typename... Tn>
+ struct unqualified_getter<std::variant<Tn...>> {
+ using V = std::variant<Tn...>;
+
+ static V get_one(std::integral_constant<std::size_t, std::variant_size_v<V>>, lua_State* L, int index, record& tracking) {
+ (void)L;
+ (void)index;
+ (void)tracking;
+ if constexpr (std::variant_size_v<V> == 0) {
+ return V();
+ }
+ else {
+ // using T = std::variant_alternative_t<0, V>;
+ std::abort();
+ // return V(std::in_place_index<0>, stack::get<T>(L, index, tracking));
+ }
+ }
+
+ template <std::size_t I>
+ static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) {
+ typedef std::variant_alternative_t<I, V> T;
+ record temp_tracking = tracking;
+ if (stack::check<T>(L, index, &no_panic, temp_tracking)) {
+ tracking = temp_tracking;
+ return V(std::in_place_index<I>, stack::get<T>(L, index));
+ }
+ return get_one(std::integral_constant<std::size_t, I + 1>(), L, index, tracking);
+ }
+
+ static V get(lua_State* L, int index, record& tracking) {
+ return get_one(std::integral_constant<std::size_t, 0>(), L, index, tracking);
+ }
+ };
+#endif // variant
+
+}} // namespace sol::stack
+
+// end of sol/stack_get_unqualified.hpp
+
+// beginning of sol/stack_get_qualified.hpp
+
+namespace sol { namespace stack {
+
+ // There are no more enable_ifs that can be used here,
+ // so this is just for posterity, I guess?
+ // maybe I'll fill this file in later.
+
+}} // namespace sol::stack
+
+// end of sol/stack_get_qualified.hpp
+
+// end of sol/stack_get.hpp
+
+// beginning of sol/stack_check_get.hpp
+
+// beginning of sol/stack_check_get_unqualified.hpp
+
+#include <cstdlib>
+#include <cmath>
+#include <optional>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // variant shenanigans (thanks, Mac OSX)
+
+namespace sol { namespace stack {
+ template <typename T, typename>
+ struct unqualified_check_getter {
+ typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, -1, std::declval<record&>())) R;
+
+ template <typename Optional, typename Handler>
+ static Optional get_using(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if constexpr (!meta::meta_detail::is_adl_sol_lua_check_v<T> && !meta::meta_detail::is_adl_sol_lua_get_v<T>) {
+ if constexpr (is_lua_reference_v<T>) {
+ if constexpr (is_global_table_v<T>) {
+ (void)L;
+ (void)index;
+ (void)handler;
+ tracking.use(1);
+ return true;
+ }
+ else {
+ // actually check if it's none here, otherwise
+ // we'll have a none object inside an optional!
+ bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, &no_panic);
+ if (!success) {
+ // expected type, actual type
+ tracking.use(static_cast<int>(success));
+ handler(L, index, type::poly, type_of(L, index), "");
+ return detail::associated_nullopt_v<Optional>;
+ }
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ }
+ else if constexpr ((std::is_integral_v<T> || std::is_same_v<T, lua_Integer>)&&!std::is_same_v<T, bool>) {
+#if SOL_LUA_VERSION_I_ >= 503
+ if (lua_isinteger(L, index) != 0) {
+ tracking.use(1);
+ return static_cast<T>(lua_tointeger(L, index));
+ }
+#endif
+ int isnum = 0;
+ const lua_Number value = lua_tonumberx(L, index, &isnum);
+ if (isnum != 0) {
+#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS)
+ const auto integer_value = llround(value);
+ if (static_cast<lua_Number>(integer_value) == value) {
+ tracking.use(1);
+ return static_cast<T>(integer_value);
+ }
+#else
+ tracking.use(1);
+ return static_cast<T>(value);
+#endif
+ }
+ const type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t, "not an integer");
+ return detail::associated_nullopt_v<Optional>;
+ }
+ else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
+ int isnum = 0;
+ lua_Number value = lua_tonumberx(L, index, &isnum);
+ if (isnum == 0) {
+ type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t, "not a valid floating point number");
+ return detail::associated_nullopt_v<Optional>;
+ }
+ tracking.use(1);
+ return static_cast<T>(value);
+ }
+ else if constexpr (std::is_enum_v<T> && !meta::any_same_v<T, meta_function, type>) {
+ int isnum = 0;
+ lua_Integer value = lua_tointegerx(L, index, &isnum);
+ if (isnum == 0) {
+ type t = type_of(L, index);
+ tracking.use(static_cast<int>(t != type::none));
+ handler(L, index, type::number, t, "not a valid enumeration value");
+ return detail::associated_nullopt_v<Optional>;
+ }
+ tracking.use(1);
+ return static_cast<T>(value);
+ }
+ else {
+ if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
+ tracking.use(static_cast<int>(!lua_isnone(L, index)));
+ return detail::associated_nullopt_v<Optional>;
+ }
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ }
+ else {
+ if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
+ tracking.use(static_cast<int>(!lua_isnone(L, index)));
+ return detail::associated_nullopt_v<Optional>;
+ }
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ }
+
+ template <typename Handler>
+ static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return get_using<optional<R>>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ template <typename... Tn, typename C>
+ struct unqualified_check_getter<std::variant<Tn...>, C> {
+ typedef std::variant<Tn...> V;
+ typedef std::variant_size<V> V_size;
+ typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
+
+ template <typename Handler>
+ static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) {
+ return nullopt;
+ }
+
+ template <typename Handler>
+ static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) {
+ // This should never be reached...
+ // please check your code and understand what you did to bring yourself here
+ // maybe file a bug report, or 5
+ handler(
+ L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong");
+ return nullopt;
+ }
+
+ template <typename Handler>
+ static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
+ return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <std::size_t I, typename Handler>
+ static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
+ typedef std::variant_alternative_t<I - 1, V> T;
+ if (stack::check<T>(L, index, &no_panic, tracking)) {
+ return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
+ }
+ return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename Handler>
+ static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+#endif // standard variant
+}} // namespace sol::stack
+
+// end of sol/stack_check_get_unqualified.hpp
+
+// beginning of sol/stack_check_get_qualified.hpp
+
+namespace sol { namespace stack {
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic push
+#if !SOL_IS_ON(SOL_COMPILER_CLANG)
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#endif
+
+ namespace stack_detail {
+ template <typename OptionalType, typename T, typename Handler>
+ OptionalType get_optional(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+
+ if constexpr (is_lua_reference_v<T>) {
+ if constexpr (is_global_table_v<Tu>) {
+ (void)L;
+ (void)index;
+ (void)handler;
+ tracking.use(1);
+ return true;
+ }
+ else {
+ // actually check if it's none here, otherwise
+ // we'll have a none object inside an optional!
+ bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, &no_panic);
+ if (!success) {
+ // expected type, actual type
+ tracking.use(static_cast<int>(success));
+ handler(L, index, type::poly, type_of(L, index), "");
+ return {};
+ }
+ return OptionalType(stack_detail::unchecked_get<T>(L, index, tracking));
+ }
+ }
+ else if constexpr (!std::is_reference_v<T> && is_unique_usertype_v<Tu> && !is_actual_type_rebindable_for_v<Tu>) {
+ // we can take shortcuts here to save on separate checking, and just return nullopt!
+ using element = unique_usertype_element_t<Tu>;
+ using actual = unique_usertype_actual_t<Tu>;
+ tracking.use(1);
+ void* memory = lua_touserdata(L, index);
+ memory = detail::align_usertype_unique_destructor(memory);
+ detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
+ if (&detail::usertype_unique_alloc_destroy<element, Tu> == pdx) {
+ memory = detail::align_usertype_unique_tag<true, false>(memory);
+ memory = detail::align_usertype_unique<actual, true, false>(memory);
+ actual* mem = static_cast<actual*>(memory);
+ return static_cast<actual>(*mem);
+ }
+ if constexpr (!derive<element>::value) {
+ return OptionalType();
+ }
+ else {
+ memory = detail::align_usertype_unique_tag<true, false>(memory);
+ detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
+ memory = detail::align_usertype_unique<actual, true, false>(memory);
+ string_view ti = usertype_traits<element>::qualified_name();
+ int cast_operation;
+ actual r {};
+ if constexpr (is_actual_type_rebindable_for_v<Tu>) {
+ using rebound_actual_type = unique_usertype_rebind_actual_t<Tu, void>;
+ string_view rebind_ti = usertype_traits<rebound_actual_type>::qualified_name();
+ cast_operation = ic(memory, &r, ti, rebind_ti);
+ }
+ else {
+ string_view rebind_ti("");
+ cast_operation = ic(memory, &r, ti, rebind_ti);
+ }
+ switch (cast_operation) {
+ case 1: {
+ // it's a perfect match,
+ // alias memory directly
+ actual* mem = static_cast<actual*>(memory);
+ return OptionalType(*mem);
+ }
+ case 2:
+ // it's a base match, return the
+ // aliased creation
+ return OptionalType(std::move(r));
+ default:
+ break;
+ }
+ return OptionalType();
+ }
+ }
+ else {
+ if (!check<T>(L, index, std::forward<Handler>(handler))) {
+ tracking.use(static_cast<int>(!lua_isnone(L, index)));
+ return OptionalType();
+ }
+ return OptionalType(stack_detail::unchecked_get<T>(L, index, tracking));
+ }
+ }
+ } // namespace stack_detail
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic pop
+#endif
+
+ template <typename T, typename>
+ struct qualified_check_getter {
+ typedef decltype(stack_detail::unchecked_get<T>(nullptr, -1, std::declval<record&>())) R;
+
+ template <typename Handler>
+ optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack_detail::get_optional<optional<R>, T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+ };
+
+ template <typename Optional>
+ struct qualified_getter<Optional, std::enable_if_t<meta::is_optional_v<Optional>>> {
+ static Optional get(lua_State* L, int index, record& tracking) {
+ using T = typename meta::unqualified_t<Optional>::value_type;
+ return stack_detail::get_optional<Optional, T>(L, index, &no_panic, tracking);
+ }
+ };
+
+}} // namespace sol::stack
+
+// end of sol/stack_check_get_qualified.hpp
+
+// end of sol/stack_check_get.hpp
+
+// beginning of sol/stack_push.hpp
+
+#include <memory>
+#include <type_traits>
+#include <cassert>
+#include <limits>
+#include <cmath>
+#include <string_view>
+#if SOL_IS_ON(SOL_STD_VARIANT)
+#include <variant>
+#endif // Can use variant
+
+// beginning of sol/debug.hpp
+
+#include <iostream>
+
+namespace sol { namespace detail { namespace debug {
+ inline std::string dump_types(lua_State* L) {
+ std::string visual;
+ std::size_t size = lua_gettop(L) + 1;
+ for (std::size_t i = 1; i < size; ++i) {
+ if (i != 1) {
+ visual += " | ";
+ }
+ visual += type_name(L, stack::get<type>(L, static_cast<int>(i)));
+ }
+ return visual;
+ }
+
+ inline void print_stack(lua_State* L) {
+ std::cout << dump_types(L) << std::endl;
+ }
+
+ inline void print_section(const std::string& message, lua_State* L) {
+ std::cout << "-- " << message << " -- [ " << dump_types(L) << " ]" << std::endl;
+ }
+}}} // namespace sol::detail::debug
+
+// end of sol/debug.hpp
+
+namespace sol { namespace stack {
+ namespace stack_detail {
+ template <typename T>
+ inline bool integer_value_fits(const T& value) {
+ // We check if we can rely on casts or a lack of padding bits to satisfy
+ // the requirements here
+ // If it lacks padding bits, we can jump back and forth between lua_Integer and whatever type without
+ // loss of information
+ constexpr bool is_same_signedness
+ = (std::is_signed_v<T> && std::is_signed_v<lua_Integer>) || (std::is_unsigned_v<T> && std::is_unsigned_v<lua_Integer>);
+ constexpr bool probaby_fits_within_lua_Integer = sizeof(T) == sizeof(lua_Integer)
+#if SOL_IS_ON(SOL_ALL_INTEGER_VALUES_FIT)
+ && ((std::has_unique_object_representations_v<T> && std::has_unique_object_representations_v<lua_Integer>) ? true : is_same_signedness)
+#else
+ && is_same_signedness
+#endif
+ ;
+ if constexpr (sizeof(T) < sizeof(lua_Integer) || probaby_fits_within_lua_Integer) {
+ (void)value;
+ return true;
+ }
+ else {
+ auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
+ auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
+ auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
+ auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
+ return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
+ }
+ }
+
+ template <typename T>
+ int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) {
+ if constexpr (meta::any_same_v<std::underlying_type_t<T>,
+ char
+#if SOL_IS_ON(SOL_CHAR8_T)
+ ,
+ char8_t
+#endif
+ ,
+ char16_t,
+ char32_t>) {
+ if constexpr (std::is_signed_v<T>) {
+ return stack::push(L, static_cast<std::int_least32_t>(value));
+ }
+ else {
+ return stack::push(L, static_cast<std::uint_least32_t>(value));
+ }
+ }
+ else {
+ return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
+ }
+ }
+
+ template <typename T>
+ int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) {
+ return 0;
+ }
+ } // namespace stack_detail
+
+ inline int push_environment_of(lua_State* L, int target_index = -1) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_environment);
+#endif // make sure stack doesn't overflow
+#if SOL_LUA_VERSION_I_ < 502
+ // Use lua_getfenv
+ lua_getfenv(L, target_index);
+#else
+
+ if (lua_iscfunction(L, target_index) != 0) {
+ const char* maybe_upvalue_name = lua_getupvalue(L, target_index, 1);
+ if (maybe_upvalue_name != nullptr) {
+ // it worked, take this one
+ return 1;
+ }
+ }
+ // Nominally, we search for the `"_ENV"` value.
+ // If we don't find it.... uh, well. We've got a problem?
+ for (int upvalue_index = 1;; ++upvalue_index) {
+ const char* maybe_upvalue_name = lua_getupvalue(L, target_index, upvalue_index);
+ if (maybe_upvalue_name == nullptr) {
+ push(L, lua_nil);
+ break;
+ }
+
+ string_view upvalue_name(maybe_upvalue_name);
+ if (upvalue_name == "_ENV") {
+ // Keep this one!
+ break;
+ }
+ // Discard what we received, loop back around
+ lua_pop(L, 1);
+ }
+#endif
+ return 1;
+ }
+
+ template <typename T>
+ int push_environment_of(const T& target) {
+ lua_State* target_L = target.lua_state();
+ int target_index = absolute_index(target_L, -target.push());
+ int env_count = push_environment_of(target_L, target_index);
+ SOL_ASSERT(env_count == 1);
+ lua_rotate(target_L, target_index, 1);
+ lua_pop(target_L, 1);
+ return env_count;
+ }
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_value_tag<T>> {
+ template <typename F, typename... Args>
+ static int push_fx(lua_State* L, F&& f, Args&&... args) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ // Basically, we store all user-data like this:
+ // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
+ // data in the first sizeof(T*) bytes, and then however many bytes it takes to
+ // do the actual object. Things that are std::ref or plain T* are stored as
+ // just the sizeof(T*), and nothing else.
+ T* obj = detail::usertype_allocate<T>(L);
+ f();
+ std::allocator<T> alloc {};
+ std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...);
+ return 1;
+ }
+
+ template <typename K, typename... Args>
+ static int push_keyed(lua_State* L, K&& k, Args&&... args) {
+ stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ return push_fx(L, fx, std::forward<Args>(args)...);
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
+ (void)arg;
+ return push_fx(L, std::forward<Args>(args)...);
+ }
+ else {
+ return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ static int push(lua_State* L) {
+ return push_keyed(L, usertype_traits<T>::metatable());
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_pointer_tag<T>> {
+ typedef meta::unqualified_t<T> U;
+
+ template <typename F>
+ static int push_fx(lua_State* L, F&& f, T* obj) {
+ if (obj == nullptr)
+ return stack::push(L, lua_nil);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ T** pref = detail::usertype_allocate_pointer<T>(L);
+ f();
+ *pref = obj;
+ return 1;
+ }
+
+ template <typename K>
+ static int push_keyed(lua_State* L, K&& k, T* obj) {
+ stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>);
+ return push_fx(L, fx, obj);
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
+ (void)arg;
+ return push_fx(L, std::forward<Args>(args)...);
+ }
+ else {
+ return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<detail::as_reference_tag> {
+ template <typename T>
+ static int push(lua_State* L, T&& obj) {
+ return stack::push(L, detail::ptr(obj));
+ }
+ };
+
+ namespace stack_detail {
+ template <typename T>
+ struct uu_pusher {
+ using element = unique_usertype_element_t<T>;
+ using actual = unique_usertype_actual_t<T>;
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_base_of_v<actual, meta::unqualified_t<Arg>>) {
+ if (detail::unique_is_null(L, arg)) {
+ return stack::push(L, lua_nil);
+ }
+ return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else {
+ return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ template <typename... Args>
+ static int push_deep(lua_State* L, Args&&... args) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ element** pointer_to_memory = nullptr;
+ detail::unique_destructor* fx = nullptr;
+ detail::unique_tag* id = nullptr;
+ actual* typed_memory = detail::usertype_unique_allocate<element, actual>(L, pointer_to_memory, fx, id);
+ if (luaL_newmetatable(L, &usertype_traits<d::u<std::remove_cv_t<element>>>::metatable()[0]) == 1) {
+ detail::lua_reg_table registration_table {};
+ int index = 0;
+ detail::indexed_insert insert_callable(registration_table, index);
+ detail::insert_default_registrations<element>(insert_callable, detail::property_always_true);
+ registration_table[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
+ luaL_setfuncs(L, registration_table, 0);
+ }
+ lua_setmetatable(L, -2);
+ *fx = detail::usertype_unique_alloc_destroy<element, actual>;
+ *id = &detail::inheritance<element>::template type_unique_cast<actual>;
+ detail::default_construct::construct(typed_memory, std::forward<Args>(args)...);
+ *pointer_to_memory = detail::unique_get<T>(L, *typed_memory);
+ return 1;
+ }
+ };
+ } // namespace stack_detail
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_unique_tag<T>> {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ stack_detail::uu_pusher<T> p;
+ (void)p;
+ return p.push(L, std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, typename>
+ struct unqualified_pusher {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (is_lua_reference_v<Tu>) {
+ using int_arr = int[];
+ int_arr p { (std::forward<Args>(args).push(L))... };
+ return p[0];
+ }
+ else if constexpr (std::is_same_v<Tu, bool>) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushboolean(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) {
+ const Tu& value(std::forward<Args>(args)...);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_integral);
+#endif // make sure stack doesn't overflow
+#if SOL_LUA_VERSION_I_ >= 503
+ if (stack_detail::integer_value_fits<Tu>(value)) {
+ lua_pushinteger(L, static_cast<lua_Integer>(value));
+ return 1;
+ }
+#endif // Lua 5.3 and above
+#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS)
+ if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ // Is this really worth it?
+ SOL_ASSERT_MSG(false, "integer value will be misrepresented in lua");
+ lua_pushinteger(L, static_cast<lua_Integer>(value));
+ return 1;
+#else
+ throw error(detail::direct_error, "integer value will be misrepresented in lua");
+#endif // No Exceptions
+ }
+#endif // Safe Numerics and Number Precision Check
+ lua_pushnumber(L, static_cast<lua_Number>(value));
+ return 1;
+ }
+ else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_floating);
+#endif // make sure stack doesn't overflow
+ lua_pushnumber(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ else if constexpr (std::is_same_v<Tu, luaL_Stream*>) {
+ luaL_Stream* source { std::forward<Args>(args)... };
+ luaL_Stream* stream = static_cast<luaL_Stream*>(detail::alloc_newuserdata(L, sizeof(luaL_Stream)));
+ stream->f = source->f;
+#if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION)
+ stream->closef = source->closef;
+#endif // LuaJIT and Lua 5.1 and below do not have
+ return 1;
+ }
+ else if constexpr (std::is_same_v<Tu, luaL_Stream>) {
+ luaL_Stream& source(std::forward<Args>(args)...);
+ luaL_Stream* stream = static_cast<luaL_Stream*>(detail::alloc_newuserdata(L, sizeof(luaL_Stream)));
+ stream->f = source.f;
+#if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION)
+ stream->closef = source.closef;
+#endif // LuaJIT and Lua 5.1 and below do not have
+ return 1;
+ }
+ else if constexpr (std::is_enum_v<Tu>) {
+ return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...);
+ }
+ else if constexpr (std::is_pointer_v<Tu>) {
+ return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...);
+ }
+ else if constexpr (is_unique_usertype_v<Tu>) {
+ return stack::push<detail::as_unique_tag<T>>(L, std::forward<Args>(args)...);
+ }
+ else {
+ return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<std::reference_wrapper<T>> {
+ static int push(lua_State* L, const std::reference_wrapper<T>& t) {
+ return stack::push(L, std::addressof(detail::deref(t.get())));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_table_tag<T>> {
+ using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>;
+
+ static int push(lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::false_type(), L, tablecont);
+ }
+
+ static int push(lua_State* L, const T& tablecont, nested_tag_t) {
+ return push(has_kvp(), std::true_type(), L, tablecont);
+ }
+
+ static int push(std::true_type, lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::true_type(), L, tablecont);
+ }
+
+ static int push(std::false_type, lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::false_type(), L, tablecont);
+ }
+
+ template <bool is_nested>
+ static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont));
+ lua_createtable(L, static_cast<int>(cont.size()), 0);
+ int tableindex = lua_gettop(L);
+ for (const auto& pair : cont) {
+ if (is_nested) {
+ set_field(L, pair.first, as_nested_ref(pair.second), tableindex);
+ }
+ else {
+ set_field(L, pair.first, pair.second, tableindex);
+ }
+ }
+ return 1;
+ }
+
+ template <bool is_nested>
+ static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont));
+ lua_createtable(L, stack_detail::get_size_hint(cont), 0);
+ int tableindex = lua_gettop(L);
+ std::size_t index = 1;
+ for (const auto& i : cont) {
+#if SOL_LUA_VERSION_I_ >= 503
+ int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
+ for (int pi = 0; pi < p; ++pi) {
+ lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
+ }
+#else
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushinteger(L, static_cast<lua_Integer>(index));
+ int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
+ if (p == 1) {
+ ++index;
+ lua_settable(L, tableindex);
+ }
+ else {
+ int firstindex = tableindex + 1 + 1;
+ for (int pi = 0; pi < p; ++pi) {
+ stack::push(L, index);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, firstindex);
+ lua_settable(L, tableindex);
+ ++index;
+ ++firstindex;
+ }
+ lua_pop(L, 1 + p);
+ }
+#endif // Lua Version 5.3 and others
+ }
+ // TODO: figure out a better way to do this...?
+ // set_field(L, -1, cont.size());
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<as_table_t<T>> {
+ static int push(lua_State* L, const as_table_t<T>& value_) {
+ using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, value_.value());
+ }
+ else {
+ return stack::push(L, value_.value());
+ }
+ }
+
+ static int push(lua_State* L, const T& value_) {
+ using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, value_);
+ }
+ else {
+ return stack::push(L, value_);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<nested<T>> {
+ static int push(lua_State* L, const T& nested_value) noexcept {
+ using Tu = meta::unwrap_unqualified_t<T>;
+ using inner_t = std::remove_pointer_t<Tu>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, nested_value, nested_tag);
+ }
+ else {
+ return stack::push<Tu>(L, nested_value);
+ }
+ }
+
+ static int push(lua_State* L, const nested<T>& nested_wrapper_) noexcept {
+ using Tu = meta::unwrap_unqualified_t<T>;
+ using inner_t = std::remove_pointer_t<Tu>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, nested_wrapper_.value(), nested_tag);
+ }
+ else {
+ return stack::push<Tu>(L, nested_wrapper_.value());
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<std::initializer_list<T>> {
+ static int push(lua_State* L, const std::initializer_list<T>& il) noexcept {
+ unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p {};
+ return p.push(L, il);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lua_nil_t> {
+ static int push(lua_State* L, lua_nil_t) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushnil(L);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<stack_count> {
+ static int push(lua_State*, stack_count st) noexcept {
+ return st.count;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<metatable_key_t> {
+ static int push(lua_State* L, metatable_key_t) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, to_string(meta_function::metatable).c_str(), 4);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lua_CFunction> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ template <>
+ struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
+ static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<detail::lua_CFunction_noexcept> {
+ static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+#endif // noexcept function type
+
+ template <>
+ struct unqualified_pusher<c_closure> {
+ static int push(lua_State* L, c_closure cc) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, cc.c_function, cc.upvalues);
+ return 1;
+ }
+ };
+
+ template <typename Arg, typename... Args>
+ struct unqualified_pusher<closure<Arg, Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
+ using f_tuple = decltype(std::forward<T>(c).upvalues);
+ int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...);
+ return stack::push(L, c_closure(c.c_function, pushcount));
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& c) {
+ return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<void*> {
+ static int push(lua_State* L, void* userdata) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const void*> {
+ static int push(lua_State* L, const void* userdata) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, const_cast<void*>(userdata));
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lightuserdata_value> {
+ static int push(lua_State* L, lightuserdata_value userdata) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<light<T>> {
+ static int push(lua_State* L, light<T> l) noexcept {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, static_cast<void*>(l.value()));
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<user<T>> {
+ template <bool with_meta = true, typename Key, typename... Args>
+ static int push_with(lua_State* L, Key&& name, Args&&... args) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ // A dumb pusher
+ T* data = detail::user_allocate<T>(L);
+ if (with_meta) {
+ // Make sure we have a plain GC set for this data
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ if (luaL_newmetatable(L, name) != 0) {
+ lua_CFunction cdel = detail::user_alloc_destroy<T>;
+ lua_pushcclosure(L, cdel, 0);
+ lua_setfield(L, -2, "__gc");
+ }
+ lua_setmetatable(L, -2);
+ }
+ std::allocator<T> alloc {};
+ std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...);
+ return 1;
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) {
+ const auto name = &arg[0];
+ return push_with<true>(L, name, std::forward<Args>(args)...);
+ }
+ else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) {
+ (void)arg;
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::forward<Args>(args)...);
+ }
+ else {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ static int push(lua_State* L, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, u.value);
+ }
+
+ static int push(lua_State* L, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::move(u.value()));
+ }
+
+ static int push(lua_State* L, no_metatable_t, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, u.value());
+ }
+
+ static int push(lua_State* L, no_metatable_t, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::move(u.value()));
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<userdata_value> {
+ static int push(lua_State* L, userdata_value data) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ void** ud = detail::usertype_allocate_pointer<void>(L);
+ *ud = data.value();
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char*> {
+ static int push_sized(lua_State* L, const char* str, std::size_t len) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, len);
+ return 1;
+ }
+
+ static int push(lua_State* L, const char* str) {
+ if (str == nullptr)
+ return stack::push(L, lua_nil);
+ return push_sized(L, str, std::char_traits<char>::length(str));
+ }
+
+ static int push(lua_State* L, const char* strb, const char* stre) {
+ return push_sized(L, strb, static_cast<std::size_t>(stre - strb));
+ }
+
+ static int push(lua_State* L, const char* str, std::size_t len) {
+ return push_sized(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char*> {
+ static int push_sized(lua_State* L, const char* str, std::size_t len) {
+ unqualified_pusher<const char*> p {};
+ (void)p;
+ return p.push_sized(L, str, len);
+ }
+
+ static int push(lua_State* L, const char* str) {
+ unqualified_pusher<const char*> p {};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char* strb, const char* stre) {
+ unqualified_pusher<const char*> p {};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char* str, std::size_t len) {
+ unqualified_pusher<const char*> p {};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char[N]> {
+ static int push(lua_State* L, const char (&str)[N]) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, std::char_traits<char>::length(str));
+ return 1;
+ }
+
+ static int push(lua_State* L, const char (&str)[N], std::size_t sz) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, sz);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char> {
+ static int push(lua_State* L, char c) {
+ const char str[2] = { c, '\0' };
+ return stack::push(L, static_cast<const char*>(str), 1u);
+ }
+ };
+
+#if SOL_IS_ON(SOL_CHAR8_T)
+ template <>
+ struct unqualified_pusher<const char8_t*> {
+ static int push_sized(lua_State* L, const char8_t* str, std::size_t len) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, reinterpret_cast<const char*>(str), len);
+ return 1;
+ }
+
+ static int push(lua_State* L, const char8_t* str) {
+ if (str == nullptr)
+ return stack::push(L, lua_nil);
+ return push_sized(L, str, std::char_traits<char>::length(reinterpret_cast<const char*>(str)));
+ }
+
+ static int push(lua_State* L, const char8_t* strb, const char8_t* stre) {
+ return push_sized(L, strb, static_cast<std::size_t>(stre - strb));
+ }
+
+ static int push(lua_State* L, const char8_t* str, std::size_t len) {
+ return push_sized(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char8_t*> {
+ static int push_sized(lua_State* L, const char8_t* str, std::size_t len) {
+ unqualified_pusher<const char8_t*> p {};
+ (void)p;
+ return p.push_sized(L, str, len);
+ }
+
+ static int push(lua_State* L, const char8_t* str) {
+ unqualified_pusher<const char8_t*> p {};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char8_t* strb, const char8_t* stre) {
+ unqualified_pusher<const char8_t*> p {};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char8_t* str, std::size_t len) {
+ unqualified_pusher<const char8_t*> p {};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char8_t[N]> {
+ static int push(lua_State* L, const char8_t (&str)[N]) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ const char* str_as_char = reinterpret_cast<const char*>(static_cast<const char8_t*>(str));
+ lua_pushlstring(L, str_as_char, std::char_traits<char>::length(str_as_char));
+ return 1;
+ }
+
+ static int push(lua_State* L, const char8_t (&str)[N], std::size_t sz) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, sz);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char8_t> {
+ static int push(lua_State* L, char8_t c) {
+ const char8_t str[2] = { c, '\0' };
+ return stack::push(L, static_cast<const char8_t*>(str), 1u);
+ }
+ };
+#endif // char8_t
+
+ template <typename Ch, typename Traits, typename Al>
+ struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> {
+ static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) {
+ if constexpr (!std::is_same_v<Ch, char>) {
+ return stack::push(L, str.data(), str.size());
+ }
+ else {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+ }
+
+ static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) {
+ if constexpr (!std::is_same_v<Ch, char>) {
+ return stack::push(L, str.data(), sz);
+ }
+ else {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str.c_str(), sz);
+ return 1;
+ }
+ }
+ };
+
+ template <typename Ch, typename Traits>
+ struct unqualified_pusher<basic_string_view<Ch, Traits>> {
+ static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) {
+ return stack::push(L, sv.data(), sv.length());
+ }
+
+ static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) {
+ return stack::push(L, sv.data(), n);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<meta_function> {
+ static int push(lua_State* L, meta_function m) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name);
+#endif // make sure stack doesn't overflow
+ const std::string& str = to_string(m);
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<absolute_index> {
+ static int push(lua_State* L, absolute_index ai) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, ai);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<raw_index> {
+ static int push(lua_State* L, raw_index ri) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, ri);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<ref_index> {
+ static int push(lua_State* L, ref_index ri) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const wchar_t*> {
+ static int push(lua_State* L, const wchar_t* wstr) {
+ return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
+ }
+
+ static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
+ return push(L, wstr, wstr + sz);
+ }
+
+ static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
+ if constexpr (sizeof(wchar_t) == 2) {
+ const char16_t* sb = reinterpret_cast<const char16_t*>(strb);
+ const char16_t* se = reinterpret_cast<const char16_t*>(stre);
+ return stack::push(L, sb, se);
+ }
+ else {
+ const char32_t* sb = reinterpret_cast<const char32_t*>(strb);
+ const char32_t* se = reinterpret_cast<const char32_t*>(stre);
+ return stack::push(L, sb, se);
+ }
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<wchar_t*> {
+ static int push(lua_State* L, const wchar_t* str) {
+ unqualified_pusher<const wchar_t*> p {};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
+ unqualified_pusher<const wchar_t*> p {};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const wchar_t* str, std::size_t len) {
+ unqualified_pusher<const wchar_t*> p {};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char16_t*> {
+ static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) {
+ char* target = start;
+ char32_t cp = 0;
+ for (const char16_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf16_to_code_point(strtarget, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf8(cp);
+ const char* utf8data = er.code_units.data();
+ std::memcpy(target, utf8data, er.code_units_size);
+ target += er.code_units_size;
+ strtarget = dr.next;
+ }
+
+ return stack::push(L, start, target);
+ }
+
+ static int push(lua_State* L, const char16_t* u16str) {
+ return push(L, u16str, std::char_traits<char16_t>::length(u16str));
+ }
+
+ static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
+ return push(L, u16str, u16str + sz);
+ }
+
+ static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
+ char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
+ // if our max string space is small enough, use SBO
+ // right off the bat
+ std::size_t max_possible_code_units = static_cast<std::size_t>(static_cast<std::size_t>(stre - strb) * static_cast<std::size_t>(4));
+ if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
+ return convert_into(L, sbo, max_possible_code_units, strb, stre);
+ }
+ // otherwise, we must manually count/check size
+ std::size_t needed_size = 0;
+ for (const char16_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf16_to_code_point(strtarget, stre);
+ auto er = unicode::code_point_to_utf8(dr.codepoint);
+ needed_size += er.code_units_size;
+ strtarget = dr.next;
+ }
+ if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
+ return convert_into(L, sbo, needed_size, strb, stre);
+ }
+ std::string u8str("", 0);
+ u8str.resize(needed_size);
+ char* target = const_cast<char*>(u8str.data());
+ return convert_into(L, target, needed_size, strb, stre);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char16_t*> {
+ static int push(lua_State* L, const char16_t* str) {
+ unqualified_pusher<const char16_t*> p {};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
+ unqualified_pusher<const char16_t*> p {};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char16_t* str, std::size_t len) {
+ unqualified_pusher<const char16_t*> p {};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char32_t*> {
+ static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) {
+ char* target = start;
+ char32_t cp = 0;
+ for (const char32_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf32_to_code_point(strtarget, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf8(cp);
+ const char* data = er.code_units.data();
+ std::memcpy(target, data, er.code_units_size);
+ target += er.code_units_size;
+ strtarget = dr.next;
+ }
+ return stack::push(L, start, target);
+ }
+
+ static int push(lua_State* L, const char32_t* u32str) {
+ return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
+ }
+
+ static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
+ return push(L, u32str, u32str + sz);
+ }
+
+ static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
+ char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
+ // if our max string space is small enough, use SBO
+ // right off the bat
+ std::size_t max_possible_code_units = static_cast<std::size_t>(static_cast<std::size_t>(stre - strb) * static_cast<std::size_t>(4));
+ if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
+ return convert_into(L, sbo, max_possible_code_units, strb, stre);
+ }
+ // otherwise, we must manually count/check size
+ std::size_t needed_size = 0;
+ for (const char32_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf32_to_code_point(strtarget, stre);
+ auto er = unicode::code_point_to_utf8(dr.codepoint);
+ needed_size += er.code_units_size;
+ strtarget = dr.next;
+ }
+ if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
+ return convert_into(L, sbo, needed_size, strb, stre);
+ }
+ std::string u8str("", 0);
+ u8str.resize(needed_size);
+ char* target = const_cast<char*>(u8str.data());
+ return convert_into(L, target, needed_size, strb, stre);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char32_t*> {
+ static int push(lua_State* L, const char32_t* str) {
+ unqualified_pusher<const char32_t*> p {};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
+ unqualified_pusher<const char32_t*> p {};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char32_t* str, std::size_t len) {
+ unqualified_pusher<const char32_t*> p {};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<wchar_t[N]> {
+ static int push(lua_State* L, const wchar_t (&str)[N]) {
+ return push(L, str, std::char_traits<wchar_t>::length(str));
+ }
+
+ static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) {
+ const wchar_t* str_ptr = static_cast<const wchar_t*>(str);
+ return stack::push<const wchar_t*>(L, str_ptr, str_ptr + sz);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char16_t[N]> {
+ static int push(lua_State* L, const char16_t (&str)[N]) {
+ return push(L, str, std::char_traits<char16_t>::length(str));
+ }
+
+ static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) {
+ const char16_t* str_ptr = static_cast<const char16_t*>(str);
+ return stack::push<const char16_t*>(L, str_ptr, str_ptr + sz);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char32_t[N]> {
+ static int push(lua_State* L, const char32_t (&str)[N]) {
+ return push(L, str, std::char_traits<char32_t>::length(str));
+ }
+
+ static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) {
+ const char32_t* str_ptr = static_cast<const char32_t*>(str);
+ return stack::push<const char32_t*>(L, str_ptr, str_ptr + sz);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<wchar_t> {
+ static int push(lua_State* L, wchar_t c) {
+ const wchar_t str[2] = { c, '\0' };
+ return stack::push(L, static_cast<const wchar_t*>(str), 1u);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char16_t> {
+ static int push(lua_State* L, char16_t c) {
+ const char16_t str[2] = { c, '\0' };
+ return stack::push(L, static_cast<const char16_t*>(str), 1u);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char32_t> {
+ static int push(lua_State* L, char32_t c) {
+ const char32_t str[2] = { c, '\0' };
+ return stack::push(L, static_cast<const char32_t*>(str), 1u);
+ }
+ };
+
+ template <typename... Args>
+ struct unqualified_pusher<std::tuple<Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ int pushcount = 0;
+ (void)detail::swallow { 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... };
+ return pushcount;
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
+ }
+ };
+
+ template <typename A, typename B>
+ struct unqualified_pusher<std::pair<A, B>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ int pushcount = stack::push(L, std::get<0>(std::forward<T>(t)));
+ pushcount += stack::push(L, std::get<1>(std::forward<T>(t)));
+ return pushcount;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<T, std::enable_if_t<meta::is_optional_v<T>>> {
+ using ValueType = typename meta::unqualified_t<T>::value_type;
+
+ template <typename Optional>
+ static int push(lua_State* L, Optional&& op) {
+ using QualifiedValueType = meta::conditional_t<std::is_lvalue_reference_v<Optional>, ValueType&, ValueType&&>;
+ if (!op) {
+ return stack::push(L, nullopt);
+ }
+ return stack::push(L, static_cast<QualifiedValueType>(op.value()));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<forward_as_value_t<T>> {
+ static int push(lua_State* L, const forward_as_value_t<T>& value_) {
+ return stack::push<T>(L, value_.value());
+ }
+
+ static int push(lua_State* L, forward_as_value_t<T>&& value_) {
+ return stack::push<T>(L, std::move(value_).value());
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<nullopt_t> {
+ static int push(lua_State* L, nullopt_t) noexcept {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<std::nullptr_t> {
+ static int push(lua_State* L, std::nullptr_t) noexcept {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<this_state> {
+ static int push(lua_State*, const this_state&) noexcept {
+ return 0;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<this_main_state> {
+ static int push(lua_State*, const this_main_state&) noexcept {
+ return 0;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<new_table> {
+ static int push(lua_State* L, const new_table& nt) {
+ lua_createtable(L, nt.sequence_hint, nt.map_hint);
+ return 1;
+ }
+ };
+
+ template <typename Allocator>
+ struct unqualified_pusher<basic_bytecode<Allocator>> {
+ template <typename T>
+ static int push(lua_State* L, T&& bc, const char* bytecode_name) {
+ const auto first = bc.data();
+ const auto bcsize = bc.size();
+ // pushes either the function, or an error
+ // if it errors, shit goes south, and people can test that upstream
+ (void)luaL_loadbuffer(
+ L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name);
+ return 1;
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& bc) {
+ return push(L, std::forward<bc>(bc), "bytecode");
+ }
+ };
+
+#if SOL_IS_ON(SOL_STD_VARIANT)
+ namespace stack_detail {
+
+ struct push_function {
+ lua_State* L;
+
+ push_function(lua_State* L_) noexcept : L(L_) {
+ }
+
+ template <typename T>
+ int operator()(T&& value) const {
+ return stack::push<T>(L, std::forward<T>(value));
+ }
+ };
+
+ } // namespace stack_detail
+
+ template <typename... Tn>
+ struct unqualified_pusher<std::variant<Tn...>> {
+ static int push(lua_State* L, const std::variant<Tn...>& v) {
+ return std::visit(stack_detail::push_function(L), v);
+ }
+
+ static int push(lua_State* L, std::variant<Tn...>&& v) {
+ return std::visit(stack_detail::push_function(L), std::move(v));
+ }
+ };
+#endif // Variant because Clang is terrible
+
+}} // namespace sol::stack
+
+// end of sol/stack_push.hpp
+
+// beginning of sol/stack_pop.hpp
+
+#include <utility>
+#include <tuple>
+
+namespace sol { namespace stack {
+ template <typename T, typename>
+ struct popper {
+ inline static decltype(auto) pop(lua_State* L) {
+ if constexpr (is_stack_based_v<meta::unqualified_t<T>>) {
+ static_assert(!is_stack_based_v<meta::unqualified_t<T>>,
+ "You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of "
+ "scope!");
+ }
+ else {
+ record tracking {};
+ decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
+ lua_pop(L, tracking.used);
+ return r;
+ }
+ }
+ };
+}} // namespace sol::stack
+
+// end of sol/stack_pop.hpp
+
+// beginning of sol/stack_field.hpp
+
+namespace sol { namespace stack {
+
+ namespace stack_detail {
+ template <typename T, bool global, bool raw>
+ inline constexpr bool is_get_direct_tableless_v = (global && !raw && meta::is_c_str_or_string_v<T>);
+
+ template <typename T, bool global, bool raw>
+ inline constexpr bool is_get_direct_v = (is_get_direct_tableless_v<T, global, raw>) // cf-hack
+ || (!global && !raw && (meta::is_c_str_or_string_v<T> || meta::is_string_of_v<T, char>)) // cf-hack
+ || (!global && raw && (std::is_integral_v<T> && !std::is_same_v<T, bool>))
+#if SOL_LUA_VERSION_I_ >= 503
+ || (!global && !raw && (std::is_integral_v<T> && !std::is_same_v<T, bool>))
+#endif // integer keys 5.3 or better
+#if SOL_LUA_VERSION_I_ >= 502
+ || (!global && raw && std::is_pointer_v<T> && std::is_void_v<std::remove_pointer_t<T>>)
+#endif // void pointer keys 5.2 or better
+ ;
+
+ template <typename T, bool global, bool raw>
+ inline constexpr bool is_set_direct_tableless_v = (global && !raw && meta::is_c_str_or_string_v<T>);
+
+ template <typename T, bool global, bool raw>
+ inline constexpr bool is_set_direct_v = (is_set_direct_tableless_v<T, global, raw>) // cf-hack
+ || (!global && !raw && (meta::is_c_str_or_string_v<T> || meta::is_string_of_v<T, char>)) // cf-hack
+ || (!global && raw && (std::is_integral_v<T> && !std::is_same_v<T, bool>)) // cf-hack
+#if SOL_LUA_VERSION_I_ >= 503
+ || (!global && !raw && (std::is_integral_v<T> && !std::is_same_v<T, bool>))
+#endif // integer keys 5.3 or better
+#if SOL_LUA_VERSION_I_ >= 502
+ || (!global && raw && (std::is_pointer_v<T> && std::is_void_v<std::remove_pointer_t<T>>))
+#endif // void pointer keys 5.2 or better
+ ;
+ } // namespace stack_detail
+
+ template <typename T, bool global, bool raw, typename>
+ struct field_getter {
+ static inline constexpr int default_table_index
+ = meta::conditional_t<stack_detail::is_get_direct_v<T, global, raw>, std::integral_constant<int, -1>, std::integral_constant<int, -2>>::value;
+
+ template <typename Key>
+ void get(lua_State* L, Key&& key, int tableindex = default_table_index) {
+ if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t> || std::is_same_v<T, create_if_nil_t>) {
+ (void)L;
+ (void)key;
+ (void)tableindex;
+ }
+ else if constexpr (std::is_same_v<T, env_key_t>) {
+ (void)key;
+#if SOL_LUA_VERSION_I_ < 502
+ // Use lua_setfenv
+ lua_getfenv(L, tableindex);
+#else
+ // Use upvalues as explained in Lua 5.2 and beyond's manual
+ if (lua_getupvalue(L, tableindex, 1) == nullptr) {
+ push(L, lua_nil);
+ }
+#endif
+ }
+ else if constexpr (std::is_same_v<T, metatable_key_t>) {
+ (void)key;
+ if (lua_getmetatable(L, tableindex) == 0)
+ push(L, lua_nil);
+ }
+ else if constexpr (raw) {
+ if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
+ lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+#if SOL_LUA_VERSION_I_ >= 502
+ else if constexpr (std::is_pointer_v<T> && std::is_void_v<std::remove_pointer_t<T>>) {
+ lua_rawgetp(L, tableindex, key);
+ }
+#endif // Lua 5.2.x+
+ else {
+ push(L, std::forward<Key>(key));
+ lua_rawget(L, tableindex);
+ }
+ }
+ else {
+ if constexpr (meta::is_c_str_or_string_v<T>) {
+ if constexpr (global) {
+ (void)tableindex;
+ lua_getglobal(L, &key[0]);
+ }
+ else {
+ lua_getfield(L, tableindex, &key[0]);
+ }
+ }
+ else if constexpr (std::is_same_v<T, meta_function>) {
+ const auto& real_key = to_string(key);
+ lua_getfield(L, tableindex, &real_key[0]);
+ }
+#if SOL_LUA_VERSION_I_ >= 503
+ else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
+ lua_geti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+#endif // Lua 5.3.x+
+ else {
+ push(L, std::forward<Key>(key));
+ lua_gettable(L, tableindex);
+ }
+ }
+ }
+ };
+
+ template <typename... Args, bool b, bool raw, typename C>
+ struct field_getter<std::tuple<Args...>, b, raw, C> {
+ template <std::size_t... I, typename Keys>
+ void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
+ get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
+ void(detail::swallow { (get_field<false, raw>(L, std::get<I>(std::forward<Keys>(keys))), 0)... });
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(sizeof...(I)));
+ saved.push();
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys) {
+ apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys, int tableindex) {
+ apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
+ }
+ };
+
+ template <typename A, typename B, bool b, bool raw, typename C>
+ struct field_getter<std::pair<A, B>, b, raw, C> {
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys, int tableindex) {
+ get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
+ get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(2));
+ saved.push();
+ }
+
+ template <typename Keys>
+ void get(lua_State* L, Keys&& keys) {
+ get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)));
+ get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
+ reference saved(L, -1);
+ lua_pop(L, static_cast<int>(2));
+ saved.push();
+ }
+ };
+
+ template <typename T, bool global, bool raw, typename>
+ struct field_setter {
+ static constexpr int default_table_index
+ = meta::conditional_t<stack_detail::is_set_direct_v<T, global, raw>, std::integral_constant<int, -2>, std::integral_constant<int, -3>>::value;
+
+ template <typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value, int tableindex = default_table_index) {
+ if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t>) {
+ (void)L;
+ (void)key;
+ (void)value;
+ (void)tableindex;
+ }
+ else if constexpr (std::is_same_v<T, metatable_key_t>) {
+ (void)key;
+ push(L, std::forward<Value>(value));
+ lua_setmetatable(L, tableindex);
+ }
+ else if constexpr (raw) {
+ if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
+ push(L, std::forward<Value>(value));
+ lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+#if SOL_LUA_VERSION_I_ >= 502
+ else if constexpr (std::is_pointer_v<T> && std::is_void_v<std::remove_pointer_t<T>>) {
+ push(L, std::forward<Value>(value));
+ lua_rawsetp(L, tableindex, std::forward<Key>(key));
+ }
+#endif // Lua 5.2.x
+ else {
+ push(L, std::forward<Key>(key));
+ push(L, std::forward<Value>(value));
+ lua_rawset(L, tableindex);
+ }
+ }
+ else {
+ if constexpr (meta::is_c_str_or_string_v<T>) {
+ if constexpr (global) {
+ push(L, std::forward<Value>(value));
+ lua_setglobal(L, &key[0]);
+ (void)tableindex;
+ }
+ else {
+ push(L, std::forward<Value>(value));
+ lua_setfield(L, tableindex, &key[0]);
+ }
+ }
+#if SOL_LUA_VERSION_I_ >= 503
+ else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
+ push(L, std::forward<Value>(value));
+ lua_seti(L, tableindex, static_cast<lua_Integer>(key));
+ }
+#endif // Lua 5.3.x
+ else {
+ push(L, std::forward<Key>(key));
+ push(L, std::forward<Value>(value));
+ lua_settable(L, tableindex);
+ }
+ }
+ }
+ };
+
+ template <typename... Args, bool b, bool raw, typename C>
+ struct field_setter<std::tuple<Args...>, b, raw, C> {
+ template <bool g, std::size_t I, typename Keys, typename Value>
+ void apply(std::index_sequence<I>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
+ I < 1 ? set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value), tableindex)
+ : set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value));
+ }
+
+ template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
+ void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
+ I0 < 1 ? get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), tableindex)
+ : get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), -1);
+ apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
+ }
+
+ template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
+ void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
+ apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
+ lua_pop(L, static_cast<int>(sizeof...(I)));
+ }
+
+ template <typename Keys, typename Value>
+ void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
+ top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
+ }
+ };
+
+ template <typename A, typename B, bool b, bool raw, typename C>
+ struct field_setter<std::pair<A, B>, b, raw, C> {
+ template <typename Keys, typename Value>
+ void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
+ get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
+ set_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)), std::forward<Value>(value), lua_gettop(L));
+ lua_pop(L, 1);
+ }
+ };
+}} // namespace sol::stack
+
+// end of sol/stack_field.hpp
+
+// beginning of sol/stack_probe.hpp
+
+namespace sol { namespace stack {
+ template <typename T, typename P, bool b, bool raw, typename>
+ struct probe_field_getter {
+ template <typename Key>
+ probe get(lua_State* L, Key&& key, int tableindex = -2) {
+ if constexpr (!b) {
+ if (!maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ }
+ get_field<b, raw>(L, std::forward<Key>(key), tableindex);
+ return probe(check<P>(L), 1);
+ }
+ };
+
+ template <typename A, typename B, typename P, bool b, bool raw, typename C>
+ struct probe_field_getter<std::pair<A, B>, P, b, raw, C> {
+ template <typename Keys>
+ probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
+ if (!b && !maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ get_field<b, raw>(L, std::get<0>(keys), tableindex);
+ if (!maybe_indexable(L)) {
+ return probe(false, 1);
+ }
+ get_field<false, raw>(L, std::get<1>(keys), tableindex);
+ return probe(check<P>(L), 2);
+ }
+ };
+
+ template <typename... Args, typename P, bool b, bool raw, typename C>
+ struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> {
+ template <std::size_t I, typename Keys>
+ probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
+ get_field<(I < 1) && b, raw>(L, std::get<I>(keys), tableindex);
+ return probe(check<P>(L), sofar);
+ }
+
+ template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
+ probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
+ get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
+ if (!maybe_indexable(L)) {
+ return probe(false, sofar);
+ }
+ return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
+ }
+
+ template <typename Keys>
+ probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
+ if constexpr (!b) {
+ if (!maybe_indexable(L, tableindex)) {
+ return probe(false, 0);
+ }
+ return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
+ }
+ else {
+ return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
+ }
+ }
+ };
+}} // namespace sol::stack
+
+// end of sol/stack_probe.hpp
+
+#include <cstring>
+#include <array>
+
+namespace sol {
+ namespace detail {
+ using typical_chunk_name_t = char[SOL_ID_SIZE_I_];
+ using typical_file_chunk_name_t = char[SOL_FILE_ID_SIZE_I_];
+
+ inline const std::string& default_chunk_name() {
+ static const std::string name = "";
+ return name;
+ }
+
+ template <std::size_t N>
+ const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
+ if (chunkname.empty()) {
+ auto it = code.cbegin();
+ auto e = code.cend();
+ std::size_t i = 0;
+ static const std::size_t n = N - 4;
+ for (i = 0; i < n && it != e; ++i, ++it) {
+ basechunkname[i] = *it;
+ }
+ if (it != e) {
+ for (std::size_t c = 0; c < 3; ++i, ++c) {
+ basechunkname[i] = '.';
+ }
+ }
+ basechunkname[i] = '\0';
+ return &basechunkname[0];
+ }
+ else {
+ return chunkname.c_str();
+ }
+ }
+
+ inline void clear_entries(stack_reference r) {
+ stack::push(r.lua_state(), lua_nil);
+ while (lua_next(r.lua_state(), -2)) {
+ absolute_index key(r.lua_state(), -2);
+ auto pn = stack::pop_n(r.lua_state(), 1);
+ stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
+ }
+ }
+
+ inline void clear_entries(const reference& registry_reference) {
+ auto pp = stack::push_pop(registry_reference);
+ stack_reference ref(registry_reference.lua_state(), -1);
+ clear_entries(ref);
+ }
+ } // namespace detail
+
+ namespace stack {
+ namespace stack_detail {
+ template <typename T>
+ inline int push_as_upvalues(lua_State* L, T& item) {
+ typedef std::decay_t<T> TValue;
+ static const std::size_t itemsize = sizeof(TValue);
+ static const std::size_t voidsize = sizeof(void*);
+ static const std::size_t voidsizem1 = voidsize - 1;
+ static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
+ typedef std::array<void*, data_t_count> data_t;
+
+ data_t data { {} };
+ std::memcpy(&data[0], std::addressof(item), itemsize);
+ int pushcount = 0;
+ for (const auto& v : data) {
+ lua_pushlightuserdata(L, v);
+ pushcount += 1;
+ }
+ return pushcount;
+ }
+
+ template <typename T>
+ inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
+ static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
+ typedef std::array<void*, data_t_count> data_t;
+ data_t voiddata { {} };
+ for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
+ voiddata[i] = lua_touserdata(L, upvalue_index(index++));
+ }
+ return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
+ }
+
+ template <typename T>
+ inline std::pair<T, int> get_as_upvalues_using_function(lua_State* L, int function_index = -1) {
+ static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
+ typedef std::array<void*, data_t_count> data_t;
+ function_index = lua_absindex(L, function_index);
+ int index = 0;
+ data_t voiddata { {} };
+ for (std::size_t d = 0; d < sizeof(T); d += sizeof(void*)) {
+ // first upvalue is nullptr to respect environment shenanigans
+ // So +2 instead of +1
+ const char* upvalue_name = lua_getupvalue(L, function_index, index + 2);
+ if (upvalue_name == nullptr) {
+ // We should freak out here...
+ break;
+ }
+ voiddata[index] = lua_touserdata(L, -1);
+ ++index;
+ }
+ lua_pop(L, index);
+ return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
+ }
+
+ template <bool checked, typename Handler, typename Fx, typename... Args>
+ static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, Handler&&, record&, Fx&& fx, Args&&... args) {
+ return std::forward<Fx>(fx)(std::forward<Args>(args)...);
+ }
+
+ template <bool checked, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename Handler, typename Fx, typename... FxArgs>
+ static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L_, int start_index_, Handler&& handler_,
+ record& tracking_, Fx&& fx_, FxArgs&&... fxargs_) {
+#if 0 && SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS)
+ // NOTE: THIS IS TERMPORARILY TURNED OFF BECAUSE IT IMPACTS ACTUAL SEMANTICS W.R.T. THINGS LIKE LUAJIT,
+ // SO IT MUST REMAIN OFF UNTIL WE CAN ESTABLISH SIMILAR BEHAVIOR IN MODES WHERE `checked == false`!
+
+ // We can save performance/time by letting errors unwind produced arguments
+ // rather than checking everything once, and then potentially re-doing work
+ if constexpr (checked) {
+ return eval<checked>(types<Args...>(),
+ std::index_sequence<Is...>(),
+ L_,
+ start_index_,
+ std::forward<Handler>(handler_),
+ tracking_,
+ std::forward<Fx>(fx_),
+ std::forward<FxArgs>(fxargs_)...,
+ *stack_detail::check_get_arg<Arg>(L_, start_index_ + tracking_.used, handler_, tracking_));
+ }
+ else
+#endif
+ {
+ return eval<checked>(types<Args...>(),
+ std::index_sequence<Is...>(),
+ L_,
+ start_index_,
+ std::forward<Handler>(handler_),
+ tracking_,
+ std::forward<Fx>(fx_),
+ std::forward<FxArgs>(fxargs_)...,
+ stack_detail::unchecked_get_arg<Arg>(L_, start_index_ + tracking_.used, tracking_));
+ }
+ }
+
+ template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R>, types<Args...> argument_types_, std::index_sequence<I...> argument_indices_, lua_State* L_,
+ int start_index_, Fx&& fx_, FxArgs&&... args_) {
+ static_assert(meta::all_v<meta::is_not_move_only<Args>...>,
+ "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take "
+ "a reference and std::move it manually if this was your intention.");
+ argument_handler<types<R, Args...>> handler {};
+ record tracking {};
+#if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS)
+ if constexpr (checkargs) {
+ multi_check<Args...>(L_, start_index_, handler);
+ }
+#endif
+ if constexpr (std::is_void_v<R>) {
+ eval<checkargs>(
+ argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
+ }
+ else {
+ return eval<checkargs>(
+ argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
+ }
+ }
+
+ template <typename T>
+ void raw_table_set(lua_State* L, T&& arg, int tableindex = -2) {
+ int push_count = push(L, std::forward<T>(arg));
+ SOL_ASSERT(push_count == 1);
+ std::size_t unique_index = static_cast<std::size_t>(luaL_len(L, tableindex) + 1u);
+ lua_rawseti(L, tableindex, static_cast<int>(unique_index));
+ }
+
+ } // namespace stack_detail
+
+ template <typename T>
+ int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
+ int push_count = push(L, std::forward<T>(arg));
+ SOL_ASSERT(push_count == 1);
+ return luaL_ref(L, tableindex);
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+ using args_indices = std::make_index_sequence<sizeof...(Args)>;
+ if constexpr (std::is_void_v<R>) {
+ stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ else {
+ return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ if constexpr (std::is_void_v<R>) {
+ call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ else {
+ return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ using expected_count_t = meta::count_for_pack<lua_size, Args...>;
+ if constexpr (std::is_void_v<R>) {
+ call<check_args>(tr,
+ ta,
+ L,
+ (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
+ std::forward<Fx>(fx),
+ std::forward<FxArgs>(args)...);
+ }
+ else {
+ return call<check_args>(tr,
+ ta,
+ L,
+ (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
+ std::forward<Fx>(fx),
+ std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args,
+ typename Fx, typename... FxArgs>
+ inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ if constexpr (std::is_void_v<Ret0>) {
+ call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ if constexpr (clean_stack) {
+ lua_settop(L, 0);
+ }
+ return 0;
+ }
+ else {
+ (void)tr;
+ decltype(auto) r
+ = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ using R = meta::unqualified_t<decltype(r)>;
+ using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
+ if constexpr (clean_stack && !is_stack::value) {
+ lua_settop(L, 0);
+ }
+ return push_reference(L, std::forward<decltype(r)>(r));
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
+ inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
+ using args_list = typename traits_type::args_list;
+ using returns_list = typename traits_type::returns_list;
+ return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ }
+
+ inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
+ if (lua_gettop(L) < 1) {
+ return call_syntax::dot;
+ }
+ luaL_getmetatable(L, key.data());
+ auto pn = pop_n(L, 1);
+ if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
+ return call_syntax::dot;
+ }
+ return call_syntax::colon;
+ }
+
+ inline void script(
+ lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void script(
+ lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
+ if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
+#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
+ if (L == nullptr) {
+ return;
+ }
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, (void*)handler);
+ auto pn = pop_n(L, 1);
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
+#else
+ (void)L;
+ (void)handler;
+#endif
+ }
+
+ inline void luajit_exception_off(lua_State* L) {
+#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
+ if (L == nullptr) {
+ return;
+ }
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
+#else
+ (void)L;
+#endif
+ }
+ } // namespace stack
+} // namespace sol
+
+// end of sol/stack.hpp
+
+// beginning of sol/object.hpp
+
+// beginning of sol/make_reference.hpp
+
+namespace sol {
+
+ template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
+ R make_reference(lua_State* L, T&& value) {
+ int backpedal = stack::push(L, std::forward<T>(value));
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+ template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
+ R make_reference(lua_State* L, Args&&... args) {
+ int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+ template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
+ R make_reference_userdata(lua_State* L, T&& value) {
+ int backpedal = stack::push_userdata(L, std::forward<T>(value));
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+ template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
+ R make_reference_userdata(lua_State* L, Args&&... args) {
+ int backpedal = stack::push_userdata<T>(L, std::forward<Args>(args)...);
+ R r = stack::get<R>(L, -backpedal);
+ if (should_pop) {
+ lua_pop(L, backpedal);
+ }
+ return r;
+ }
+
+} // namespace sol
+
+// end of sol/make_reference.hpp
+
+// beginning of sol/object_base.hpp
+
+namespace sol {
+
+ template <typename ref_t>
+ class basic_object_base : public ref_t {
+ private:
+ using base_t = ref_t;
+
+ template <typename T>
+ decltype(auto) as_stack(std::true_type) const {
+ return stack::get<T>(base_t::lua_state(), base_t::stack_index());
+ }
+
+ template <typename T>
+ decltype(auto) as_stack(std::false_type) const {
+ base_t::push();
+ return stack::pop<T>(base_t::lua_state());
+ }
+
+ template <typename T>
+ bool is_stack(std::true_type) const {
+ return stack::check<T>(base_t::lua_state(), base_t::stack_index(), &no_panic);
+ }
+
+ template <typename T>
+ bool is_stack(std::false_type) const {
+ int r = base_t::registry_index();
+ if (r == LUA_REFNIL)
+ return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
+ if (r == LUA_NOREF)
+ return false;
+ auto pp = stack::push_pop(*this);
+ return stack::check<T>(base_t::lua_state(), -1, &no_panic);
+ }
+
+ public:
+ basic_object_base() noexcept = default;
+ basic_object_base(const basic_object_base&) = default;
+ basic_object_base(basic_object_base&&) = default;
+ basic_object_base& operator=(const basic_object_base&) = default;
+ basic_object_base& operator=(basic_object_base&&) = default;
+ template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler>
+ basic_object_base(T&& arg, Args&&... args) : base_t(std::forward<T>(arg), std::forward<Args>(args)...) {
+ }
+
+ template <typename T>
+ decltype(auto) as() const {
+ return as_stack<T>(is_stack_based<base_t>());
+ }
+
+ template <typename T>
+ bool is() const {
+ return is_stack<T>(is_stack_based<base_t>());
+ }
+ };
+} // namespace sol
+
+// end of sol/object_base.hpp
+
+namespace sol {
+
+ template <typename base_type>
+ class basic_object : public basic_object_base<base_type> {
+ private:
+ typedef basic_object_base<base_type> base_t;
+
+ template <bool invert_and_pop = false>
+ basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L_, int index_ = -1) noexcept : base_t(L_, index_) {
+ if (invert_and_pop) {
+ lua_pop(L_, -index_);
+ }
+ }
+
+ protected:
+ basic_object(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
+ }
+ basic_object(detail::no_safety_tag, lua_State* L_, int index_) : base_t(L_, index_) {
+ }
+ basic_object(detail::no_safety_tag, lua_State* L_, ref_index index_) : base_t(L_, index_) {
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_object(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
+ }
+
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_object(detail::no_safety_tag, lua_State* L_, T&& r) noexcept : base_t(L_, std::forward<T>(r)) {
+ }
+
+ public:
+ basic_object() noexcept = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>,
+ is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_object(T&& r) : base_t(std::forward<T>(r)) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_object(lua_State* L_, T&& r) : base_t(L_, std::forward<T>(r)) {
+ }
+ basic_object(lua_State* L_, global_tag_t t) : base_t(L_, t) {
+ }
+ basic_object(lua_nil_t r) : base_t(r) {
+ }
+ basic_object(const basic_object&) = default;
+ basic_object(basic_object&&) = default;
+ basic_object(const stack_reference& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {
+ }
+ basic_object(stack_reference&& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {
+ }
+ template <typename Super>
+ basic_object(const proxy_base<Super>& r) noexcept : basic_object(r.operator basic_object()) {
+ }
+ template <typename Super>
+ basic_object(proxy_base<Super>&& r) noexcept : basic_object(r.operator basic_object()) {
+ }
+ basic_object(lua_State* L_, lua_nil_t r) noexcept : base_t(L_, r) {
+ }
+ basic_object(lua_State* L_, int index_ = -1) noexcept : base_t(L_, index_) {
+ }
+ basic_object(lua_State* L_, absolute_index index_) noexcept : base_t(L_, index_) {
+ }
+ basic_object(lua_State* L_, raw_index index_) noexcept : base_t(L_, index_) {
+ }
+ basic_object(lua_State* L_, ref_index index_) noexcept : base_t(L_, index_) {
+ }
+ template <typename T, typename... Args>
+ basic_object(lua_State* L_, in_place_type_t<T>, Args&&... args) noexcept
+ : basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L_, -stack::push<T>(L_, std::forward<Args>(args)...)) {
+ }
+ template <typename T, typename... Args>
+ basic_object(lua_State* L_, in_place_t, T&& arg, Args&&... args) noexcept
+ : basic_object(L_, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) {
+ }
+ basic_object& operator=(const basic_object&) = default;
+ basic_object& operator=(basic_object&&) = default;
+ basic_object& operator=(const base_type& b) {
+ base_t::operator=(b);
+ return *this;
+ }
+ basic_object& operator=(base_type&& b) {
+ base_t::operator=(std::move(b));
+ return *this;
+ }
+ template <typename Super>
+ basic_object& operator=(const proxy_base<Super>& r) {
+ this->operator=(r.operator basic_object());
+ return *this;
+ }
+ template <typename Super>
+ basic_object& operator=(proxy_base<Super>&& r) {
+ this->operator=(r.operator basic_object());
+ return *this;
+ }
+ };
+
+ template <typename T>
+ object make_object(lua_State* L_, T&& value) {
+ return make_reference<object, true>(L_, std::forward<T>(value));
+ }
+
+ template <typename T, typename... Args>
+ object make_object(lua_State* L_, Args&&... args) {
+ return make_reference<T, object, true>(L_, std::forward<Args>(args)...);
+ }
+
+ template <typename T>
+ object make_object_userdata(lua_State* L_, T&& value) {
+ return make_reference_userdata<object, true>(L_, std::forward<T>(value));
+ }
+
+ template <typename T, typename... Args>
+ object make_object_userdata(lua_State* L_, Args&&... args) {
+ return make_reference_userdata<T, object, true>(L_, std::forward<Args>(args)...);
+ }
+} // namespace sol
+
+// end of sol/object.hpp
+
+// beginning of sol/function.hpp
+
+// beginning of sol/unsafe_function.hpp
+
+// beginning of sol/function_result.hpp
+
+// beginning of sol/protected_function_result.hpp
+
+// beginning of sol/proxy_base.hpp
+
+namespace sol {
+ struct proxy_base_tag { };
+
+ namespace detail {
+ template <typename T>
+ using proxy_key_t = meta::conditional_t<meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>, T,
+ std::tuple<meta::conditional_t<std::is_array_v<meta::unqualified_t<T>>, std::remove_reference_t<T>&, meta::unqualified_t<T>>>>;
+ }
+
+ template <typename Super>
+ struct proxy_base : public proxy_base_tag {
+ lua_State* lua_state() const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.lua_state();
+ }
+
+ operator std::string() const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<std::string>();
+ }
+
+ template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
+ operator T() const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<T>();
+ }
+
+ template <typename T,
+ meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
+ operator T&() const {
+ const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
+ return super.template get<T&>();
+ }
+ };
+
+} // namespace sol
+
+// end of sol/proxy_base.hpp
+
+// beginning of sol/stack_iterator.hpp
+
+#include <limits>
+#include <iterator>
+
+namespace sol {
+ template <typename proxy_t, bool is_const>
+ struct stack_iterator {
+ typedef meta::conditional_t<is_const, const proxy_t, proxy_t> reference;
+ typedef meta::conditional_t<is_const, const proxy_t*, proxy_t*> pointer;
+ typedef proxy_t value_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::random_access_iterator_tag iterator_category;
+ lua_State* L;
+ int index;
+ int stacktop;
+ proxy_t sp;
+
+ stack_iterator() : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() {
+ }
+ stack_iterator(const stack_iterator<proxy_t, true>& r) : L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) {
+ }
+ stack_iterator(lua_State* luastate, int idx, int topidx) : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {
+ }
+
+ reference operator*() {
+ return proxy_t(L, index);
+ }
+
+ reference operator*() const {
+ return proxy_t(L, index);
+ }
+
+ pointer operator->() {
+ sp = proxy_t(L, index);
+ return &sp;
+ }
+
+ pointer operator->() const {
+ const_cast<proxy_t&>(sp) = proxy_t(L, index);
+ return &sp;
+ }
+
+ stack_iterator& operator++() {
+ ++index;
+ return *this;
+ }
+
+ stack_iterator operator++(int) {
+ auto r = *this;
+ this->operator++();
+ return r;
+ }
+
+ stack_iterator& operator--() {
+ --index;
+ return *this;
+ }
+
+ stack_iterator operator--(int) {
+ auto r = *this;
+ this->operator--();
+ return r;
+ }
+
+ stack_iterator& operator+=(difference_type idx) {
+ index += static_cast<int>(idx);
+ return *this;
+ }
+
+ stack_iterator& operator-=(difference_type idx) {
+ index -= static_cast<int>(idx);
+ return *this;
+ }
+
+ difference_type operator-(const stack_iterator& r) const {
+ return index - r.index;
+ }
+
+ stack_iterator operator+(difference_type idx) const {
+ stack_iterator r = *this;
+ r += idx;
+ return r;
+ }
+
+ reference operator[](difference_type idx) const {
+ return proxy_t(L, index + static_cast<int>(idx));
+ }
+
+ bool operator==(const stack_iterator& r) const {
+ if (stacktop == (std::numeric_limits<int>::max)()) {
+ return r.index == r.stacktop;
+ }
+ else if (r.stacktop == (std::numeric_limits<int>::max)()) {
+ return index == stacktop;
+ }
+ return index == r.index;
+ }
+
+ bool operator!=(const stack_iterator& r) const {
+ return !(this->operator==(r));
+ }
+
+ bool operator<(const stack_iterator& r) const {
+ return index < r.index;
+ }
+
+ bool operator>(const stack_iterator& r) const {
+ return index > r.index;
+ }
+
+ bool operator<=(const stack_iterator& r) const {
+ return index <= r.index;
+ }
+
+ bool operator>=(const stack_iterator& r) const {
+ return index >= r.index;
+ }
+ };
+
+ template <typename proxy_t, bool is_const>
+ inline stack_iterator<proxy_t, is_const> operator+(
+ typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) {
+ return r + n;
+ }
+} // namespace sol
+
+// end of sol/stack_iterator.hpp
+
+// beginning of sol/stack_proxy.hpp
+
+// beginning of sol/stack_proxy_base.hpp
+
+namespace sol {
+ struct stack_proxy_base : public proxy_base<stack_proxy_base> {
+ private:
+ lua_State* m_L;
+ int m_index;
+
+ public:
+ stack_proxy_base() : m_L(nullptr), m_index(0) {
+ }
+ stack_proxy_base(lua_State* L_, int index_) : m_L(L_), m_index(index_) {
+ }
+
+ template <typename T>
+ decltype(auto) get() const {
+ return stack::get<T>(m_L, stack_index());
+ }
+
+ template <typename T>
+ bool is() const {
+ return stack::check<T>(m_L, stack_index());
+ }
+
+ template <typename T>
+ decltype(auto) as() const {
+ return get<T>();
+ }
+
+ type get_type() const noexcept {
+ return type_of(lua_state(), stack_index());
+ }
+
+ int push() const {
+ return push(m_L);
+ }
+
+ int push(lua_State* L_) const {
+ lua_pushvalue(L_, m_index);
+ return 1;
+ }
+
+ lua_State* lua_state() const {
+ return m_L;
+ }
+ int stack_index() const {
+ return m_index;
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<stack_proxy_base> {
+ static stack_proxy_base get(lua_State* L_, int index_ = -1) {
+ return stack_proxy_base(L_, index_);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<stack_proxy_base> {
+ static int push(lua_State*, const stack_proxy_base& proxy_reference) {
+ return proxy_reference.push();
+ }
+ };
+ } // namespace stack
+
+} // namespace sol
+
+// end of sol/stack_proxy_base.hpp
+
+namespace sol {
+ struct stack_proxy : public stack_proxy_base {
+ public:
+ stack_proxy() : stack_proxy_base() {
+ }
+ stack_proxy(lua_State* L, int index) : stack_proxy_base(L, index) {
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args);
+
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<stack_proxy> {
+ static stack_proxy get(lua_State* L, int index, record& tracking) {
+ tracking.use(0);
+ return stack_proxy(L, index);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<stack_proxy> {
+ static int push(lua_State*, const stack_proxy& ref) {
+ return ref.push();
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/stack_proxy.hpp
+
+#include <cstdint>
+
+namespace sol {
+ struct protected_function_result : public proxy_base<protected_function_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+ int popcount;
+ call_status err;
+
+ public:
+ typedef stack_proxy reference_type;
+ typedef stack_proxy value_type;
+ typedef stack_proxy* pointer;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::size_t size_type;
+ typedef stack_iterator<stack_proxy, false> iterator;
+ typedef stack_iterator<stack_proxy, true> const_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ protected_function_result() noexcept : protected_function_result(nullptr) {}
+ protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept
+ : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
+ }
+
+ // We do not want anyone to copy these around willy-nilly
+ // Will likely break people, but also will probably get rid of quiet bugs that have
+ // been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
+ // LuaJIT and other Lua engines will implode and segfault at random later times.)
+ protected_function_result(const protected_function_result&) = delete;
+ protected_function_result& operator=(const protected_function_result&) = delete;
+
+ protected_function_result(protected_function_result&& o) noexcept
+ : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ }
+ protected_function_result& operator=(protected_function_result&& o) noexcept {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ popcount = o.popcount;
+ err = o.err;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ protected_function_result(const unsafe_function_result& o) = delete;
+ protected_function_result& operator=(const unsafe_function_result& o) = delete;
+ protected_function_result(unsafe_function_result&& o) noexcept;
+ protected_function_result& operator=(unsafe_function_result&& o) noexcept;
+
+ call_status status() const noexcept {
+ return err;
+ }
+
+ bool valid() const noexcept {
+ return status() == call_status::ok || status() == call_status::yielded;
+ }
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic push
+#if !SOL_IS_ON(SOL_COMPILER_CLANG)
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#endif
+
+ template <typename T>
+ decltype(auto) get(int index_offset = 0) const {
+ using UT = meta::unqualified_t<T>;
+ int target = index + index_offset;
+ if constexpr (meta::is_optional_v<UT>) {
+ using ValueType = typename UT::value_type;
+ if constexpr (std::is_same_v<ValueType, error>) {
+ if (valid()) {
+ return UT();
+ }
+ return UT(error(detail::direct_error, stack::get<std::string>(L, target)));
+ }
+ else {
+ if (!valid()) {
+ return UT();
+ }
+ return stack::get<UT>(L, target);
+ }
+ }
+ else {
+ if constexpr (std::is_same_v<T, error>) {
+#if SOL_IS_ON(SOL_SAFE_PROXIES)
+ if (valid()) {
+ type t = type_of(L, target);
+ type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)");
+ }
+#endif // Check Argument Safety
+ return error(detail::direct_error, stack::get<std::string>(L, target));
+ }
+ else {
+#if SOL_IS_ON(SOL_SAFE_PROXIES)
+ if (!valid()) {
+ type t = type_of(L, target);
+ type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)");
+ }
+#endif // Check Argument Safety
+ return stack::get<T>(L, target);
+ }
+ }
+ }
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic pop
+#endif
+
+ type get_type(int index_offset = 0) const noexcept {
+ return type_of(L, index + static_cast<int>(index_offset));
+ }
+
+ stack_proxy operator[](difference_type index_offset) const {
+ return stack_proxy(L, index + static_cast<int>(index_offset));
+ }
+
+ iterator begin() {
+ return iterator(L, index, stack_index() + return_count());
+ }
+ iterator end() {
+ return iterator(L, stack_index() + return_count(), stack_index() + return_count());
+ }
+ const_iterator begin() const {
+ return const_iterator(L, index, stack_index() + return_count());
+ }
+ const_iterator end() const {
+ return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
+ }
+ const_iterator cbegin() const {
+ return begin();
+ }
+ const_iterator cend() const {
+ return end();
+ }
+
+ reverse_iterator rbegin() {
+ return std::reverse_iterator<iterator>(begin());
+ }
+ reverse_iterator rend() {
+ return std::reverse_iterator<iterator>(end());
+ }
+ const_reverse_iterator rbegin() const {
+ return std::reverse_iterator<const_iterator>(begin());
+ }
+ const_reverse_iterator rend() const {
+ return std::reverse_iterator<const_iterator>(end());
+ }
+ const_reverse_iterator crbegin() const {
+ return std::reverse_iterator<const_iterator>(cbegin());
+ }
+ const_reverse_iterator crend() const {
+ return std::reverse_iterator<const_iterator>(cend());
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ };
+ int stack_index() const noexcept {
+ return index;
+ };
+ int return_count() const noexcept {
+ return returncount;
+ };
+ int pop_count() const noexcept {
+ return popcount;
+ };
+ void abandon() noexcept {
+ // L = nullptr;
+ index = 0;
+ returncount = 0;
+ popcount = 0;
+ err = call_status::runtime;
+ }
+ ~protected_function_result() {
+ if (L == nullptr)
+ return;
+ stack::remove(L, index, popcount);
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_pusher<protected_function_result> {
+ static int push(lua_State* L, const protected_function_result& pfr) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, static_cast<int>(pfr.pop_count()), detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ int p = 0;
+ for (int i = 0; i < pfr.pop_count(); ++i) {
+ lua_pushvalue(L, i + pfr.stack_index());
+ ++p;
+ }
+ return p;
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/protected_function_result.hpp
+
+// beginning of sol/unsafe_function_result.hpp
+
+#include <cstdint>
+
+namespace sol {
+ struct unsafe_function_result : public proxy_base<unsafe_function_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+
+ public:
+ typedef stack_proxy reference_type;
+ typedef stack_proxy value_type;
+ typedef stack_proxy* pointer;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::size_t size_type;
+ typedef stack_iterator<stack_proxy, false> iterator;
+ typedef stack_iterator<stack_proxy, true> const_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ unsafe_function_result() noexcept : unsafe_function_result(nullptr) {}
+ unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) noexcept : L(Ls), index(idx), returncount(retnum) {
+ }
+
+ // We do not want anyone to copy these around willy-nilly
+ // Will likely break people, but also will probably get rid of quiet bugs that have
+ // been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
+ // LuaJIT and other Lua engines will implode and segfault at random later times.)
+ unsafe_function_result(const unsafe_function_result&) = delete;
+ unsafe_function_result& operator=(const unsafe_function_result&) = delete;
+
+ unsafe_function_result(unsafe_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.abandon();
+ }
+ unsafe_function_result& operator=(unsafe_function_result&& o) noexcept {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ unsafe_function_result(const protected_function_result& o) = delete;
+ unsafe_function_result& operator=(const protected_function_result& o) = delete;
+ unsafe_function_result(protected_function_result&& o) noexcept;
+ unsafe_function_result& operator=(protected_function_result&& o) noexcept;
+
+ template <typename T>
+ decltype(auto) get(difference_type index_offset = 0) const {
+ return stack::get<T>(L, index + static_cast<int>(index_offset));
+ }
+
+ type get_type(difference_type index_offset = 0) const noexcept {
+ return type_of(L, index + static_cast<int>(index_offset));
+ }
+
+ stack_proxy operator[](difference_type index_offset) const {
+ return stack_proxy(L, index + static_cast<int>(index_offset));
+ }
+
+ iterator begin() {
+ return iterator(L, index, stack_index() + return_count());
+ }
+ iterator end() {
+ return iterator(L, stack_index() + return_count(), stack_index() + return_count());
+ }
+ const_iterator begin() const {
+ return const_iterator(L, index, stack_index() + return_count());
+ }
+ const_iterator end() const {
+ return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
+ }
+ const_iterator cbegin() const {
+ return begin();
+ }
+ const_iterator cend() const {
+ return end();
+ }
+
+ reverse_iterator rbegin() {
+ return std::reverse_iterator<iterator>(begin());
+ }
+ reverse_iterator rend() {
+ return std::reverse_iterator<iterator>(end());
+ }
+ const_reverse_iterator rbegin() const {
+ return std::reverse_iterator<const_iterator>(begin());
+ }
+ const_reverse_iterator rend() const {
+ return std::reverse_iterator<const_iterator>(end());
+ }
+ const_reverse_iterator crbegin() const {
+ return std::reverse_iterator<const_iterator>(cbegin());
+ }
+ const_reverse_iterator crend() const {
+ return std::reverse_iterator<const_iterator>(cend());
+ }
+
+ call_status status() const noexcept {
+ return call_status::ok;
+ }
+
+ bool valid() const noexcept {
+ return status() == call_status::ok || status() == call_status::yielded;
+ }
+
+ lua_State* lua_state() const {
+ return L;
+ };
+ int stack_index() const {
+ return index;
+ };
+ int return_count() const {
+ return returncount;
+ };
+ void abandon() noexcept {
+ // L = nullptr;
+ index = 0;
+ returncount = 0;
+ }
+ ~unsafe_function_result() {
+ if (L != nullptr) {
+ lua_pop(L, returncount);
+ }
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_pusher<unsafe_function_result> {
+ static int push(lua_State* L, const unsafe_function_result& fr) {
+ int p = 0;
+ for (int i = 0; i < fr.return_count(); ++i) {
+ lua_pushvalue(L, i + fr.stack_index());
+ ++p;
+ }
+ return p;
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/unsafe_function_result.hpp
+
+#include <cstdint>
+
+namespace sol {
+
+ namespace detail {
+ template <>
+ struct is_speshul<unsafe_function_result> : std::true_type { };
+ template <>
+ struct is_speshul<protected_function_result> : std::true_type { };
+
+ template <std::size_t I, typename... Args, typename T>
+ stack_proxy get(types<Args...>, meta::index_value<0>, meta::index_value<I>, const T& fr) {
+ return stack_proxy(fr.lua_state(), fr.stack_index() + static_cast<int>(I));
+ }
+
+ template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
+ stack_proxy get(types<Arg, Args...>, meta::index_value<N>, meta::index_value<I>, const T& fr) {
+ return get(types<Args...>(), meta::index_value<N - 1>(), meta::index_value<I + lua_size<Arg>::value>(), fr);
+ }
+ } // namespace detail
+
+ template <>
+ struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> { };
+
+ template <>
+ struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> { };
+
+ template <std::size_t I>
+ stack_proxy get(const unsafe_function_result& fr) {
+ return stack_proxy(fr.lua_state(), fr.stack_index() + static_cast<int>(I));
+ }
+
+ template <std::size_t I, typename... Args>
+ stack_proxy get(types<Args...> t, const unsafe_function_result& fr) {
+ return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
+ }
+
+ template <std::size_t I>
+ stack_proxy get(const protected_function_result& fr) {
+ return stack_proxy(fr.lua_state(), fr.stack_index() + static_cast<int>(I));
+ }
+
+ template <std::size_t I, typename... Args>
+ stack_proxy get(types<Args...> t, const protected_function_result& fr) {
+ return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
+ }
+} // namespace sol
+
+// end of sol/function_result.hpp
+
+// beginning of sol/function_types.hpp
+
+// beginning of sol/function_types_core.hpp
+
+// beginning of sol/wrapper.hpp
+
+namespace sol {
+
+ namespace detail {
+ template <typename T>
+ using array_return_type = meta::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>;
+ }
+
+ template <typename F, typename = void>
+ struct wrapper {
+ typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef typename traits_type::args_list free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <typename... Args>
+ static decltype(auto) call(F& f, Args&&... args) {
+ return f(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename... Args>
+ decltype(auto) operator()(F& fx, Args&&... args) const {
+ return call(fx, std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F>
+ struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> {
+ typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef typename traits_type::args_list free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <F fx, typename... Args>
+ static decltype(auto) invoke(Args&&... args) {
+ return fx(std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static decltype(auto) call(F& fx, Args&&... args) {
+ return fx(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename... Args>
+ decltype(auto) operator()(F& fx, Args&&... args) const {
+ return call(fx, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) const {
+ return invoke<fx>(std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F>
+ struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
+ typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
+ typedef typename traits_type::object_type object_type;
+ typedef typename traits_type::return_type return_type;
+ typedef typename traits_type::args_list args_list;
+ typedef types<object_type&, return_type> free_args_list;
+ typedef typename traits_type::returns_list returns_list;
+
+ template <F fx>
+ static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
+ return mem.*fx;
+ }
+
+ template <F fx, typename Arg, typename... Args>
+ static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) {
+ return mem.*fx = std::forward<Arg>(arg);
+ }
+
+ template <typename Fx>
+ static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
+ return mem.*fx;
+ }
+
+ template <typename Fx, typename Arg, typename... Args>
+ static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
+ using actual_type = meta::unqualified_t<detail::array_return_type<decltype(mem.*fx)>>;
+ if constexpr (std::is_array_v<actual_type>) {
+ using std::cbegin;
+ using std::cend;
+ auto first = cbegin(arg);
+ auto last = cend(arg);
+ for (std::size_t i = 0; first != last; ++i, ++first) {
+ (mem.*fx)[i] = *first;
+ }
+ }
+ else {
+ (mem.*fx) = std::forward<Arg>(arg);
+ }
+ }
+
+ struct caller {
+ template <typename Fx, typename... Args>
+ decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
+ return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) const {
+ return invoke<fx>(std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename F, typename R, typename O, typename... FArgs>
+ struct member_function_wrapper {
+ typedef O object_type;
+ typedef lua_bind_traits<F> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef types<object_type&, FArgs...> free_args_list;
+ typedef meta::tuple_types<R> returns_list;
+
+ template <F fx, typename... Args>
+ static R invoke(O& mem, Args&&... args) {
+ return (mem.*fx)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename... Args>
+ static R call(Fx&& fx, O& mem, Args&&... args) {
+ return (mem.*fx)(std::forward<Args>(args)...);
+ }
+
+ struct caller {
+ template <typename Fx, typename... Args>
+ decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
+ return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
+ }
+ };
+
+ template <F fx>
+ struct invoker {
+ template <typename... Args>
+ decltype(auto) operator()(O& mem, Args&&... args) const {
+ return invoke<fx>(mem, std::forward<Args>(args)...);
+ }
+ };
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { };
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ // noexcept has become a part of a function's type
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...)& noexcept> : public member_function_wrapper<R (O::*)(Args...)& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...)& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...)& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept>
+ : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...)&& noexcept> : public member_function_wrapper<R (O::*)(Args...)& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {
+ };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...)&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...)& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { };
+
+ template <typename R, typename O, typename... Args>
+ struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept>
+ : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { };
+
+#endif // noexcept is part of a function's type
+
+} // namespace sol
+
+// end of sol/wrapper.hpp
+
+#include <memory>
+
+namespace sol { namespace function_detail {
+ template <typename Fx, int start = 1, bool is_yielding = false>
+ int call(lua_State* L) {
+ Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start));
+ int nr = fx(L);
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+}} // namespace sol::function_detail
+
+// end of sol/function_types_core.hpp
+
+// beginning of sol/function_types_templated.hpp
+
+// beginning of sol/call.hpp
+
+// beginning of sol/property.hpp
+
+#include <type_traits>
+#include <utility>
+
+namespace sol {
+ namespace detail {
+ struct no_prop { };
+ } // namespace detail
+
+ template <typename R, typename W>
+ struct property_wrapper : detail::ebco<R, 0>, detail::ebco<W, 1> {
+ private:
+ using read_base_t = detail::ebco<R, 0>;
+ using write_base_t = detail::ebco<W, 1>;
+
+ public:
+ template <typename Rx, typename Wx>
+ property_wrapper(Rx&& r, Wx&& w) : read_base_t(std::forward<Rx>(r)), write_base_t(std::forward<Wx>(w)) {
+ }
+
+ W& write() {
+ return write_base_t::value();
+ }
+
+ const W& write() const {
+ return write_base_t::value();
+ }
+
+ R& read() {
+ return read_base_t::value();
+ }
+
+ const R& read() const {
+ return read_base_t::value();
+ }
+ };
+
+ template <typename F, typename G>
+ inline decltype(auto) property(F&& f, G&& g) {
+ typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
+ typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
+ if constexpr (left_traits::free_arity < right_traits::free_arity) {
+ return property_wrapper<std::decay_t<F>, std::decay_t<G>>(std::forward<F>(f), std::forward<G>(g));
+ }
+ else {
+ return property_wrapper<std::decay_t<G>, std::decay_t<F>>(std::forward<G>(g), std::forward<F>(f));
+ }
+ }
+
+ template <typename F>
+ inline decltype(auto) property(F&& f) {
+ typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
+ if constexpr (left_traits::free_arity < 2) {
+ return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
+ }
+ else {
+ return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
+ }
+ }
+
+ template <typename F>
+ inline decltype(auto) readonly_property(F&& f) {
+ return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
+ }
+
+ template <typename F>
+ inline decltype(auto) writeonly_property(F&& f) {
+ return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
+ }
+
+ template <typename T>
+ struct readonly_wrapper : detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+
+ operator T&() {
+ return base_t::value();
+ }
+ operator const T&() const {
+ return base_t::value();
+ }
+ };
+
+ // Allow someone to make a member variable readonly (const)
+ template <typename R, typename T>
+ inline auto readonly(R T::*v) {
+ return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v);
+ }
+
+ template <typename T>
+ struct var_wrapper : detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+ };
+
+ template <typename V>
+ inline auto var(V&& v) {
+ typedef std::decay_t<V> T;
+ return var_wrapper<T>(std::forward<V>(v));
+ }
+
+ namespace meta {
+ template <typename T>
+ using is_member_object = std::integral_constant<bool, std::is_member_object_pointer_v<T> || is_specialization_of_v<T, readonly_wrapper>>;
+
+ template <typename T>
+ inline constexpr bool is_member_object_v = is_member_object<T>::value;
+
+ template <typename T>
+ using is_member_object_or_function = std::integral_constant<bool, is_member_object_v<T> || std::is_member_pointer_v<T>>;
+
+ template <typename T>
+ inline constexpr bool is_member_object_or_function_v = is_member_object_or_function<T>::value;
+ } // namespace meta
+
+} // namespace sol
+
+// end of sol/property.hpp
+
+// beginning of sol/protect.hpp
+
+#include <utility>
+
+namespace sol {
+
+ template <typename T>
+ struct protect_t {
+ T value;
+
+ template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
+ protect_t(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ protect_t(const protect_t&) = default;
+ protect_t(protect_t&&) = default;
+ protect_t& operator=(const protect_t&) = default;
+ protect_t& operator=(protect_t&&) = default;
+ };
+
+ template <typename T>
+ auto protect(T&& value) {
+ return protect_t<std::decay_t<T>>(std::forward<T>(value));
+ }
+
+} // namespace sol
+
+// end of sol/protect.hpp
+
+namespace sol {
+ namespace u_detail {
+
+ } // namespace u_detail
+
+ namespace policy_detail {
+ template <int I, int... In>
+ inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) {
+ if constexpr (sizeof...(In) == 0) {
+ (void)L;
+ return;
+ }
+ else {
+ absolute_index ai(L, I);
+ if (type_of(L, ai) != type::userdata) {
+ return;
+ }
+ lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
+ stack_reference deps(L, -1);
+ auto per_dep = [&L, &deps](int i) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, i);
+ luaL_ref(L, deps.stack_index());
+ };
+ (void)per_dep;
+ (void)detail::swallow { int(), (per_dep(In), int())... };
+ lua_setuservalue(L, ai);
+ }
+ }
+
+ template <int... In>
+ inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) {
+ pushed = stack::push(L, raw_index(1));
+ handle_policy(static_stack_dependencies<-1, In...>(), L, pushed);
+ }
+
+ inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) {
+ absolute_index ai(L, sdeps.target);
+ if (type_of(L, ai) != type::userdata) {
+ return;
+ }
+ lua_createtable(L, static_cast<int>(sdeps.size()), 0);
+ stack_reference deps(L, -1);
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ for (std::size_t i = 0; i < sdeps.size(); ++i) {
+ lua_pushvalue(L, sdeps.stack_indices[i]);
+ luaL_ref(L, deps.stack_index());
+ }
+ lua_setuservalue(L, ai);
+ }
+
+ template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler>
+ inline void handle_policy(P&& p, lua_State* L, int& pushed) {
+ pushed = std::forward<P>(p)(L, pushed);
+ }
+ } // namespace policy_detail
+
+ namespace function_detail {
+ inline int no_construction_error(lua_State* L) {
+ return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
+ }
+ } // namespace function_detail
+
+ namespace call_detail {
+
+ template <typename R, typename W>
+ inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
+ return f.read();
+ }
+
+ template <typename R, typename W>
+ inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
+ return f.write();
+ }
+
+ template <typename T, typename List>
+ struct void_call : void_call<T, meta::function_args_t<List>> { };
+
+ template <typename T, typename... Args>
+ struct void_call<T, types<Args...>> {
+ static void call(Args...) {
+ }
+ };
+
+ template <typename T, bool checked, bool clean_stack>
+ struct constructor_match {
+ T* obj_;
+ reference* obj_lua_ref_;
+ stack::stack_detail::undefined_metatable* p_umf_;
+
+ constructor_match(T* obj_ptr, reference& obj_lua_ref, stack::stack_detail::undefined_metatable& umf)
+ : obj_(obj_ptr), obj_lua_ref_(&obj_lua_ref), p_umf_(&umf) {
+ }
+
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
+ detail::default_construct func {};
+ int result = stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, this->obj_);
+ // construct userdata table
+ // SPECIFICALLY, after we've created it successfully.
+ // If the constructor exits for any reason we have to break things down...
+ if constexpr (clean_stack) {
+ obj_lua_ref_->push();
+ (*this->p_umf_)();
+ obj_lua_ref_->pop();
+ }
+ else {
+ (*this->p_umf_)();
+ }
+ return result;
+ }
+ };
+
+ namespace overload_detail {
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
+ return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
+ }
+
+ template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L,
+ int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value
+ && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ else {
+ if constexpr (!traits::runtime_variadics_t::value) {
+ if (traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ }
+ stack::record tracking {};
+ if (!stack::stack_detail::check_types(args_list(), L, start, &no_panic, tracking)) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ }
+
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(
+ types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(
+ types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value
+ && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ if constexpr (!traits::runtime_variadics_t::value) {
+ if (traits::free_arity != fxarity) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match,
+ typename... Args>
+ inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx,
+ lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value
+ && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ else {
+ if constexpr (!traits::runtime_variadics_t::value) {
+ if (traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ }
+ stack::record tracking {};
+ if (!stack::stack_detail::check_types(args_list(), L, start, &no_panic, tracking)) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ }
+ } // namespace overload_detail
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_detail::overload_match_arity_single(types<Functions...>(),
+ std::make_index_sequence<sizeof...(Functions)>(),
+ std::index_sequence<>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
+ int fxarity = lua_gettop(L) - (start - 1);
+ return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename... TypeLists, typename Match, typename... Args>
+ inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ // use same overload resolution matching as all other parts of the framework
+ return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(
+ std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, bool checked, bool clean_stack, typename... TypeLists>
+ inline int construct_trampolined(lua_State* L) {
+ static const auto& meta = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+
+ // put userdata at the first index
+ lua_insert(L, 1);
+ construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj, userdataref, umf), L, argcount, 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ return 1;
+ }
+
+ template <typename T, bool checked, bool clean_stack, typename... TypeLists>
+ inline int construct(lua_State* L) {
+ return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L);
+ }
+
+ template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
+ struct agnostic_lua_call_wrapper {
+ template <typename Fx, typename... Args>
+ static int call(lua_State* L, Fx&& f, Args&&... args) {
+ using uFx = meta::unqualified_t<Fx>;
+ static constexpr bool is_ref = is_lua_reference_v<uFx>;
+ if constexpr (is_ref) {
+ if constexpr (is_index) {
+ return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...);
+ }
+ else {
+ std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1));
+ return 0;
+ }
+ }
+ else {
+ using wrap = wrapper<uFx>;
+ using traits_type = typename wrap::traits_type;
+ using fp_t = typename traits_type::function_pointer_type;
+ constexpr bool is_function_pointer_convertible = std::is_class_v<uFx> && std::is_convertible_v<std::decay_t<Fx>, fp_t>;
+ if constexpr (is_function_pointer_convertible) {
+ fp_t fx = f;
+ return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack> {}.call(
+ L, fx, std::forward<Args>(args)...);
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using args_list = typename wrap::free_args_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
+ }
+ }
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ if constexpr (is_index) {
+ constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>;
+ if constexpr (clean_stack && !is_stack) {
+ lua_settop(L, 0);
+ }
+ return stack::push_reference(L, detail::unwrap(f.value()));
+ }
+ else {
+ if constexpr (std::is_const_v<meta::unwrapped_t<T>>) {
+ (void)f;
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+ else {
+ using R = meta::unwrapped_t<T>;
+ if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) {
+ detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
+ if (clean_stack) {
+ lua_settop(L, 0);
+ }
+ return 0;
+ }
+ else {
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+ }
+ }
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, lua_CFunction_ref f) {
+ return f(L);
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, lua_CFunction f) {
+ return f(L);
+ }
+ };
+
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, detail::lua_CFunction_noexcept f) {
+ return f(L);
+ }
+ };
+#endif // noexcept function types
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const detail::no_prop&) {
+ return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const no_construction&) {
+ return function_detail::no_construction_error(L);
+ }
+ };
+
+ template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State*, const bases<Args...>&) {
+ // Uh. How did you even call this, lul
+ return 0;
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, std::reference_wrapper<T> f) {
+ agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw {};
+ return alcw.call(L, f.get());
+ }
+ };
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0,
+ bool clean_stack = true, typename = void>
+ struct lua_call_wrapper {
+ template <typename Fx, typename... Args>
+ static int call(lua_State* L, Fx&& fx, Args&&... args) {
+ if constexpr (std::is_member_function_pointer_v<F>) {
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+ if constexpr (sizeof...(Args) < 1) {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+ static_assert(std::is_base_of_v<object_type, Ta>,
+ "It seems like you might have accidentally bound a class type with a member function method that does not correspond to the "
+ "class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one class \"T\" "
+ "but then bind member methods from a complete unrelated class. Check things over!");
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ return luaL_error(L,
+ "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are "
+ "preceeded by the "
+ "actual object with '.' syntax)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, std::forward<Fx>(fx), *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1));
+ return call(L, std::forward<Fx>(fx), o);
+#endif // Safety
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using args_list = typename wrap::args_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ else if constexpr (std::is_member_object_pointer_v<F>) {
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+ if constexpr (is_index) {
+ if constexpr (sizeof...(Args) < 1) {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+ static_assert(std::is_base_of_v<object_type, Ta>,
+ "It seems like you might have accidentally bound a class type with a member function method that does not correspond "
+ "to the class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one "
+ "class \"T\" but then bind member methods from a complete unrelated class. Check things over!");
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, std::forward<Fx>(fx), *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ return call(L, std::forward<Fx>(fx), o);
+#endif // Safety
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(returns_list(),
+ types<>(),
+ L,
+ boost + (is_variable ? 3 : 2),
+ caller(),
+ std::forward<Fx>(fx),
+ std::forward<Args>(args)...);
+ }
+ }
+ else {
+ using traits_type = lua_bind_traits<F>;
+ using return_type = typename traits_type::return_type;
+ constexpr bool ret_is_const = std::is_const_v<std::remove_reference_t<return_type>>;
+ if constexpr (ret_is_const) {
+ (void)fx;
+ (void)detail::swallow { 0, (static_cast<void>(args), 0)... };
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+ else {
+ using u_return_type = meta::unqualified_t<return_type>;
+ constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>;
+ if constexpr (!is_assignable) {
+ (void)fx;
+ (void)detail::swallow { 0, ((void)args, 0)... };
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+ else {
+ using args_list = typename wrap::args_list;
+ using caller = typename wrap::caller;
+ if constexpr (sizeof...(Args) > 0) {
+ return stack::call_into_lua<checked, clean_stack>(types<void>(),
+ args_list(),
+ L,
+ boost + (is_variable ? 3 : 2),
+ caller(),
+ std::forward<Fx>(fx),
+ std::forward<Args>(args)...);
+ }
+ else {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
+ }
+ object_type* po = static_cast<object_type*>(maybeo.value());
+ object_type& o = *po;
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+#endif // Safety
+
+ return stack::call_into_lua<checked, clean_stack>(
+ types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o);
+ }
+ }
+ }
+ }
+ }
+ else {
+ agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw {};
+ return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> {
+ using traits_type = lua_bind_traits<F>;
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+
+ static int call(lua_State* L, readonly_wrapper<F>&& rw) {
+ if constexpr (!is_index) {
+ (void)rw;
+ return luaL_error(L, "sol: cannot write to a sol::readonly variable");
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, std::move(rw.value()));
+ }
+ }
+
+ static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) {
+ if constexpr (!is_index) {
+ (void)o;
+ return call(L, std::move(rw));
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value(), o);
+ }
+ }
+
+ static int call(lua_State* L, const readonly_wrapper<F>& rw) {
+ if constexpr (!is_index) {
+ (void)rw;
+ return luaL_error(L, "sol: cannot write to a sol::readonly variable");
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value());
+ }
+ }
+
+ static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) {
+ if constexpr (!is_index) {
+ (void)o;
+ return call(L, rw);
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value(), o);
+ }
+ }
+ };
+
+ template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef constructor_list<Args...> F;
+
+ static int call(lua_State* L, F&) {
+ const auto& meta = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+
+ // put userdata at the first index
+ lua_insert(L, 1);
+ // Because of the way constructors work,
+ // we have to kill the data, but only if the cosntructor is successfulyl invoked...
+ // if it's not successfully invoked and we panic,
+ // we cannot actually deallcoate/delete the data.
+ construct_match<T, Args...>(
+ constructor_match<T, checked, clean_stack>(obj, userdataref, umf), L, argcount, boost + 1 + 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ return 1;
+ }
+ };
+
+ template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef constructor_wrapper<Cxs...> F;
+
+ struct onmatch {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
+ const auto& meta = usertype_traits<T>::metatable();
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ umf();
+
+ auto& func = std::get<I>(f.functions);
+ // put userdata at the first index
+ lua_insert(L, 1);
+ stack::call_into_lua<checked, clean_stack>(r, a, L, boost + 1 + start, func, detail::implicit_wrapper<T>(obj));
+
+ userdataref.push();
+ return 1;
+ }
+ };
+
+ static int call(lua_State* L, F& f) {
+ call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1);
+ int syntaxval = static_cast<int>(syntax);
+ int argcount = lua_gettop(L) - syntaxval;
+ return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
+ }
+ };
+
+ template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> {
+
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ if constexpr (std::is_void_v<Fx>) {
+ return detail::usertype_alloc_destroy<T>(L);
+ }
+ else {
+ using uFx = meta::unqualified_t<Fx>;
+ lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::forward<F>(f).fx);
+ }
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef overload_set<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost> {}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef factory_wrapper<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack> {}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
+ }
+ };
+
+ template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef meta::conditional_t<is_index, R, W> P;
+ typedef meta::unqualified_t<P> U;
+ typedef wrapper<U> wrap;
+ typedef lua_bind_traits<U> traits_type;
+ typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
+
+ template <typename F, typename... Args>
+ static int call(lua_State* L, F&& f, Args&&... args) {
+ constexpr bool is_specialized = meta::any<std::is_same<U, detail::no_prop>,
+ meta::is_specialization_of<U, var_wrapper>,
+ meta::is_specialization_of<U, constructor_wrapper>,
+ meta::is_specialization_of<U, constructor_list>,
+ std::is_member_pointer<U>>::value;
+ if constexpr (is_specialized) {
+ if constexpr (is_index) {
+ decltype(auto) p = f.read();
+ lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, p, std::forward<Args>(args)...);
+ }
+ else {
+ decltype(auto) p = f.write();
+ lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, p, std::forward<Args>(args)...);
+ }
+ }
+ else {
+ constexpr bool non_class_object_type = meta::any<std::is_void<object_type>,
+ meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value;
+ if constexpr (non_class_object_type) {
+ // The type being void means we don't have any arguments, so it might be a free functions?
+ using args_list = typename traits_type::free_args_list;
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ if constexpr (is_index) {
+ decltype(auto) pf = f.read();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
+ }
+ else {
+ decltype(auto) pf = f.write();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
+ }
+ }
+ else {
+ using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>;
+ using Ta = T;
+ using Oa = std::remove_pointer_t<object_type>;
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ Oa* o = static_cast<Oa*>(maybeo.value());
+#else
+ Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1));
+#endif // Safety
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ if constexpr (is_index) {
+ decltype(auto) pf = f.read();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
+ }
+ else {
+ decltype(auto) pf = f.write();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
+ }
+ }
+ }
+ }
+ };
+
+ template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef protect_t<V> F;
+
+ template <typename... Args>
+ static int call(lua_State* L, F& fx, Args&&... args) {
+ return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack> {}.call(L, fx.value, std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef policy_wrapper<F, Policies...> P;
+
+ template <std::size_t... In>
+ static int call(std::index_sequence<In...>, lua_State* L, P& fx) {
+ int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C> {}.call(L, fx.value);
+ (void)detail::swallow { int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... };
+ return pushed;
+ }
+
+ static int call(lua_State* L, P& fx) {
+ typedef typename P::indices indices;
+ return call(indices(), L, fx);
+ }
+ };
+
+ template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack> {}.call(L, f.func);
+ }
+ };
+
+ template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const function_arguments<Sig, P>& f) {
+ lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::get<0>(f.arguments));
+ }
+
+ static int call(lua_State* L, function_arguments<Sig, P>& f) {
+ lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::get<0>(f.arguments));
+ }
+
+ static int call(lua_State* L, function_arguments<Sig, P>&& f) {
+ lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::get<0>(std::move(f.arguments)));
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true,
+ typename Fx, typename... Args>
+ inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
+ using uFx = meta::unqualified_t<Fx>;
+ if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
+ using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>;
+ lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...);
+ }
+ else {
+ lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw {};
+ return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+
+ template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls,
+ bool clean_stack = true>
+ inline int call_user(lua_State* L) {
+ auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start));
+ using uFx = meta::unqualified_t<F>;
+ int nr = call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
+ if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ template <typename T, typename = void>
+ struct is_var_bind : std::false_type { };
+
+ template <typename T>
+ struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type { };
+
+ template <typename T>
+ struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type { };
+
+ template <>
+ struct is_var_bind<detail::no_prop> : std::true_type { };
+
+ template <typename R, typename W>
+ struct is_var_bind<property_wrapper<R, W>> : std::true_type { };
+
+ template <typename T>
+ struct is_var_bind<var_wrapper<T>> : std::true_type { };
+
+ template <typename T>
+ struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> { };
+
+ template <typename F, typename... Policies>
+ struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> { };
+ } // namespace call_detail
+
+ template <typename T>
+ struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> { };
+
+ template <typename T>
+ using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>;
+
+ template <typename T>
+ struct is_function_binding : meta::neg<is_variable_binding<T>> { };
+
+} // namespace sol
+
+// end of sol/call.hpp
+
+namespace sol {
+ namespace function_detail {
+ template <typename F, F fx>
+ inline int call_wrapper_variable(std::false_type, lua_State* L) {
+ typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
+ typedef typename traits_type::args_list args_list;
+ typedef meta::tuple_types<typename traits_type::return_type> return_type;
+ return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
+ }
+
+ template <typename R, typename V, V, typename T>
+ inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
+ return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
+ }
+
+ template <typename R, typename V, V variable, typename T>
+ inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
+ (mem.*variable) = stack::get<R>(L, 2);
+ return 0;
+ }
+
+ template <typename R, typename V, V, typename T>
+ inline int call_set_variable(std::false_type, lua_State* L, T&&) {
+ return luaL_error(L, "cannot write to a const variable");
+ }
+
+ template <typename R, typename V, V variable, typename T>
+ inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
+ return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
+ }
+
+ template <typename V, V variable>
+ inline int call_wrapper_variable(std::true_type, lua_State* L) {
+ typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
+ typedef typename traits_type::object_type T;
+ typedef typename traits_type::return_type R;
+ auto& mem = stack::get<T>(L, 1);
+ switch (lua_gettop(L)) {
+ case 1: {
+ decltype(auto) r = (mem.*variable);
+ stack::push_reference(L, std::forward<decltype(r)>(r));
+ return 1;
+ }
+ case 2:
+ return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
+ default:
+ return luaL_error(L, "incorrect number of arguments to member variable function call");
+ }
+ }
+
+ template <typename F, F fx>
+ inline int call_wrapper_function(std::false_type, lua_State* L) {
+ return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
+ }
+
+ template <typename F, F fx>
+ inline int call_wrapper_function(std::true_type, lua_State* L) {
+ return call_detail::call_wrapped<void, false, false>(L, fx);
+ }
+
+ template <typename F, F fx>
+ int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) {
+ return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
+ }
+
+ template <typename... Fxs>
+ struct c_call_matcher {
+ template <typename Fx, std::size_t I, typename R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
+ typedef meta::at_in_pack_t<I, Fxs...> target;
+ return target::call(L);
+ }
+ };
+
+ template <typename F, F fx>
+ inline int c_call_raw(std::true_type, lua_State* L) {
+ return fx(L);
+ }
+
+ template <typename F, F fx>
+ inline int c_call_raw(std::false_type, lua_State* L) {
+#ifdef __clang__
+ return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
+#else
+ return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L);
+#endif // fuck you clang :c
+ }
+
+ } // namespace function_detail
+
+ template <typename F, F fx>
+ inline int c_call(lua_State* L) {
+ typedef meta::unqualified_t<F> Fu;
+ typedef std::integral_constant<bool,
+ std::is_same<Fu, lua_CFunction>::value
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ || std::is_same<Fu, detail::lua_CFunction_noexcept>::value
+#endif
+ >
+ is_raw;
+ return function_detail::c_call_raw<F, fx>(is_raw(), L);
+ }
+
+ template <typename F, F f>
+ struct wrap {
+ typedef F type;
+
+ static int call(lua_State* L) noexcept(noexcept(c_call<type, f>(L))) {
+ return c_call<type, f>(L);
+ }
+ };
+
+ template <typename... Fxs>
+ inline int c_call(lua_State* L) {
+ if constexpr (sizeof...(Fxs) < 2) {
+ using target = meta::at_in_pack_t<0, Fxs...>;
+ return target::call(L);
+ }
+ else {
+ return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
+ }
+ }
+
+} // namespace sol
+
+// end of sol/function_types_templated.hpp
+
+// beginning of sol/function_types_stateless.hpp
+
+namespace sol { namespace function_detail {
+ template <typename Function>
+ struct upvalue_free_function {
+ using function_type = std::remove_pointer_t<std::decay_t<Function>>;
+ using traits_type = meta::bind_traits<function_type>;
+
+ static int real_call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
+ function_type* fx = udata.first;
+ return call_detail::call_wrapped<void, true, false>(L, fx);
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L) {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ // Layout:
+ // idx 1...n: verbatim data of member function pointer
+ // idx n + 1: is the object's void pointer
+ // We don't need to store the size, because the other side is templated
+ // with the same member function pointer type
+ function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
+ auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3)));
+ return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ return call(L);
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ // idx n + 1: is the object's void pointer
+ // We don't need to store the size, because the other side is templated
+ // with the same member function pointer type
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
+ auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
+ auto& mem = *objdata.first;
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 0:
+ return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
+ case 1:
+ return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ return call(L);
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_member_variable<T, readonly_wrapper<Function>> {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ // idx n + 1: is the object's void pointer
+ // We don't need to store the size, because the other side is templated
+ // with the same member function pointer type
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
+ auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
+ auto& mem = *objdata.first;
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 0:
+ return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ return call(L);
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_this_member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
+ return call_detail::call_wrapped<T, false, false>(L, memfx);
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ return call(L);
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_this_member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+
+ static int real_call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 1:
+ return call_detail::call_wrapped<T, true, false>(L, var);
+ case 2:
+ return call_detail::call_wrapped<T, false, false>(L, var);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ return call(L);
+ }
+ };
+
+ template <typename T, typename Function>
+ struct upvalue_this_member_variable<T, readonly_wrapper<Function>> {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef lua_bind_traits<function_type> traits_type;
+
+ static int real_call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ // Layout:
+ // idx 1...n: verbatim data of member variable pointer
+ auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
+ function_type& var = memberdata.first;
+ switch (lua_gettop(L)) {
+ case 1:
+ return call_detail::call_wrapped<T, true, false>(L, var);
+ default:
+ return luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline>
+ static int call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ int nr;
+ if constexpr (no_trampoline) {
+ nr = real_call(L);
+ }
+ else {
+ nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ return call(L);
+ }
+ };
+}} // namespace sol::function_detail
+
+// end of sol/function_types_stateless.hpp
+
+// beginning of sol/function_types_stateful.hpp
+
+namespace sol { namespace function_detail {
+ template <typename Func, bool is_yielding, bool no_trampoline>
+ struct functor_function {
+ typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type;
+ function_type invocation;
+
+ template <typename... Args>
+ functor_function(function_type f, Args&&... args) noexcept(std::is_nothrow_constructible_v<function_type, function_type, Args...>)
+ : invocation(std::move(f), std::forward<Args>(args)...) {
+ }
+
+ static int call(lua_State* L, functor_function& self) noexcept(noexcept(call_detail::call_wrapped<void, true, false>(L, self.invocation))) {
+ int nr = call_detail::call_wrapped<void, true, false>(L, self.invocation);
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L) noexcept(noexcept(call_detail::call_wrapped<void, true, false>(L, invocation))) {
+ if constexpr (no_trampoline) {
+ return call(L, *this);
+ }
+ else {
+ return detail::trampoline(L, &call, *this);
+ }
+ }
+ };
+
+ template <typename T, typename Function, bool is_yielding, bool no_trampoline>
+ struct member_function {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef meta::function_return_t<function_type> return_type;
+ typedef meta::function_args_t<function_type> args_lists;
+ using traits_type = meta::bind_traits<function_type>;
+ function_type invocation;
+ T member;
+
+ template <typename... Args>
+ member_function(function_type f, Args&&... args) noexcept(
+ std::is_nothrow_constructible_v<function_type, function_type>&& std::is_nothrow_constructible_v<T, Args...>)
+ : invocation(std::move(f)), member(std::forward<Args>(args)...) {
+ }
+
+ static int call(lua_State* L, member_function& self)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ int nr = call_detail::call_wrapped<T, true, false, -1>(L, self.invocation, detail::unwrap(detail::deref(self.member)));
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L)
+#if SOL_IS_ON(SOL_COMPILER_VCXX)
+ // MSVC is broken, what a surprise...
+#else
+ noexcept(traits_type::is_noexcept)
+#endif
+ {
+ if constexpr (no_trampoline) {
+ return call(L, *this);
+ }
+ else {
+ return detail::trampoline(L, &call, *this);
+ }
+ }
+ };
+
+ template <typename T, typename Function, bool is_yielding, bool no_trampoline>
+ struct member_variable {
+ typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
+ typedef typename meta::bind_traits<function_type>::return_type return_type;
+ typedef typename meta::bind_traits<function_type>::args_list args_lists;
+ function_type var;
+ T member;
+ typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
+
+ template <typename... Args>
+ member_variable(function_type v, Args&&... args) noexcept(
+ std::is_nothrow_constructible_v<function_type, function_type>&& std::is_nothrow_constructible_v<T, Args...>)
+ : var(std::move(v)), member(std::forward<Args>(args)...) {
+ }
+
+ static int call(lua_State* L, member_variable& self) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ int nr;
+ {
+ M mem = detail::unwrap(detail::deref(self.member));
+ switch (lua_gettop(L)) {
+ case 0:
+ nr = call_detail::call_wrapped<T, true, false, -1>(L, self.var, mem);
+ break;
+ case 1:
+ nr = call_detail::call_wrapped<T, false, false, -1>(L, self.var, mem);
+ break;
+ default:
+ nr = luaL_error(L, "sol: incorrect number of arguments to member variable function");
+ break;
+ }
+ }
+ if (is_yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ int operator()(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
+ if constexpr (no_trampoline) {
+ return call(L, *this);
+ }
+ else {
+ return detail::trampoline(L, &call, *this);
+ }
+ }
+ };
+}} // namespace sol::function_detail
+
+// end of sol/function_types_stateful.hpp
+
+// beginning of sol/function_types_overloaded.hpp
+
+namespace sol { namespace function_detail {
+ template <int start_skew, typename... Functions>
+ struct overloaded_function {
+ typedef std::tuple<Functions...> overload_list;
+ typedef std::make_index_sequence<sizeof...(Functions)> indices;
+ overload_list overloads;
+
+ overloaded_function(overload_list set) : overloads(std::move(set)) {
+ }
+
+ overloaded_function(Functions... fxs) : overloads(fxs...) {
+ }
+
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ static int call(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, overload_list& ol) {
+ auto& func = std::get<I>(ol);
+ int nr = call_detail::call_wrapped<void, true, false, start_skew>(L, func);
+ return nr;
+ }
+
+ struct on_success {
+ template <typename... Args>
+ int operator()(Args&&... args) const {
+ return call(std::forward<Args>(args)...);
+ }
+ };
+
+ int operator()(lua_State* L) {
+ on_success call_obj {};
+ return call_detail::overload_match<Functions...>(call_obj, L, 1 + start_skew, overloads);
+ }
+ };
+}} // namespace sol::function_detail
+
+// end of sol/function_types_overloaded.hpp
+
+// beginning of sol/resolve.hpp
+
+namespace sol {
+
+#ifndef __clang__
+ // constexpr is fine for not-clang
+
+ namespace detail {
+ template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
+ inline constexpr auto resolve_i(types<R(Args...)>, F&&) -> R (meta::unqualified_t<F>::*)(Args...) {
+ using Sig = R(Args...);
+ typedef meta::unqualified_t<F> Fu;
+ return static_cast<Sig Fu::*>(&Fu::operator());
+ }
+
+ template <typename F, typename U = meta::unqualified_t<F>>
+ inline constexpr auto resolve_f(std::true_type, F&& f)
+ -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
+ return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
+ }
+
+ template <typename F>
+ inline constexpr void resolve_f(std::false_type, F&&) {
+ static_assert(meta::call_operator_deducible_v<F>, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
+ }
+
+ template <typename F, typename U = meta::unqualified_t<F>>
+ inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::call_operator_deducible<U>(), std::forward<F>(f))) {
+ return resolve_f(meta::call_operator_deducible<U> {}, std::forward<F>(f));
+ }
+
+ template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
+ inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
+ return resolve_i(types<R(Args...)>(), std::forward<F>(f));
+ }
+
+ template <typename Sig, typename C>
+ inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
+ return mem_func_ptr;
+ }
+
+ template <typename Sig, typename C>
+ inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
+ return mem_variable_ptr;
+ }
+ } // namespace detail
+
+ template <typename... Args, typename R>
+ inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
+ return fun_ptr;
+ }
+
+ template <typename Sig>
+ inline constexpr Sig* resolve(Sig* fun_ptr) {
+ return fun_ptr;
+ }
+
+ template <typename... Args, typename R, typename C>
+ inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
+ return mem_ptr;
+ }
+
+ template <typename Sig, typename C>
+ inline constexpr Sig C::*resolve(Sig C::*mem_ptr) {
+ return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
+ }
+
+ template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
+ inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
+ return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
+ }
+#else
+
+ // Clang has distinct problems with constexpr arguments,
+ // so don't use the constexpr versions inside of clang.
+
+ namespace detail {
+ template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
+ inline auto resolve_i(types<R(Args...)>, F&&) -> R (meta::unqualified_t<F>::*)(Args...) {
+ using Sig = R(Args...);
+ typedef meta::unqualified_t<F> Fu;
+ return static_cast<Sig Fu::*>(&Fu::operator());
+ }
+
+ template <typename F, typename U = meta::unqualified_t<F>>
+ inline auto resolve_f(std::true_type, F&& f)
+ -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
+ return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
+ }
+
+ template <typename F>
+ inline void resolve_f(std::false_type, F&&) {
+ static_assert(meta::call_operator_deducible_v<F>, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
+ }
+
+ template <typename F, typename U = meta::unqualified_t<F>>
+ inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::call_operator_deducible<U>(), std::forward<F>(f))) {
+ return resolve_f(meta::call_operator_deducible<U> {}, std::forward<F>(f));
+ }
+
+ template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
+ inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
+ return resolve_i(types<R(Args...)>(), std::forward<F>(f));
+ }
+
+ template <typename Sig, typename C>
+ inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
+ return mem_func_ptr;
+ }
+
+ template <typename Sig, typename C>
+ inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
+ return mem_variable_ptr;
+ }
+ } // namespace detail
+
+ template <typename... Args, typename R>
+ inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
+ return fun_ptr;
+ }
+
+ template <typename Sig>
+ inline Sig* resolve(Sig* fun_ptr) {
+ return fun_ptr;
+ }
+
+ template <typename... Args, typename R, typename C>
+ inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
+ return mem_ptr;
+ }
+
+ template <typename Sig, typename C>
+ inline Sig C::*resolve(Sig C::*mem_ptr) {
+ return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
+ }
+
+ template <typename... Sig, typename F>
+ inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
+ return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
+ }
+
+#endif
+
+} // namespace sol
+
+// end of sol/resolve.hpp
+
+namespace sol {
+ namespace function_detail {
+ template <typename T>
+ struct class_indicator {
+ using type = T;
+ };
+
+ struct call_indicator { };
+
+ template <bool yielding>
+ int lua_c_wrapper(lua_State* L) {
+ lua_CFunction cf = lua_tocfunction(L, lua_upvalueindex(2));
+ int nr = cf(L);
+ if constexpr (yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ template <bool yielding>
+ int lua_c_noexcept_wrapper(lua_State* L) noexcept {
+ detail::lua_CFunction_noexcept cf = reinterpret_cast<detail::lua_CFunction_noexcept>(lua_tocfunction(L, lua_upvalueindex(2)));
+ int nr = cf(L);
+ if constexpr (yielding) {
+ return lua_yield(L, nr);
+ }
+ else {
+ return nr;
+ }
+ }
+
+ struct c_function_invocation { };
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select(lua_State* L, Fx&& fx, Args&&... args);
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select_set_fx(lua_State* L, Args&&... args) {
+ lua_CFunction freefunc = no_trampoline ? function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>
+ : detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename R, typename... A, typename Fx, typename... Args>
+ void select_convertible(types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
+ using dFx = std::decay_t<meta::unwrap_unqualified_t<Fx>>;
+ using fx_ptr_t = R (*)(A...);
+ constexpr bool is_convertible = std::is_convertible_v<dFx, fx_ptr_t>;
+ if constexpr (is_convertible) {
+ fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
+ select<is_yielding, no_trampoline>(L, std::move(fxptr), std::forward<Args>(args)...);
+ }
+ else {
+ using F = function_detail::functor_function<dFx, false, true>;
+ select_set_fx<is_yielding, no_trampoline, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
+ typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
+ select_convertible<is_yielding, no_trampoline>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select_member_variable(lua_State* L, Fx&& fx, Args&&... args) {
+ using uFx = meta::unqualified_t<Fx>;
+ if constexpr (sizeof...(Args) < 1) {
+ using C = typename meta::bind_traits<uFx>::object_type;
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else if constexpr (sizeof...(Args) < 2) {
+ using Tu = typename meta::meta_detail::unqualified_non_alias<Args...>::type;
+ constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
+ if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
+ lua_CFunction freefunc
+ = &function_detail::upvalue_this_member_variable<typename Tu::type, Fx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::stack_detail::push_as_upvalues(L, fx);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else if constexpr (is_reference) {
+ typedef std::decay_t<Fx> dFx;
+ dFx memfxptr(std::forward<Fx>(fx));
+ auto userptr = detail::ptr(std::forward<Args>(args)...);
+ lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>,
+ meta::unqualified_t<Fx>>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
+ upvalues += stack::push(L, static_cast<void const*>(userptr));
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else {
+ using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
+ using F = function_detail::member_variable<Tu, clean_fx, is_yielding, no_trampoline>;
+ select_set_fx<is_yielding, no_trampoline, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ else {
+ using C = typename meta::bind_traits<uFx>::object_type;
+ using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
+ using F = function_detail::member_variable<C, clean_fx, is_yielding, no_trampoline>;
+ select_set_fx<is_yielding, no_trampoline, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename T, typename... Args>
+ void select_member_function_with(lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
+ using dFx = std::decay_t<Fx>;
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
+ (void)obj;
+ using C = typename Tu::type;
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else {
+ constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
+ if constexpr (is_reference) {
+ auto userptr = detail::ptr(std::forward<T>(obj));
+ lua_CFunction freefunc
+ = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, dFx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else {
+ using F = function_detail::member_function<Tu, dFx, is_yielding, no_trampoline>;
+ select_set_fx<is_yielding, no_trampoline, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
+ }
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select_member_function(lua_State* L, Fx&& fx, Args&&... args) {
+ using dFx = std::decay_t<Fx>;
+ if constexpr (sizeof...(Args) < 1) {
+ using C = typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type;
+ lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx));
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else {
+ select_member_function_with<is_yielding, no_trampoline>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+
+ template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
+ void select(lua_State* L, Fx&& fx, Args&&... args) {
+ using uFx = meta::unqualified_t<Fx>;
+ if constexpr (is_lua_reference_v<uFx>) {
+ // TODO: hoist into lambda in this case for yielding???
+ stack::push(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ else if constexpr (is_lua_c_function_v<uFx>) {
+ if constexpr (no_trampoline) {
+ if (is_yielding) {
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push(L, std::forward<Fx>(fx));
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) {
+ detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<true>;
+ lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), upvalues);
+ }
+ else
+#endif
+ {
+ lua_CFunction cf = &function_detail::lua_c_wrapper<true>;
+ lua_pushcclosure(L, cf, upvalues);
+ }
+ }
+ else {
+ lua_pushcclosure(L, std::forward<Fx>(fx), 0);
+ }
+ }
+ else {
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push(L, std::forward<Fx>(fx));
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) {
+ detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<is_yielding>;
+ lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), upvalues);
+ }
+ else {
+ lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>;
+ lua_pushcclosure(L, cf, upvalues);
+ }
+#else
+ lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>;
+ lua_pushcclosure(L, cf, upvalues);
+#endif
+ }
+ }
+ else if constexpr (std::is_function_v<std::remove_pointer_t<uFx>>) {
+ std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
+ lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::template call<is_yielding, no_trampoline>;
+
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::stack_detail::push_as_upvalues(L, target);
+ stack::push(L, c_closure(freefunc, upvalues));
+ }
+ else if constexpr (std::is_member_function_pointer_v<uFx>) {
+ select_member_function<is_yielding, no_trampoline>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::is_member_object_v<uFx>) {
+ select_member_variable<is_yielding, no_trampoline>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ else {
+ select_convertible<is_yielding, no_trampoline>(types<>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ } // namespace function_detail
+
+ namespace stack {
+ template <typename... Sigs>
+ struct unqualified_pusher<function_sig<Sigs...>> {
+ template <bool is_yielding, typename Arg0, typename... Args>
+ static int push_yielding(lua_State* L, Arg0&& arg0, Args&&... args) {
+ if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, std::function>) {
+ if constexpr (is_yielding) {
+ return stack::push<meta::unqualified_t<Arg0>>(L, detail::yield_tag, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
+ }
+ else {
+ return stack::push(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
+ }
+ }
+ else {
+ function_detail::select<is_yielding, false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
+ return 1;
+ }
+ }
+
+ template <typename Arg0, typename... Args>
+ static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg0>, detail::yield_tag_t>) {
+ push_yielding<true>(L, std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, yielding_t>) {
+ push_yielding<true>(L, std::forward<Arg0>(arg0).func, std::forward<Args>(args)...);
+ }
+ else {
+ push_yielding<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
+ }
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<yielding_t<T>> {
+ template <typename... Args>
+ static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) {
+ if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
+ return stack::push<T>(L, detail::yield_tag, f.func, std::forward<Args>(args)...);
+ }
+ else {
+ function_detail::select<true, false>(L, f.func, std::forward<Args>(args)...);
+ return 1;
+ }
+ }
+
+ template <typename... Args>
+ static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) {
+ if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
+ return stack::push<T>(L, detail::yield_tag, std::move(f.func), std::forward<Args>(args)...);
+ }
+ else {
+ function_detail::select<true, false>(L, std::move(f.func), std::forward<Args>(args)...);
+ return 1;
+ }
+ }
+ };
+
+ template <typename T, typename... Args>
+ struct unqualified_pusher<function_arguments<T, Args...>> {
+ template <std::size_t... I, typename FP>
+ static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
+ return stack::push<T>(L, std::get<I>(std::forward<FP>(fp).arguments)...);
+ }
+
+ static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
+ return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
+ }
+
+ static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
+ return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
+ }
+ };
+
+ template <typename Signature>
+ struct unqualified_pusher<std::function<Signature>> {
+ using TargetFunctor = function_detail::functor_function<std::function<Signature>, false, true>;
+
+ static int push(lua_State* L, detail::yield_tag_t, const std::function<Signature>& fx) {
+ if (fx) {
+ function_detail::select_set_fx<true, false, TargetFunctor>(L, fx);
+ return 1;
+ }
+ return stack::push(L, lua_nil);
+ }
+
+ static int push(lua_State* L, detail::yield_tag_t, std::function<Signature>&& fx) {
+ if (fx) {
+ function_detail::select_set_fx<true, false, TargetFunctor>(L, std::move(fx));
+ return 1;
+ }
+ return stack::push(L, lua_nil);
+ }
+
+ static int push(lua_State* L, const std::function<Signature>& fx) {
+ if (fx) {
+ function_detail::select_set_fx<false, false, TargetFunctor>(L, fx);
+ return 1;
+ }
+ return stack::push(L, lua_nil);
+ }
+
+ static int push(lua_State* L, std::function<Signature>&& fx) {
+ if (fx) {
+ function_detail::select_set_fx<false, false, TargetFunctor>(L, std::move(fx));
+ return 1;
+ }
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template <typename Signature>
+ struct unqualified_pusher<Signature, std::enable_if_t<meta::is_member_object_or_function_v<Signature>>> {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ function_detail::select<false, false>(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ };
+
+ template <typename Signature>
+ struct unqualified_pusher<Signature,
+ std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>,
+ meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>
+#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE)
+ ,
+ meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>,
+ meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>>
+#endif // noexcept function types
+ >::value>> {
+ template <typename F>
+ static int push(lua_State* L, F&& f) {
+ function_detail::select<false, true>(L, std::forward<F>(f));
+ return 1;
+ }
+ };
+
+ template <typename... Functions>
+ struct unqualified_pusher<overload_set<Functions...>> {
+ static int push(lua_State* L, overload_set<Functions...>&& set) {
+ using F = function_detail::overloaded_function<0, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, std::move(set.functions));
+ return 1;
+ }
+
+ static int push(lua_State* L, const overload_set<Functions...>& set) {
+ using F = function_detail::overloaded_function<0, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, set.functions);
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<protect_t<T>> {
+ static int push(lua_State* L, protect_t<T>&& pw) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, const protect_t<T>& pw) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<protect_t<T>>>(L, pw.value);
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename F, typename G>
+ struct unqualified_pusher<property_wrapper<F, G>> {
+ static int push(lua_State* L, property_wrapper<F, G>&& pw) {
+ if constexpr (std::is_void_v<F>) {
+ return stack::push(L, std::move(pw.write()));
+ }
+ else if constexpr (std::is_void_v<G>) {
+ return stack::push(L, std::move(pw.read()));
+ }
+ else {
+ return stack::push(L, overload(std::move(pw.read()), std::move(pw.write())));
+ }
+ }
+
+ static int push(lua_State* L, const property_wrapper<F, G>& pw) {
+ if constexpr (std::is_void_v<F>) {
+ return stack::push(L, pw.write);
+ }
+ else if constexpr (std::is_void_v<G>) {
+ return stack::push(L, pw.read);
+ }
+ else {
+ return stack::push(L, overload(pw.read, pw.write));
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<var_wrapper<T>> {
+ static int push(lua_State* L, var_wrapper<T>&& vw) {
+ return stack::push(L, std::move(vw.value()));
+ }
+ static int push(lua_State* L, const var_wrapper<T>& vw) {
+ return stack::push(L, vw.value());
+ }
+ };
+
+ template <typename... Functions>
+ struct unqualified_pusher<factory_wrapper<Functions...>> {
+ static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
+ using F = function_detail::overloaded_function<0, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, fw.functions);
+ return 1;
+ }
+
+ static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
+ using F = function_detail::overloaded_function<0, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
+ return 1;
+ }
+
+ static int push(lua_State* L, const factory_wrapper<Functions...>& fw, function_detail::call_indicator) {
+ using F = function_detail::overloaded_function<1, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, fw.functions);
+ return 1;
+ }
+
+ static int push(lua_State* L, factory_wrapper<Functions...>&& fw, function_detail::call_indicator) {
+ using F = function_detail::overloaded_function<1, Functions...>;
+ function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<no_construction> {
+ static int push(lua_State* L, no_construction) {
+ lua_CFunction cf = &function_detail::no_construction_error;
+ return stack::push(L, cf);
+ }
+
+ static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
+ return push(L, c);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::tagged<T, no_construction>> {
+ static int push(lua_State* L, detail::tagged<T, no_construction>) {
+ lua_CFunction cf = &function_detail::no_construction_error;
+ return stack::push(L, cf);
+ }
+
+ static int push(lua_State* L, no_construction, function_detail::call_indicator) {
+ lua_CFunction cf = &function_detail::no_construction_error;
+ return stack::push(L, cf);
+ }
+ };
+
+ template <typename T, typename... Lists>
+ struct unqualified_pusher<detail::tagged<T, constructor_list<Lists...>>> {
+ static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
+ lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
+ return stack::push(L, cf);
+ }
+
+ static int push(lua_State* L, constructor_list<Lists...>) {
+ lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
+ return stack::push(L, cf);
+ }
+ };
+
+ template <typename L0, typename... Lists>
+ struct unqualified_pusher<constructor_list<L0, Lists...>> {
+ typedef constructor_list<L0, Lists...> cl_t;
+ static int push(lua_State* L, cl_t cl) {
+ typedef typename meta::bind_traits<L0>::return_type T;
+ return stack::push<detail::tagged<T, cl_t>>(L, cl);
+ }
+ };
+
+ template <typename T, typename... Fxs>
+ struct unqualified_pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
+ static int push(lua_State* L, detail::tagged<T, constructor_wrapper<Fxs...>>&& c) {
+ return push(L, std::move(c.value()));
+ }
+
+ static int push(lua_State* L, const detail::tagged<T, const constructor_wrapper<Fxs...>>& c) {
+ return push(L, c.value());
+ }
+
+ static int push(lua_State* L, constructor_wrapper<Fxs...>&& c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::move(c));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, const constructor_wrapper<Fxs...>& c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, c);
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename F, typename... Fxs>
+ struct unqualified_pusher<constructor_wrapper<F, Fxs...>> {
+ static int push(lua_State* L, const constructor_wrapper<F, Fxs...>& c) {
+ typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
+ typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
+ return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, c);
+ }
+
+ static int push(lua_State* L, constructor_wrapper<F, Fxs...>&& c) {
+ typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
+ typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
+ return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::move(c));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::tagged<T, destructor_wrapper<void>>> {
+ static int push(lua_State* L, destructor_wrapper<void>) {
+ lua_CFunction cf = detail::usertype_alloc_destroy<T>;
+ return stack::push(L, cf);
+ }
+ };
+
+ template <typename T, typename Fx>
+ struct unqualified_pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
+ static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename Fx>
+ struct unqualified_pusher<destructor_wrapper<Fx>> {
+ static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename F, typename... Policies>
+ struct unqualified_pusher<policy_wrapper<F, Policies...>> {
+ using P = policy_wrapper<F, Policies...>;
+
+ static int push(lua_State* L, const P& p) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<P>>(L, p);
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, P&& p) {
+ lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<P>>(L, std::move(p));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename T, typename F, typename... Policies>
+ struct unqualified_pusher<detail::tagged<T, policy_wrapper<F, Policies...>>> {
+ using P = policy_wrapper<F, Policies...>;
+ using Tagged = detail::tagged<T, P>;
+
+ static int push(lua_State* L, const Tagged& p) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<P>>(L, p.value());
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+
+ static int push(lua_State* L, Tagged&& p) {
+ lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
+ int upvalues = 0;
+ upvalues += stack::push(L, nullptr);
+ upvalues += stack::push<user<P>>(L, std::move(p.value()));
+ return stack::push(L, c_closure(cf, upvalues));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<push_invoke_t<T>> {
+ static int push(lua_State* L, push_invoke_t<T>&& pi) {
+ if constexpr (std::is_invocable_v<std::add_rvalue_reference_t<T>, lua_State*>) {
+ return stack::push(L, std::move(pi.value())(L));
+ }
+ else {
+ return stack::push(L, std::move(pi.value())());
+ }
+ }
+
+ static int push(lua_State* L, const push_invoke_t<T>& pi) {
+ if constexpr (std::is_invocable_v<const T, lua_State*>) {
+ return stack::push(L, pi.value()(L));
+ }
+ else {
+ return stack::push(L, pi.value()());
+ }
+ }
+ };
+
+ namespace stack_detail {
+ template <typename Function, typename Handler>
+ bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept {
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ tracking.use(1);
+ bool success = lua_iscfunction(L, index) == 1;
+ if (success) {
+ // there must be at LEAST 2 upvalues; otherwise, we didn't serialize it.
+ const char* upvalue_name = lua_getupvalue(L, index, 2);
+ lua_pop(L, 1);
+ success = upvalue_name != nullptr;
+ }
+ if (!success) {
+ // expected type, actual type
+ handler(
+ L, index, type::function, type_of(L, index), "type must be a Lua C Function gotten from a function pointer serialized by sol2");
+ }
+ return success;
+#else
+ (void)L;
+ (void)index;
+ (void)handler;
+ (void)tracking;
+ return false;
+#endif
+ }
+
+ template <typename Function>
+ Function* get_function_pointer(lua_State* L, int index, record& tracking) noexcept {
+#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ tracking.use(1);
+ auto udata = stack::stack_detail::get_as_upvalues_using_function<Function*>(L, index);
+ Function* fx = udata.first;
+ return fx;
+#else
+ (void)L;
+ (void)index;
+ (void)tracking;
+ static_assert(meta::meta_detail::always_true<Function>::value,
+#if SOL_IS_DEFAULT_OFF(SOL_GET_FUNCTION_POINTER_UNSAFE)
+ "You are attempting to retrieve a function pointer type. "
+ "This is inherently unsafe in sol2. In order to do this, you must turn on the "
+ "SOL_GET_FUNCTION_POINTER_UNSAFE configuration macro, as detailed in the documentation. "
+ "Please be careful!"
+#else
+ "You are attempting to retrieve a function pointer type. "
+ "You explicitly turned off the ability to do this by defining "
+ "SOL_GET_FUNCTION_POINTER_UNSAFE or similar to be off. "
+ "Please reconsider this!"
+#endif
+ );
+ return nullptr;
+#endif
+ }
+ } // namespace stack_detail
+ } // namespace stack
+} // namespace sol
+
+// end of sol/function_types.hpp
+
+// beginning of sol/dump_handler.hpp
+
+#include <cstdint>
+#include <exception>
+
+namespace sol {
+
+ class dump_error : public error {
+ private:
+ int m_ec;
+
+ public:
+ dump_error(int error_code_) : error("dump returned non-zero error of " + std::to_string(error_code_)), m_ec(error_code_) {
+ }
+
+ int error_code() const {
+ return m_ec;
+ }
+ };
+
+ inline int dump_pass_on_error(lua_State* L_, int result_code, lua_Writer writer_function, void* userdata_pointer_, bool strip) {
+ (void)L_;
+ (void)writer_function;
+ (void)userdata_pointer_;
+ (void)strip;
+ return result_code;
+ }
+
+ inline int dump_panic_on_error(lua_State* L_, int result_code, lua_Writer writer_function, void* userdata_pointer_, bool strip) {
+ (void)L_;
+ (void)writer_function;
+ (void)userdata_pointer_;
+ (void)strip;
+ return luaL_error(L_, "a non-zero error code (%d) was returned by the lua_Writer for the dump function", result_code);
+ }
+
+ inline int dump_throw_on_error(lua_State* L_, int result_code, lua_Writer writer_function, void* userdata_pointer_, bool strip) {
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ return dump_panic_on_error(L_, result_code, writer_function, userdata_pointer_, strip);
+#else
+ (void)L_;
+ (void)writer_function;
+ (void)userdata_pointer_;
+ (void)strip;
+ throw dump_error(result_code);
+#endif // no exceptions stuff
+ }
+
+} // namespace sol
+
+// end of sol/dump_handler.hpp
+
+#include <cstdint>
+
+namespace sol {
+ template <typename ref_t, bool aligned = false>
+ class basic_function : public basic_object<ref_t> {
+ private:
+ using base_t = basic_object<ref_t>;
+
+ void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
+ lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount));
+ }
+
+ template <std::size_t... I, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
+ luacall(n, lua_size<std::tuple<Ret...>>::value);
+ return stack::pop<std::tuple<Ret...>>(lua_state());
+ }
+
+ template <std::size_t I, typename Ret, meta::enable<meta::neg<std::is_void<Ret>>> = meta::enabler>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
+ luacall(n, lua_size<Ret>::value);
+ return stack::pop<Ret>(lua_state());
+ }
+
+ template <std::size_t I>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
+ luacall(n, 0);
+ }
+
+ unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
+ int stacksize = lua_gettop(lua_state());
+ int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
+ luacall(n, LUA_MULTRET);
+ int poststacksize = lua_gettop(lua_state());
+ int returncount = poststacksize - (firstreturn - 1);
+ return unsafe_function_result(lua_state(), firstreturn, returncount);
+ }
+
+ public:
+ using base_t::lua_state;
+
+ basic_function() = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_function(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_function<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_function>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_function(const basic_function&) = default;
+ basic_function& operator=(const basic_function&) = default;
+ basic_function(basic_function&&) = default;
+ basic_function& operator=(basic_function&&) = default;
+ basic_function(const stack_reference& r) : basic_function(r.lua_state(), r.stack_index()) {
+ }
+ basic_function(stack_reference&& r) : basic_function(r.lua_state(), r.stack_index()) {
+ }
+ basic_function(lua_nil_t n) : base_t(n) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_function(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_function>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_function(lua_State* L, int index = -1) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_function>(L, index, handler);
+#endif // Safety
+ }
+ basic_function(lua_State* L, ref_index index) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_function>(lua_state(), -1, handler);
+#endif // Safety
+ }
+
+ template <typename Fx>
+ int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const {
+ this->push();
+ auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
+ int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0);
+ if (r != 0) {
+ return on_error(this->lua_state(), r, writer, userdata, strip);
+ }
+ return r;
+ }
+
+ int dump(lua_Writer writer, void* userdata, bool strip = false) const {
+ return dump(writer, userdata, strip, &dump_throw_on_error);
+ }
+
+ template <typename Container = bytecode>
+ Container dump() const {
+ Container bc;
+ (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_panic_on_error);
+ return bc;
+ }
+
+ template <typename Container = bytecode, typename Fx>
+ Container dump(Fx&& on_error) const {
+ Container bc;
+ (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
+ return bc;
+ }
+
+ template <typename... Args>
+ unsafe_function_result operator()(Args&&... args) const {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) const {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) const {
+ if (!aligned) {
+ base_t::push();
+ }
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), static_cast<std::ptrdiff_t>(pushcount));
+ }
+ };
+} // namespace sol
+
+// end of sol/unsafe_function.hpp
+
+// beginning of sol/protected_function.hpp
+
+// beginning of sol/protected_handler.hpp
+
+#include <cstdint>
+
+namespace sol { namespace detail {
+ inline const char (&default_handler_name())[9] {
+ static const char name[9] = "sol.\xF0\x9F\x94\xA9";
+ return name;
+ }
+
+ template <bool ShouldPush, typename Target = reference>
+ struct protected_handler {
+ lua_State* m_L;
+ const Target& target;
+ int stack_index;
+
+ protected_handler(std::false_type, lua_State* L_, const Target& target_) : m_L(L_), target(target_), stack_index(0) {
+ if (ShouldPush) {
+ stack_index = lua_gettop(L_) + 1;
+ target.push(L_);
+ }
+ }
+
+ protected_handler(std::true_type, lua_State* L_, const Target& target_) : m_L(L_), target(target_), stack_index(0) {
+ if (ShouldPush) {
+ stack_index = target.stack_index();
+ }
+ }
+
+ protected_handler(lua_State* L_, const Target& target_) : protected_handler(meta::boolean<is_stack_based_v<Target>>(), L_, target_) {
+ }
+
+ bool valid() const noexcept {
+ return ShouldPush;
+ }
+
+ ~protected_handler() {
+ if constexpr (!is_stack_based_v<Target>) {
+ if (stack_index != 0) {
+ lua_remove(m_L, stack_index);
+ }
+ }
+ }
+ };
+
+ template <typename Base, typename T>
+ inline basic_function<Base> force_cast(T& p) {
+ return p;
+ }
+
+ template <typename Reference, bool IsMainReference = false>
+ inline Reference get_default_handler(lua_State* L_) {
+ if (is_stack_based_v<Reference> || L_ == nullptr)
+ return Reference(L_, lua_nil);
+ L_ = IsMainReference ? main_thread(L_, L_) : L_;
+ lua_getglobal(L_, default_handler_name());
+ auto pp = stack::pop_n(L_, 1);
+ return Reference(L_, -1);
+ }
+
+ template <typename T>
+ inline void set_default_handler(lua_State* L, const T& ref) {
+ if (L == nullptr) {
+ return;
+ }
+ if (!ref.valid()) {
+#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushnil(L);
+ lua_setglobal(L, default_handler_name());
+ }
+ else {
+ ref.push(L);
+ lua_setglobal(L, default_handler_name());
+ }
+ }
+}} // namespace sol::detail
+
+// end of sol/protected_handler.hpp
+
+#include <cstdint>
+#include <algorithm>
+
+namespace sol {
+
+ namespace detail {
+ template <bool ShouldPush_, typename Handler_>
+ inline void handle_protected_exception(
+ lua_State* L_, optional<const std::exception&> maybe_ex, const char* error, detail::protected_handler<ShouldPush_, Handler_>& handler_) {
+ handler_.stack_index = 0;
+ if (ShouldPush_) {
+ handler_.target.push(L_);
+ detail::call_exception_handler(L_, maybe_ex, error);
+ lua_call(L_, 1, 1);
+ }
+ else {
+ detail::call_exception_handler(L_, maybe_ex, error);
+ }
+ }
+ } // namespace detail
+
+ template <typename Reference, bool Aligned = false, typename Handler = reference>
+ class basic_protected_function : public basic_object<Reference> {
+ private:
+ using base_t = basic_object<Reference>;
+ using handler_t = Handler;
+ inline static constexpr bool is_stack_handler_v = is_stack_based_v<handler_t>;
+
+ basic_protected_function(std::true_type, const basic_protected_function& other_) noexcept
+ : base_t(other_), m_error_handler(other_.m_error_handler.copy(lua_state())) {
+ }
+
+ basic_protected_function(std::false_type, const basic_protected_function& other_) noexcept : base_t(other_), m_error_handler(other_.m_error_handler) {
+ }
+
+ public:
+ basic_protected_function() = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>,
+ meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_protected_function(T&& r) noexcept : base_t(std::forward<T>(r)), m_error_handler(get_default_handler(r.lua_state())) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_function<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_protected_function(const basic_protected_function& other_) noexcept
+ : basic_protected_function(meta::boolean<is_stateless_lua_reference_v<Handler>>(), other_) {
+ }
+ basic_protected_function& operator=(const basic_protected_function& other_) {
+ base_t::operator=(other_);
+ if constexpr (is_stateless_lua_reference_v<Handler>) {
+ m_error_handler.copy_assign(lua_state(), other_.m_error_handler);
+ }
+ else {
+ m_error_handler = other_.m_error_handler;
+ }
+ return *this;
+ }
+ basic_protected_function(basic_protected_function&&) = default;
+ basic_protected_function& operator=(basic_protected_function&&) = default;
+ basic_protected_function(const basic_function<base_t>& b) : basic_protected_function(b, get_default_handler(b.lua_state())) {
+ }
+ basic_protected_function(basic_function<base_t>&& b) : basic_protected_function(std::move(b), get_default_handler(b.lua_state())) {
+ }
+ basic_protected_function(const basic_function<base_t>& b, handler_t eh) : base_t(b), m_error_handler(std::move(eh)) {
+ }
+ basic_protected_function(basic_function<base_t>&& b, handler_t eh) : base_t(std::move(b)), m_error_handler(std::move(eh)) {
+ }
+ basic_protected_function(const stack_reference& r) : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
+ }
+ basic_protected_function(stack_reference&& r) : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
+ }
+ basic_protected_function(const stack_reference& r, handler_t eh) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
+ }
+ basic_protected_function(stack_reference&& r, handler_t eh) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
+ }
+
+ template <typename Super>
+ basic_protected_function(const proxy_base<Super>& p) : basic_protected_function(p, get_default_handler(p.lua_state())) {
+ }
+ template <typename Super>
+ basic_protected_function(proxy_base<Super>&& p) : basic_protected_function(std::move(p), get_default_handler(p.lua_state())) {
+ }
+ template <typename Proxy, typename HandlerReference,
+ meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>,
+ meta::neg<is_lua_index<meta::unqualified_t<HandlerReference>>>> = meta::enabler>
+ basic_protected_function(Proxy&& p, HandlerReference&& eh)
+ : basic_protected_function(detail::force_cast<base_t>(p), make_reference<handler_t>(p.lua_state(), std::forward<HandlerReference>(eh))) {
+ }
+
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_protected_function(lua_State* L_, T&& r) : basic_protected_function(L_, std::forward<T>(r), get_default_handler(L_)) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_protected_function(lua_State* L_, T&& r, handler_t eh) : base_t(L_, std::forward<T>(r)), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(lua_state(), -1, handler);
+#endif // Safety
+ }
+
+ basic_protected_function(lua_nil_t n) : base_t(n), m_error_handler(n) {
+ }
+
+ basic_protected_function(lua_State* L_, int index_ = -1) : basic_protected_function(L_, index_, get_default_handler(L_)) {
+ }
+ basic_protected_function(lua_State* L_, int index_, handler_t eh) : base_t(L_, index_), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(L_, index_, handler);
+#endif // Safety
+ }
+ basic_protected_function(lua_State* L_, absolute_index index_) : basic_protected_function(L_, index_, get_default_handler(L_)) {
+ }
+ basic_protected_function(lua_State* L_, absolute_index index_, handler_t eh) : base_t(L_, index_), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(L_, index_, handler);
+#endif // Safety
+ }
+ basic_protected_function(lua_State* L_, raw_index index_) : basic_protected_function(L_, index_, get_default_handler(L_)) {
+ }
+ basic_protected_function(lua_State* L_, raw_index index_, handler_t eh) : base_t(L_, index_), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(L_, index_, handler);
+#endif // Safety
+ }
+ basic_protected_function(lua_State* L_, ref_index index_) : basic_protected_function(L_, index_, get_default_handler(L_)) {
+ }
+ basic_protected_function(lua_State* L_, ref_index index_, handler_t eh) : base_t(L_, index_), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_protected_function>(lua_state(), -1, handler);
+#endif // Safety
+ }
+
+ using base_t::lua_state;
+
+ template <typename Fx>
+ int dump(lua_Writer writer, void* userdata_pointer_, bool strip, Fx&& on_error) const {
+ this->push();
+ auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
+ int r = lua_dump(this->lua_state(), writer, userdata_pointer_, strip ? 1 : 0);
+ if (r != 0) {
+ return on_error(this->lua_state(), r, writer, userdata_pointer_, strip);
+ }
+ return r;
+ }
+
+ int dump(lua_Writer writer, void* userdata_pointer_, bool strip = false) const {
+ return dump(writer, userdata_pointer_, strip, &dump_pass_on_error);
+ }
+
+ template <typename Container = bytecode>
+ Container dump() const {
+ Container bc;
+ (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_throw_on_error);
+ return bc;
+ }
+
+ template <typename Container = bytecode, typename Fx>
+ Container dump(Fx&& on_error) const {
+ Container bc;
+ (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
+ return bc;
+ }
+
+ template <typename... Args>
+ protected_function_result operator()(Args&&... args) const {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) const {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) const {
+ if constexpr (!Aligned) {
+ // we do not expect the function to already be on the stack: push it
+ if (m_error_handler.valid(lua_state())) {
+ detail::protected_handler<true, handler_t> h(lua_state(), m_error_handler);
+ base_t::push();
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
+ }
+ else {
+ detail::protected_handler<false, handler_t> h(lua_state(), m_error_handler);
+ base_t::push();
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
+ }
+ }
+ else {
+ // the function is already on the stack at the right location
+ if (m_error_handler.valid()) {
+ // the handler will be pushed onto the stack manually,
+ // since it's not already on the stack this means we need to push our own
+ // function on the stack too and swap things to be in-place
+ if constexpr (!is_stack_handler_v) {
+ // so, we need to remove the function at the top and then dump the handler out ourselves
+ base_t::push();
+ }
+ detail::protected_handler<true, handler_t> h(lua_state(), m_error_handler);
+ if constexpr (!is_stack_handler_v) {
+ lua_replace(lua_state(), -3);
+ h.stack_index = lua_absindex(lua_state(), -2);
+ }
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
+ }
+ else {
+ detail::protected_handler<false, handler_t> h(lua_state(), m_error_handler);
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
+ }
+ }
+ }
+
+ ~basic_protected_function() {
+ if constexpr (is_stateless_lua_reference_v<handler_t>) {
+ this->m_error_handler.reset(lua_state());
+ }
+ }
+
+ static handler_t get_default_handler(lua_State* L_) {
+ return detail::get_default_handler<handler_t, is_main_threaded_v<base_t>>(L_);
+ }
+
+ template <typename T>
+ static void set_default_handler(const T& ref) {
+ detail::set_default_handler(ref.lua_state(), ref);
+ }
+
+ auto get_error_handler() const noexcept {
+ if constexpr (is_stateless_lua_reference_v<handler_t>) {
+ if constexpr (is_stack_based_v<handler_t>) {
+ return stack_reference(lua_state(), m_error_handler.stack_index());
+ }
+ else {
+ return basic_reference<is_main_threaded_v<base_t>>(lua_state(), ref_index(m_error_handler.registry_index()));
+ }
+ }
+ else {
+ return m_error_handler;
+ }
+ }
+
+ template <typename ErrorHandler_>
+ void set_error_handler(ErrorHandler_&& error_handler_) noexcept {
+ static_assert(!is_stack_based_v<handler_t> || is_stack_based_v<ErrorHandler_>,
+ "A stack-based error handler can only be set from a parameter that is also stack-based.");
+ if constexpr (std::is_rvalue_reference_v<ErrorHandler_>) {
+ m_error_handler = std::forward<ErrorHandler_>(error_handler_);
+ }
+ else {
+ m_error_handler.copy_assign(lua_state(), std::forward<ErrorHandler_>(error_handler_));
+ }
+ }
+
+ void abandon () noexcept {
+ this->m_error_handler.abandon();
+ base_t::abandon();
+ }
+
+ private:
+ handler_t m_error_handler;
+
+ template <bool b>
+ call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t result_count_, detail::protected_handler<b, handler_t>& h) const {
+ return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(result_count_), h.stack_index));
+ }
+
+ template <std::size_t... I, bool b, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
+ luacall(n, sizeof...(Ret), h);
+ return stack::pop<std::tuple<Ret...>>(lua_state());
+ }
+
+ template <std::size_t I, bool b, typename Ret>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
+ luacall(n, 1, h);
+ return stack::pop<Ret>(lua_state());
+ }
+
+ template <std::size_t I, bool b>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
+ luacall(n, 0, h);
+ }
+
+ template <bool b>
+ protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
+ int stacksize = lua_gettop(lua_state());
+ int poststacksize = stacksize;
+ int firstreturn = 1;
+ int returncount = 0;
+ call_status code = call_status::ok;
+#if SOL_IS_ON(SOL_EXCEPTIONS) && SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS)
+ try {
+#endif // No Exceptions
+ firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid() && !is_stack_handler_v)));
+ code = luacall(n, LUA_MULTRET, h);
+ poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid() && !is_stack_handler_v);
+ returncount = poststacksize - (firstreturn - 1);
+#if SOL_IS_ON(SOL_EXCEPTIONS) && SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS)
+ }
+ // Handle C++ errors thrown from C++ functions bound inside of lua
+ catch (const char* error) {
+ detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error, h);
+ firstreturn = lua_gettop(lua_state());
+ return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+ catch (const std::string& error) {
+ detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error.c_str(), h);
+ firstreturn = lua_gettop(lua_state());
+ return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+ catch (const std::exception& error) {
+ detail::handle_protected_exception(lua_state(), optional<const std::exception&>(error), error.what(), h);
+ firstreturn = lua_gettop(lua_state());
+ return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+#if SOL_IS_ON(SOL_EXCEPTIONS_CATCH_ALL)
+ // LuaJIT cannot have the catchall when the safe propagation is on
+ // but LuaJIT will swallow all C++ errors
+ // if we don't at least catch std::exception ones
+ catch (...) {
+ detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), detail::protected_function_error, h);
+ firstreturn = lua_gettop(lua_state());
+ return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
+ }
+#endif // Always catch edge case
+#else
+ // do not handle exceptions: they can be propogated into C++ and keep all type information / rich information
+#endif // Exceptions vs. No Exceptions
+ return protected_function_result(lua_state(), firstreturn, returncount, returncount, code);
+ }
+ };
+} // namespace sol
+
+// end of sol/protected_function.hpp
+
+#include <functional>
+
+namespace sol {
+ template <typename... Ret, typename... Args>
+ decltype(auto) stack_proxy::call(Args&&... args) {
+ stack_function sf(this->lua_state(), this->stack_index());
+ return sf.template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
+ : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ }
+
+ inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept {
+ L = o.lua_state();
+ index = o.stack_index();
+ returncount = o.return_count();
+ popcount = o.return_count();
+ err = o.status();
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
+ : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ }
+ inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept {
+ L = o.lua_state();
+ index = o.stack_index();
+ returncount = o.return_count();
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ namespace detail {
+ template <typename... R>
+ struct std_shim {
+ unsafe_function lua_func_;
+
+ std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
+ }
+
+ template <typename... Args>
+ meta::return_type_t<R...> operator()(Args&&... args) {
+ return lua_func_.call<R...>(std::forward<Args>(args)...);
+ }
+ };
+
+ template <>
+ struct std_shim<void> {
+ unsafe_function lua_func_;
+
+ std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
+ }
+
+ template <typename... Args>
+ void operator()(Args&&... args) {
+ lua_func_.call<void>(std::forward<Args>(args)...);
+ }
+ };
+ } // namespace detail
+
+ namespace stack {
+ template <typename Signature>
+ struct unqualified_getter<std::function<Signature>> {
+ typedef meta::bind_traits<Signature> fx_t;
+ typedef typename fx_t::args_list args_lists;
+ typedef meta::tuple_types<typename fx_t::return_type> return_types;
+
+ template <typename... R>
+ static std::function<Signature> get_std_func(types<R...>, lua_State* L, int index) {
+ detail::std_shim<R...> fx(unsafe_function(L, index));
+ return fx;
+ }
+
+ static std::function<Signature> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ if (t == type::none || t == type::lua_nil) {
+ return nullptr;
+ }
+ return get_std_func(return_types(), L, index);
+ }
+ };
+
+ template <typename Allocator>
+ struct unqualified_getter<basic_bytecode<Allocator>> {
+ static basic_bytecode<Allocator> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ stack_function sf(L, index);
+ return sf.dump(&dump_panic_on_error);
+ }
+ };
+ } // namespace stack
+
+} // namespace sol
+
+// end of sol/function.hpp
+
+// beginning of sol/usertype.hpp
+
+// beginning of sol/usertype_core.hpp
+
+// beginning of sol/deprecate.hpp
+
+#ifndef SOL_DEPRECATED
+#ifdef _MSC_VER
+#define SOL_DEPRECATED __declspec(deprecated)
+#elif __GNUC__
+#define SOL_DEPRECATED __attribute__((deprecated))
+#else
+#define SOL_DEPRECATED [[deprecated]]
+#endif // compilers
+#endif // SOL_DEPRECATED
+
+namespace sol { namespace detail {
+ template <typename T>
+ struct SOL_DEPRECATED deprecate_type {
+ using type = T;
+ };
+}} // namespace sol::detail
+
+// end of sol/deprecate.hpp
+
+// beginning of sol/usertype_container_launch.hpp
+
+// beginning of sol/usertype_container.hpp
+
+namespace sol {
+
+ template <typename T>
+ struct usertype_container;
+
+ namespace container_detail {
+
+ template <typename T>
+ struct has_clear_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::clear));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_empty_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::empty));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_erase_after_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(
+ decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*);
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T, typename = void>
+ struct has_find_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*);
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_erase_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*);
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_erase_key_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::key_type>()))*);
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_find_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::find));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_index_of_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::index_of));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_insert_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::insert));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_erase_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::erase));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_index_set_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::index_set));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_index_get_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::index_get));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_set_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::set));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_get_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::get));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_at_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::at));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_pairs_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::pairs));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_ipairs_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::ipairs));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_next_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::next));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_add_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::add));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ struct has_traits_size_test {
+ private:
+ template <typename C>
+ static meta::sfinae_yes_t test(decltype(&C::size));
+ template <typename C>
+ static meta::sfinae_no_t test(...);
+
+ public:
+ static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
+ };
+
+ template <typename T>
+ using has_clear = meta::boolean<has_clear_test<T>::value>;
+
+ template <typename T>
+ using has_empty = meta::boolean<has_empty_test<T>::value>;
+
+ template <typename T>
+ using has_find = meta::boolean<has_find_test<T>::value>;
+
+ template <typename T>
+ using has_erase = meta::boolean<has_erase_test<T>::value>;
+
+ template <typename T>
+ using has_erase_key = meta::boolean<has_erase_key_test<T>::value>;
+
+ template <typename T>
+ using has_erase_after = meta::boolean<has_erase_after_test<T>::value>;
+
+ template <typename T>
+ using has_traits_get = meta::boolean<has_traits_get_test<T>::value>;
+
+ template <typename T>
+ using has_traits_at = meta::boolean<has_traits_at_test<T>::value>;
+
+ template <typename T>
+ using has_traits_set = meta::boolean<has_traits_set_test<T>::value>;
+
+ template <typename T>
+ using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>;
+
+ template <typename T>
+ using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>;
+
+ template <typename T>
+ using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>;
+
+ template <typename T>
+ using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>;
+
+ template <typename T>
+ using has_traits_next = meta::boolean<has_traits_next_test<T>::value>;
+
+ template <typename T>
+ using has_traits_add = meta::boolean<has_traits_add_test<T>::value>;
+
+ template <typename T>
+ using has_traits_size = meta::boolean<has_traits_size_test<T>::value>;
+
+ template <typename T>
+ using has_traits_clear = has_clear<T>;
+
+ template <typename T>
+ using has_traits_empty = has_empty<T>;
+
+ template <typename T>
+ using has_traits_find = meta::boolean<has_traits_find_test<T>::value>;
+
+ template <typename T>
+ using has_traits_index_of = meta::boolean<has_traits_index_of_test<T>::value>;
+
+ template <typename T>
+ using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>;
+
+ template <typename T>
+ using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>;
+
+ template <typename T>
+ struct is_forced_container : is_container<T> { };
+
+ template <typename T>
+ struct is_forced_container<as_container_t<T>> : std::true_type { };
+
+ template <typename T>
+ struct container_decay {
+ typedef T type;
+ };
+
+ template <typename T>
+ struct container_decay<as_container_t<T>> {
+ typedef T type;
+ };
+
+ template <typename T>
+ using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type;
+
+ template <typename T>
+ decltype(auto) get_key(std::false_type, T&& t) {
+ return std::forward<T>(t);
+ }
+
+ template <typename T>
+ decltype(auto) get_key(std::true_type, T&& t) {
+ return t.first;
+ }
+
+ template <typename T>
+ decltype(auto) get_value(std::false_type, T&& t) {
+ return std::forward<T>(t);
+ }
+
+ template <typename T>
+ decltype(auto) get_value(std::true_type, T&& t) {
+ return t.second;
+ }
+
+ template <typename X, typename = void>
+ struct usertype_container_default {
+ private:
+ typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
+
+ public:
+ typedef lua_nil_t iterator;
+ typedef iterator sentinel;
+ typedef lua_nil_t value_type;
+
+ static int at(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int get(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int index_get(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int set(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int index_set(lua_State* L_) {
+ return luaL_error(
+ L_, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int add(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int insert(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int find(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int index_of(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'index_of' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int size(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int clear(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int empty(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int erase(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int next(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int pairs(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static int ipairs(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ }
+
+ static iterator begin(lua_State* L_, T&) {
+ luaL_error(L_, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ return lua_nil;
+ }
+
+ static sentinel end(lua_State* L_, T&) {
+ luaL_error(L_, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
+ return lua_nil;
+ }
+ };
+
+ template <typename X>
+ struct usertype_container_default<X,
+ std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>,
+ meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> {
+ private:
+ using T = std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>>;
+
+ private:
+ using deferred_uc = usertype_container<X>;
+ using is_associative = meta::is_associative<T>;
+ using is_lookup = meta::is_lookup<T>;
+ using is_ordered = meta::is_ordered<T>;
+ using is_matched_lookup = meta::is_matched_lookup<T>;
+ using iterator = typename T::iterator;
+ using sentinel = meta::sentinel_or_t<T, iterator>;
+ using value_type = typename T::value_type;
+ typedef meta::conditional_t<is_matched_lookup::value, std::pair<value_type, value_type>,
+ meta::conditional_t<is_associative::value || is_lookup::value, value_type, std::pair<std::ptrdiff_t, value_type>>>
+ KV;
+ typedef typename KV::first_type K;
+ typedef typename KV::second_type V;
+ typedef meta::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K;
+ typedef decltype(*std::declval<iterator&>()) iterator_return;
+ typedef meta::conditional_t<is_associative::value || is_matched_lookup::value, std::add_lvalue_reference_t<V>,
+ meta::conditional_t<is_lookup::value, V, iterator_return>>
+ captured_type;
+ typedef typename meta::iterator_tag<iterator>::type iterator_category;
+ typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator;
+ typedef meta::conditional_t<is_input_iterator::value, V, decltype(detail::deref_move_only(std::declval<captured_type>()))> push_type;
+ typedef std::is_copy_assignable<V> is_copyable;
+ typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>> is_writable;
+ typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type;
+ typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral;
+
+ struct iter : detail::ebco<iterator, 0>, detail::ebco<sentinel, 1> {
+ using it_base = detail::ebco<iterator, 0>;
+ using sen_base = detail::ebco<sentinel, 1>;
+ main_reference keep_alive;
+ std::size_t index;
+
+ iter(lua_State* L_, int stack_index_, iterator it_, sentinel sen_) noexcept
+ : it_base(std::move(it_)), sen_base(std::move(sen_)), keep_alive(L_, stack_index_), index(0) {
+ }
+
+ iterator& it() noexcept {
+ return it_base::value();
+ }
+
+ const iterator& it() const noexcept {
+ return it_base::value();
+ }
+
+ sentinel& sen() noexcept {
+ return sen_base::value();
+ }
+
+ const sentinel& sen() const noexcept {
+ return sen_base::value();
+ }
+ };
+
+ static auto& get_src(lua_State* L_) {
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ auto p = stack::unqualified_check_get<T*>(L_, 1);
+ if (!p) {
+ luaL_error(L_,
+ "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
+ detail::demangle<T>().c_str());
+ }
+ if (p.value() == nullptr) {
+ luaL_error(
+ L_, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
+ }
+ return *p.value();
+#else
+ return stack::unqualified_get<T>(L_, 1);
+#endif // Safe getting with error
+ }
+
+ static detail::error_result at_category(std::input_iterator_tag, lua_State* L_, T& self, std::ptrdiff_t pos) {
+ pos += deferred_uc::index_adjustment(L_, self);
+ if (pos < 0) {
+ return stack::push(L_, lua_nil);
+ }
+ auto it = deferred_uc::begin(L_, self);
+ auto e = deferred_uc::end(L_, self);
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ while (pos > 0) {
+ --pos;
+ ++it;
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ }
+ return get_associative(is_associative(), L_, it);
+ }
+
+ static detail::error_result at_category(std::random_access_iterator_tag, lua_State* L_, T& self, std::ptrdiff_t pos) {
+ std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L_, self));
+ pos += deferred_uc::index_adjustment(L_, self);
+ if (pos < 0 || pos >= len) {
+ return stack::push(L_, lua_nil);
+ }
+ auto it = std::next(deferred_uc::begin(L_, self), pos);
+ return get_associative(is_associative(), L_, it);
+ }
+
+ static detail::error_result at_start(lua_State* L_, T& self, std::ptrdiff_t pos) {
+ return at_category(iterator_category(), L_, self, pos);
+ }
+
+ template <typename Iter>
+ static detail::error_result get_associative(std::true_type, lua_State* L_, Iter& it) {
+ decltype(auto) v = *it;
+ return stack::stack_detail::push_reference<push_type>(L_, detail::deref_move_only(v.second));
+ }
+
+ template <typename Iter>
+ static detail::error_result get_associative(std::false_type, lua_State* L_, Iter& it) {
+ return stack::stack_detail::push_reference<push_type>(L_, detail::deref_move_only(*it));
+ }
+
+ static detail::error_result get_category(std::input_iterator_tag, lua_State* L_, T& self, K& key) {
+ key = static_cast<K>(key + deferred_uc::index_adjustment(L_, self));
+ if (key < 0) {
+ return stack::push(L_, lua_nil);
+ }
+ auto it = deferred_uc::begin(L_, self);
+ auto e = deferred_uc::end(L_, self);
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ while (key > 0) {
+ --key;
+ ++it;
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ }
+ return get_associative(is_associative(), L_, it);
+ }
+
+ static detail::error_result get_category(std::random_access_iterator_tag, lua_State* L_, T& self, K& key) {
+ std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L_, self));
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ if (key < 0 || key >= len) {
+ return stack::push(L_, lua_nil);
+ }
+ auto it = std::next(deferred_uc::begin(L_, self), key);
+ return get_associative(is_associative(), L_, it);
+ }
+
+ static detail::error_result get_it(std::true_type, lua_State* L_, T& self, K& key) {
+ return get_category(iterator_category(), L_, self, key);
+ }
+
+ static detail::error_result get_comparative(std::true_type, lua_State* L_, T& self, K& key) {
+ auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
+ auto e = deferred_uc::end(L_, self);
+ auto it = std::find_if(deferred_uc::begin(L_, self), e, std::ref(fx));
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ return get_associative(is_associative(), L_, it);
+ }
+
+ static detail::error_result get_comparative(std::false_type, lua_State*, T&, K&) {
+ return detail::error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'",
+ detail::demangle<T>().data(),
+ detail::demangle<K>().data());
+ }
+
+ static detail::error_result get_it(std::false_type, lua_State* L_, T& self, K& key) {
+ return get_comparative(meta::supports_op_equal<K, key_type>(), L_, self, key);
+ }
+
+ static detail::error_result set_associative(std::true_type, iterator& it, stack_object value) {
+ decltype(auto) v = *it;
+ v.second = value.as<V>();
+ return {};
+ }
+
+ static detail::error_result set_associative(std::false_type, iterator& it, stack_object value) {
+ decltype(auto) v = *it;
+ v = value.as<V>();
+ return {};
+ }
+
+ static detail::error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) {
+ return set_associative(is_associative(), it, std::move(value));
+ }
+
+ static detail::error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) {
+ return detail::error_result(
+ "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
+ }
+
+ static detail::error_result set_category(std::input_iterator_tag, lua_State* L_, T& self, stack_object okey, stack_object value) {
+ decltype(auto) key = okey.as<K>();
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ auto e = deferred_uc::end(L_, self);
+ auto it = deferred_uc::begin(L_, self);
+ auto backit = it;
+ for (; key > 0 && it != e; --key, ++it) {
+ backit = it;
+ }
+ if (it == e) {
+ if (key == 0) {
+ return add_copyable(is_copyable(), L_, self, std::move(value), meta::has_insert_after<T>::value ? backit : it);
+ }
+ return detail::error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ return set_writable(is_writable(), L_, self, it, std::move(value));
+ }
+
+ static detail::error_result set_category(std::random_access_iterator_tag, lua_State* L_, T& self, stack_object okey, stack_object value) {
+ decltype(auto) key = okey.as<K>();
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ if (key < 0) {
+ return detail::error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L_, self));
+ if (key == len) {
+ return add_copyable(is_copyable(), L_, self, std::move(value));
+ }
+ else if (key >= len) {
+ return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ auto it = std::next(deferred_uc::begin(L_, self), key);
+ return set_writable(is_writable(), L_, self, it, std::move(value));
+ }
+
+ static detail::error_result set_comparative(std::true_type, lua_State* L_, T& self, stack_object okey, stack_object value) {
+ decltype(auto) key = okey.as<K>();
+ if (!is_writable::value) {
+ return detail::error_result(
+ "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
+ }
+ auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
+ auto e = deferred_uc::end(L_, self);
+ auto it = std::find_if(deferred_uc::begin(L_, self), e, std::ref(fx));
+ if (it == e) {
+ return {};
+ }
+ return set_writable(is_writable(), L_, self, it, std::move(value));
+ }
+
+ static detail::error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) {
+ return detail::error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key",
+ detail::demangle<T>().data(),
+ detail::demangle<K>().data());
+ }
+
+ template <typename Iter>
+ static detail::error_result set_associative_insert(std::true_type, lua_State*, T& self, Iter& it, K& key, stack_object value) {
+ if constexpr (meta::has_insert_with_iterator<T>::value) {
+ self.insert(it, value_type(key, value.as<V>()));
+ return {};
+ }
+ else if constexpr (meta::has_insert<T>::value) {
+ self.insert(value_type(key, value.as<V>()));
+ return {};
+ }
+ else {
+ (void)self;
+ (void)it;
+ (void)key;
+ return detail::error_result(
+ "cannot call 'set' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
+ }
+ }
+
+ template <typename Iter>
+ static detail::error_result set_associative_insert(std::false_type, lua_State*, T& self, Iter& it, K& key, stack_object) {
+ if constexpr (meta::has_insert_with_iterator<T>::value) {
+ self.insert(it, key);
+ return {};
+ }
+ else if constexpr (meta::has_insert<T>::value) {
+ self.insert(key);
+ return {};
+ }
+ else {
+ (void)self;
+ (void)it;
+ (void)key;
+ return detail::error_result(
+ "cannot call 'set' on '%s': there is no 'insert' function on this non-associative type", detail::demangle<T>().c_str());
+ }
+ }
+
+ static detail::error_result set_associative_find(std::true_type, lua_State* L_, T& self, stack_object okey, stack_object value) {
+ decltype(auto) key = okey.as<K>();
+ auto it = self.find(key);
+ if (it == deferred_uc::end(L_, self)) {
+ return set_associative_insert(is_associative(), L_, self, it, key, std::move(value));
+ }
+ return set_writable(is_writable(), L_, self, it, std::move(value));
+ }
+
+ static detail::error_result set_associative_find(std::false_type, lua_State* L_, T& self, stack_object key, stack_object value) {
+ return set_comparative(meta::supports_op_equal<K, key_type>(), L_, self, std::move(key), std::move(value));
+ }
+
+ static detail::error_result set_it(std::true_type, lua_State* L_, T& self, stack_object key, stack_object value) {
+ return set_category(iterator_category(), L_, self, std::move(key), std::move(value));
+ }
+
+ static detail::error_result set_it(std::false_type, lua_State* L_, T& self, stack_object key, stack_object value) {
+ return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L_, self, std::move(key), std::move(value));
+ }
+
+ template <bool idx_of = false>
+ static detail::error_result find_has_associative_lookup(std::true_type, lua_State* L_, T& self) {
+ if constexpr (!is_ordered::value && idx_of) {
+ (void)L_;
+ (void)self;
+ return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
+ }
+ else {
+ decltype(auto) key = stack::unqualified_get<K>(L_, 2);
+ auto it = self.find(key);
+ if (it == deferred_uc::end(L_, self)) {
+ return stack::push(L_, lua_nil);
+ }
+ if constexpr (idx_of) {
+ auto dist = std::distance(deferred_uc::begin(L_, self), it);
+ dist -= deferred_uc::index_adjustment(L_, self);
+ return stack::push(L_, dist);
+ }
+ else {
+ return get_associative(is_associative(), L_, it);
+ }
+ }
+ }
+
+ template <bool idx_of = false>
+ static detail::error_result find_has_associative_lookup(std::false_type, lua_State* L_, T& self) {
+ if constexpr (!is_ordered::value && idx_of) {
+ (void)L_;
+ (void)self;
+ return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
+ }
+ else {
+ decltype(auto) value = stack::unqualified_get<V>(L_, 2);
+ auto it = self.find(value);
+ if (it == deferred_uc::end(L_, self)) {
+ return stack::push(L_, lua_nil);
+ }
+ if constexpr (idx_of) {
+ auto dist = std::distance(deferred_uc::begin(L_, self), it);
+ dist -= deferred_uc::index_adjustment(L_, self);
+ return stack::push(L_, dist);
+ }
+ else {
+ return get_associative(is_associative(), L_, it);
+ }
+ }
+ }
+
+ template <bool idx_of = false>
+ static detail::error_result find_has(std::true_type, lua_State* L_, T& self) {
+ return find_has_associative_lookup<idx_of>(meta::any<is_lookup, is_associative>(), L_, self);
+ }
+
+ template <typename Iter>
+ static detail::error_result find_associative_lookup(std::true_type, lua_State* L_, T&, Iter& it, std::size_t) {
+ return get_associative(is_associative(), L_, it);
+ }
+
+ template <typename Iter>
+ static detail::error_result find_associative_lookup(std::false_type, lua_State* L_, T& self, Iter&, std::size_t idx) {
+ idx = static_cast<std::size_t>(static_cast<std::ptrdiff_t>(idx) - deferred_uc::index_adjustment(L_, self));
+ return stack::push(L_, idx);
+ }
+
+ template <bool = false>
+ static detail::error_result find_comparative(std::false_type, lua_State*, T&) {
+ return detail::error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable",
+ detail::demangle<T>().c_str());
+ }
+
+ template <bool idx_of = false>
+ static detail::error_result find_comparative(std::true_type, lua_State* L_, T& self) {
+ decltype(auto) value = stack::unqualified_get<V>(L_, 2);
+ auto it = deferred_uc::begin(L_, self);
+ auto e = deferred_uc::end(L_, self);
+ std::size_t idx = 0;
+ for (;; ++it, ++idx) {
+ if (it == e) {
+ return stack::push(L_, lua_nil);
+ }
+ if (value == get_value(is_associative(), *it)) {
+ break;
+ }
+ }
+ return find_associative_lookup(meta::all<meta::boolean<!idx_of>, meta::any<is_lookup, is_associative>>(), L_, self, it, idx);
+ }
+
+ template <bool idx_of = false>
+ static detail::error_result find_has(std::false_type, lua_State* L_, T& self) {
+ return find_comparative<idx_of>(meta::supports_op_equal<V>(), L_, self);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_insert_after(std::false_type, lua_State* L_, T& self, stack_object value, Iter&) {
+ return add_insert_after(std::false_type(), L_, self, value);
+ }
+
+ static detail::error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) {
+ return detail::error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data());
+ }
+
+ template <typename Iter>
+ static detail::error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
+ self.insert_after(pos, value.as<V>());
+ return {};
+ }
+
+ static detail::error_result add_insert_after(std::true_type, lua_State* L_, T& self, stack_object value) {
+ auto backit = self.before_begin();
+ {
+ auto e = deferred_uc::end(L_, self);
+ for (auto it = deferred_uc::begin(L_, self); it != e; ++backit, ++it) { }
+ }
+ return add_insert_after(std::true_type(), L_, self, value, backit);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
+ self.insert(pos, value.as<V>());
+ return {};
+ }
+
+ static detail::error_result add_insert(std::true_type, lua_State* L_, T& self, stack_object value) {
+ auto pos = deferred_uc::end(L_, self);
+ return add_insert(std::true_type(), L_, self, value, pos);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_insert(std::false_type, lua_State* L_, T& self, stack_object value, Iter& pos) {
+ return add_insert_after(meta::has_insert_after<T>(), L_, self, std::move(value), pos);
+ }
+
+ static detail::error_result add_insert(std::false_type, lua_State* L_, T& self, stack_object value) {
+ return add_insert_after(meta::has_insert_after<T>(), L_, self, std::move(value));
+ }
+
+ template <typename Iter>
+ static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, Iter&) {
+ self.push_back(value.as<V>());
+ return {};
+ }
+
+ static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) {
+ self.push_back(value.as<V>());
+ return {};
+ }
+
+ template <typename Iter>
+ static detail::error_result add_push_back(std::false_type, lua_State* L_, T& self, stack_object value, Iter& pos) {
+ return add_insert(
+ std::integral_constant < bool, meta::has_insert<T>::value || meta::has_insert_with_iterator<T>::value > (), L_, self, value, pos);
+ }
+
+ static detail::error_result add_push_back(std::false_type, lua_State* L_, T& self, stack_object value) {
+ return add_insert(
+ std::integral_constant < bool, meta::has_insert<T>::value || meta::has_insert_with_iterator<T>::value > (), L_, self, value);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_associative(std::true_type, lua_State* L_, T& self, stack_object key, Iter& pos) {
+ if constexpr (meta::has_insert_with_iterator<T>::value) {
+ self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L_, 3)));
+ return {};
+ }
+ else if constexpr (meta::has_insert<T>::value) {
+ self.insert(value_type(key.as<K>(), stack::unqualified_get<V>(L_, 3)));
+ return {};
+ }
+ else {
+ (void)L_;
+ (void)self;
+ (void)key;
+ (void)pos;
+ return detail::error_result(
+ "cannot call 'insert' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
+ }
+ }
+
+ static detail::error_result add_associative(std::true_type, lua_State* L_, T& self, stack_object key) {
+ auto pos = deferred_uc::end(L_, self);
+ return add_associative(std::true_type(), L_, self, std::move(key), pos);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_associative(std::false_type, lua_State* L_, T& self, stack_object value, Iter& pos) {
+ return add_push_back(meta::has_push_back<T>(), L_, self, value, pos);
+ }
+
+ static detail::error_result add_associative(std::false_type, lua_State* L_, T& self, stack_object value) {
+ return add_push_back(meta::has_push_back<T>(), L_, self, value);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_copyable(std::true_type, lua_State* L_, T& self, stack_object value, Iter& pos) {
+ return add_associative(is_associative(), L_, self, std::move(value), pos);
+ }
+
+ static detail::error_result add_copyable(std::true_type, lua_State* L_, T& self, stack_object value) {
+ return add_associative(is_associative(), L_, self, value);
+ }
+
+ template <typename Iter>
+ static detail::error_result add_copyable(std::false_type, lua_State* L_, T& self, stack_object value, Iter&) {
+ return add_copyable(std::false_type(), L_, self, std::move(value));
+ }
+
+ static detail::error_result add_copyable(std::false_type, lua_State*, T&, stack_object) {
+ return detail::error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data());
+ }
+
+ static detail::error_result insert_lookup(std::true_type, lua_State* L_, T& self, stack_object, stack_object value) {
+ // TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity?
+ return add_copyable(std::true_type(), L_, self, std::move(value));
+ }
+
+ static detail::error_result insert_lookup(std::false_type, lua_State* L_, T& self, stack_object where, stack_object value) {
+ auto it = deferred_uc::begin(L_, self);
+ auto key = where.as<K>();
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ std::advance(it, key);
+ self.insert(it, value.as<V>());
+ return {};
+ }
+
+ static detail::error_result insert_after_has(std::true_type, lua_State* L_, T& self, stack_object where, stack_object value) {
+ auto key = where.as<K>();
+ auto backit = self.before_begin();
+ {
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ auto e = deferred_uc::end(L_, self);
+ for (auto it = deferred_uc::begin(L_, self); key > 0; ++backit, ++it, --key) {
+ if (backit == e) {
+ return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ }
+ }
+ self.insert_after(backit, value.as<V>());
+ return {};
+ }
+
+ static detail::error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) {
+ return detail::error_result(
+ "cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data());
+ }
+
+ static detail::error_result insert_has(std::true_type, lua_State* L_, T& self, stack_object key, stack_object value) {
+ return insert_lookup(meta::any<is_associative, is_lookup>(), L_, self, std::move(key), std::move(value));
+ }
+
+ static detail::error_result insert_has(std::false_type, lua_State* L_, T& self, stack_object where, stack_object value) {
+ return insert_after_has(meta::has_insert_after<T>(), L_, self, where, value);
+ }
+
+ static detail::error_result insert_copyable(std::true_type, lua_State* L_, T& self, stack_object key, stack_object value) {
+ return insert_has(std::integral_constant < bool,
+ meta::has_insert<T>::value || meta::has_insert_with_iterator<T>::value > (),
+ L_,
+ self,
+ std::move(key),
+ std::move(value));
+ }
+
+ static detail::error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) {
+ return detail::error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data());
+ }
+
+ static detail::error_result erase_integral(std::true_type, lua_State* L_, T& self, K& key) {
+ auto it = deferred_uc::begin(L_, self);
+ key = (static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ std::advance(it, key);
+ self.erase(it);
+
+ return {};
+ }
+
+ static detail::error_result erase_integral(std::false_type, lua_State* L_, T& self, const K& key) {
+ auto fx = [&](const value_type& r) -> bool { return key == r; };
+ auto e = deferred_uc::end(L_, self);
+ auto it = std::find_if(deferred_uc::begin(L_, self), e, std::ref(fx));
+ if (it == e) {
+ return {};
+ }
+ self.erase(it);
+
+ return {};
+ }
+
+ static detail::error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) {
+ self.erase(key);
+ return {};
+ }
+
+ static detail::error_result erase_associative_lookup(std::false_type, lua_State* L_, T& self, K& key) {
+ return erase_integral(std::is_integral<K>(), L_, self, key);
+ }
+
+ static detail::error_result erase_after_has(std::true_type, lua_State* L_, T& self, K& key) {
+ auto backit = self.before_begin();
+ {
+ key = static_cast<K>(static_cast<std::ptrdiff_t>(key) + deferred_uc::index_adjustment(L_, self));
+ auto e = deferred_uc::end(L_, self);
+ for (auto it = deferred_uc::begin(L_, self); key > 0; ++backit, ++it, --key) {
+ if (backit == e) {
+ return detail::error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str());
+ }
+ }
+ }
+ self.erase_after(backit);
+ return {};
+ }
+
+ static detail::error_result erase_after_has(std::false_type, lua_State*, T&, const K&) {
+ return detail::error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str());
+ }
+
+ static detail::error_result erase_key_has(std::true_type, lua_State* L_, T& self, K& key) {
+ return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L_, self, key);
+ }
+
+ static detail::error_result erase_key_has(std::false_type, lua_State* L_, T& self, K& key) {
+ return erase_after_has(has_erase_after<T>(), L_, self, key);
+ }
+
+ static detail::error_result erase_has(std::true_type, lua_State* L_, T& self, K& key) {
+ return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L_, self, key);
+ }
+
+ static detail::error_result erase_has(std::false_type, lua_State* L_, T& self, K& key) {
+ return erase_key_has(has_erase_key<T>(), L_, self, key);
+ }
+
+ static auto size_has(std::false_type, lua_State* L_, T& self) {
+ return std::distance(deferred_uc::begin(L_, self), deferred_uc::end(L_, self));
+ }
+
+ static auto size_has(std::true_type, lua_State*, T& self) {
+ return self.size();
+ }
+
+ static void clear_has(std::true_type, lua_State*, T& self) {
+ self.clear();
+ }
+
+ static void clear_has(std::false_type, lua_State* L_, T&) {
+ luaL_error(L_, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str());
+ }
+
+ static bool empty_has(std::true_type, lua_State*, T& self) {
+ return self.empty();
+ }
+
+ static bool empty_has(std::false_type, lua_State* L_, T& self) {
+ return deferred_uc::begin(L_, self) == deferred_uc::end(L_, self);
+ }
+
+ static detail::error_result get_associative_find(std::true_type, lua_State* L_, T& self, K& key) {
+ auto it = self.find(key);
+ if (it == deferred_uc::end(L_, self)) {
+ stack::push(L_, lua_nil);
+ return {};
+ }
+ return get_associative(std::true_type(), L_, it);
+ }
+
+ static detail::error_result get_associative_find(std::false_type, lua_State* L_, T& self, K& key) {
+ return get_it(is_linear_integral(), L_, self, key);
+ }
+
+ static detail::error_result get_start(lua_State* L_, T& self, K& key) {
+ return get_associative_find(std::integral_constant < bool, is_associative::value&& has_find<T>::value > (), L_, self, key);
+ }
+
+ static detail::error_result set_start(lua_State* L_, T& self, stack_object key, stack_object value) {
+ return set_it(is_linear_integral(), L_, self, std::move(key), std::move(value));
+ }
+
+ static std::size_t size_start(lua_State* L_, T& self) {
+ return static_cast<std::size_t>(size_has(meta::has_size<T>(), L_, self));
+ }
+
+ static void clear_start(lua_State* L_, T& self) {
+ clear_has(has_clear<T>(), L_, self);
+ }
+
+ static bool empty_start(lua_State* L_, T& self) {
+ return empty_has(has_empty<T>(), L_, self);
+ }
+
+ static detail::error_result erase_start(lua_State* L_, T& self, K& key) {
+ return erase_has(has_erase<T>(), L_, self, key);
+ }
+
+ template <bool ip>
+ static int next_associative(std::true_type, lua_State* L_) {
+ iter& i = stack::unqualified_get<user<iter>>(L_, 1);
+ auto& it = i.it;
+ auto& end = i.end;
+ if (it == end) {
+ return stack::push(L_, lua_nil);
+ }
+ int p;
+ if constexpr (ip) {
+ ++i.index;
+ p = stack::push_reference(L_, i.index);
+ }
+ else {
+ p = stack::push_reference(L_, it->first);
+ }
+ p += stack::stack_detail::push_reference<push_type>(L_, detail::deref_move_only(it->second));
+ std::advance(it, 1);
+ return p;
+ }
+
+ template <bool>
+ static int next_associative(std::false_type, lua_State* L_) {
+ iter& i = stack::unqualified_get<user<iter>>(L_, 1);
+ auto& it = i.it();
+ auto& end = i.sen();
+ next_K k = stack::unqualified_get<next_K>(L_, 2);
+ if (it == end) {
+ return stack::push(L_, lua_nil);
+ }
+ int p;
+ if constexpr (std::is_integral_v<next_K>) {
+ p = stack::push_reference(L_, k + 1);
+ }
+ else {
+ p = stack::stack_detail::push_reference(L_, k + 1);
+ }
+ p += stack::stack_detail::push_reference<push_type>(L_, detail::deref_move_only(*it));
+ std::advance(it, 1);
+ return p;
+ }
+
+ template <bool ip>
+ static int next_iter(lua_State* L_) {
+ typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
+ return next_associative<ip>(is_assoc(), L_);
+ }
+
+ template <bool ip>
+ static int pairs_associative(std::true_type, lua_State* L_) {
+ auto& src = get_src(L_);
+ stack::push(L_, next_iter<ip>);
+ stack::push<user<iter>>(L_, L_, 1, deferred_uc::begin(L_, src), deferred_uc::begin(L_, src));
+ stack::push(L_, lua_nil);
+ return 3;
+ }
+
+ template <bool ip>
+ static int pairs_associative(std::false_type, lua_State* L_) {
+ auto& src = get_src(L_);
+ stack::push(L_, next_iter<ip>);
+ stack::push<user<iter>>(L_, L_, 1, deferred_uc::begin(L_, src), deferred_uc::end(L_, src));
+ stack::push(L_, 0);
+ return 3;
+ }
+
+ public:
+ static int at(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er;
+ {
+ std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L_, 2);
+ er = at_start(L_, self, pos);
+ }
+ return handle_errors(L_, er);
+ }
+
+ static int get(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er;
+ {
+ decltype(auto) key = stack::unqualified_get<K>(L_);
+ er = get_start(L_, self, key);
+ }
+ return handle_errors(L_, er);
+ }
+
+ static int index_get(lua_State* L_) {
+ return get(L_);
+ }
+
+ static int set(lua_State* L_) {
+ stack_object value = stack_object(L_, raw_index(3));
+ if constexpr (is_linear_integral::value) {
+ // for non-associative containers,
+ // erasure only happens if it is the
+ // last index in the container
+ auto key = stack::get<K>(L_, 2);
+ auto self_size = deferred_uc::size(L_);
+ if (key == static_cast<K>(self_size)) {
+ if (type_of(L_, 3) == type::lua_nil) {
+ return erase(L_);
+ }
+ }
+ }
+ else {
+ if (type_of(L_, 3) == type::lua_nil) {
+ return erase(L_);
+ }
+ }
+ auto& self = get_src(L_);
+ detail::error_result er = set_start(L_, self, stack_object(L_, raw_index(2)), std::move(value));
+ return handle_errors(L_, er);
+ }
+
+ static int index_set(lua_State* L_) {
+ return set(L_);
+ }
+
+ static int add(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er = add_copyable(is_copyable(), L_, self, stack_object(L_, raw_index(2)));
+ return handle_errors(L_, er);
+ }
+
+ static int insert(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er = insert_copyable(is_copyable(), L_, self, stack_object(L_, raw_index(2)), stack_object(L_, raw_index(3)));
+ return handle_errors(L_, er);
+ }
+
+ static int find(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er = find_has(has_find<T>(), L_, self);
+ return handle_errors(L_, er);
+ }
+
+ static int index_of(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er = find_has<true>(has_find<T>(), L_, self);
+ return handle_errors(L_, er);
+ }
+
+ static iterator begin(lua_State*, T& self) {
+ if constexpr (meta::has_begin_end_v<T>) {
+ return self.begin();
+ }
+ else {
+ using std::begin;
+ return begin(self);
+ }
+ }
+
+ static sentinel end(lua_State*, T& self) {
+ if constexpr (meta::has_begin_end_v<T>) {
+ return self.end();
+ }
+ else {
+ using std::end;
+ return end(self);
+ }
+ }
+
+ static int size(lua_State* L_) {
+ auto& self = get_src(L_);
+ std::size_t r = size_start(L_, self);
+ return stack::push(L_, r);
+ }
+
+ static int clear(lua_State* L_) {
+ auto& self = get_src(L_);
+ clear_start(L_, self);
+ return 0;
+ }
+
+ static int erase(lua_State* L_) {
+ auto& self = get_src(L_);
+ detail::error_result er;
+ {
+ decltype(auto) key = stack::unqualified_get<K>(L_, 2);
+ er = erase_start(L_, self, key);
+ }
+ return handle_errors(L_, er);
+ }
+
+ static int empty(lua_State* L_) {
+ auto& self = get_src(L_);
+ return stack::push(L_, empty_start(L_, self));
+ }
+
+ static std::ptrdiff_t index_adjustment(lua_State*, T&) {
+ return static_cast<std::ptrdiff_t>((SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_));
+ }
+
+ static int pairs(lua_State* L_) {
+ typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
+ return pairs_associative<false>(is_assoc(), L_);
+ }
+
+ static int ipairs(lua_State* L_) {
+ typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
+ return pairs_associative<true>(is_assoc(), L_);
+ }
+
+ static int next(lua_State* L_) {
+ return stack::push(L_, next_iter<false>);
+ }
+ };
+
+ template <typename X>
+ struct usertype_container_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> {
+ private:
+ typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
+ typedef usertype_container<X> deferred_uc;
+
+ public:
+ typedef std::remove_extent_t<T> value_type;
+ typedef value_type* iterator;
+ typedef iterator sentinel;
+
+ private:
+ struct iter : detail::ebco<iterator, 0>, detail::ebco<sentinel, 1> {
+ using it_base = detail::ebco<iterator, 0>;
+ using sen_base = detail::ebco<sentinel, 1>;
+ reference keep_alive;
+
+ iter(lua_State* L_, int stack_index_, iterator it_, sentinel sen_) noexcept
+ : it_base(std::move(it_)), sen_base(std::move(sen_)), keep_alive(sol::main_thread(L_, L_), stack_index_) {
+ }
+
+ iterator& it() noexcept {
+ return it_base::value();
+ }
+
+ const iterator& it() const noexcept {
+ return it_base::value();
+ }
+
+ sentinel& sen() noexcept {
+ return sen_base::value();
+ }
+
+ const sentinel& sen() const noexcept {
+ return sen_base::value();
+ }
+ };
+
+ static auto& get_src(lua_State* L_) {
+ auto p = stack::unqualified_check_get<T*>(L_, 1);
+#if SOL_IS_ON(SOL_SAFE_USERTYPE)
+ if (!p) {
+ luaL_error(L_,
+ "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
+ detail::demangle<T>().c_str());
+ }
+ if (p.value() == nullptr) {
+ luaL_error(
+ L_, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
+ }
+#endif // Safe getting with error
+ return *p.value();
+ }
+
+ static int find(std::true_type, lua_State* L_) {
+ T& self = get_src(L_);
+ decltype(auto) value = stack::unqualified_get<value_type>(L_, 2);
+ std::size_t N = std::extent<T>::value;
+ for (std::size_t idx = 0; idx < N; ++idx) {
+ using v_t = std::add_const_t<decltype(self[idx])>;
+ v_t v = self[idx];
+ if (v == value) {
+ idx = static_cast<std::size_t>(static_cast<std::ptrdiff_t>(idx) - deferred_uc::index_adjustment(L_, self));
+ return stack::push(L_, idx);
+ }
+ }
+ return stack::push(L_, lua_nil);
+ }
+
+ static int find(std::false_type, lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str());
+ }
+
+ static int next_iter(lua_State* L_) {
+ iter& i = stack::unqualified_get<user<iter>>(L_, 1);
+ auto& it = i.it();
+ auto& end = i.sen();
+ std::size_t k = stack::unqualified_get<std::size_t>(L_, 2);
+ if (it == end) {
+ return 0;
+ }
+ int p;
+ p = stack::push(L_, k + 1);
+ p += stack::push_reference(L_, detail::deref_move_only(*it));
+ std::advance(it, 1);
+ return p;
+ }
+
+ public:
+ static int clear(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str());
+ }
+
+ static int erase(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str());
+ }
+
+ static int add(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str());
+ }
+
+ static int insert(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str());
+ }
+
+ static int at(lua_State* L_) {
+ return get(L_);
+ }
+
+ static int get(lua_State* L_) {
+ T& self = get_src(L_);
+ std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L_, 2);
+ idx += deferred_uc::index_adjustment(L_, self);
+ if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) {
+ return stack::push(L_, lua_nil);
+ }
+ return stack::push_reference(L_, detail::deref_move_only(self[idx]));
+ }
+
+ static int index_get(lua_State* L_) {
+ return get(L_);
+ }
+
+ static int set(lua_State* L_) {
+ T& self = get_src(L_);
+ std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L_, 2);
+ idx += deferred_uc::index_adjustment(L_, self);
+ if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) {
+ return luaL_error(L_, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ if (idx < 0) {
+ return luaL_error(L_, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
+ }
+ self[idx] = stack::unqualified_get<value_type>(L_, 3);
+ return 0;
+ }
+
+ static int index_set(lua_State* L_) {
+ return set(L_);
+ }
+
+ static int index_of(lua_State* L_) {
+ return find(L_);
+ }
+
+ static int find(lua_State* L_) {
+ return find(meta::supports_op_equal<value_type, value_type>(), L_);
+ }
+
+ static int size(lua_State* L_) {
+ return stack::push(L_, std::extent<T>::value);
+ }
+
+ static int empty(lua_State* L_) {
+ return stack::push(L_, std::extent<T>::value > 0);
+ }
+
+ static int pairs(lua_State* L_) {
+ auto& src = get_src(L_);
+ stack::push(L_, next_iter);
+ stack::push<user<iter>>(L_, L_, 1, deferred_uc::begin(L_, src), deferred_uc::end(L_, src));
+ stack::push(L_, 0);
+ return 3;
+ }
+
+ static int ipairs(lua_State* L_) {
+ return pairs(L_);
+ }
+
+ static int next(lua_State* L_) {
+ return stack::push(L_, next_iter);
+ }
+
+ static std::ptrdiff_t index_adjustment(lua_State*, T&) {
+ return (SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_);
+ }
+
+ static iterator begin(lua_State*, T& self) {
+ return std::addressof(self[0]);
+ }
+
+ static sentinel end(lua_State*, T& self) {
+ return std::addressof(self[0]) + std::extent<T>::value;
+ }
+ };
+
+ template <typename X>
+ struct usertype_container_default<usertype_container<X>> : usertype_container_default<X> { };
+ } // namespace container_detail
+
+ template <typename T>
+ struct usertype_container : container_detail::usertype_container_default<T> { };
+
+} // namespace sol
+
+// end of sol/usertype_container.hpp
+
+#include <unordered_map>
+
+namespace sol {
+
+ namespace container_detail {
+ template <typename X>
+ struct u_c_launch {
+ using T = std::remove_pointer_t<meta::unqualified_t<X>>;
+ using uc = usertype_container<T>;
+ using default_uc = usertype_container_default<T>;
+
+ static inline int real_index_get_traits(std::true_type, lua_State* L) {
+ return uc::index_get(L);
+ }
+
+ static inline int real_index_get_traits(std::false_type, lua_State* L) {
+ return default_uc::index_get(L);
+ }
+
+ static inline int real_index_call(lua_State* L) {
+ static const std::unordered_map<string_view, lua_CFunction> calls {
+ { "at", &real_at_call },
+ { "get", &real_get_call },
+ { "set", &real_set_call },
+ { "size", &real_length_call },
+ { "add", &real_add_call },
+ { "empty", &real_empty_call },
+ { "insert", &real_insert_call },
+ { "clear", &real_clear_call },
+ { "find", &real_find_call },
+ { "index_of", &real_index_of_call },
+ { "erase", &real_erase_call },
+ { "pairs", &pairs_call },
+ { "next", &next_call },
+ };
+ auto maybenameview = stack::unqualified_check_get<string_view>(L, 2);
+ if (maybenameview) {
+ const string_view& name = *maybenameview;
+ auto it = calls.find(name);
+ if (it != calls.cend()) {
+ return stack::push(L, it->second);
+ }
+ }
+ return real_index_get_traits(container_detail::has_traits_index_get<uc>(), L);
+ }
+
+ static inline int real_at_traits(std::true_type, lua_State* L) {
+ return uc::at(L);
+ }
+
+ static inline int real_at_traits(std::false_type, lua_State* L) {
+ return default_uc::at(L);
+ }
+
+ static inline int real_at_call(lua_State* L) {
+ return real_at_traits(container_detail::has_traits_at<uc>(), L);
+ }
+
+ static inline int real_get_traits(std::true_type, lua_State* L) {
+ return uc::get(L);
+ }
+
+ static inline int real_get_traits(std::false_type, lua_State* L) {
+ return default_uc::get(L);
+ }
+
+ static inline int real_get_call(lua_State* L) {
+ return real_get_traits(container_detail::has_traits_get<uc>(), L);
+ }
+
+ static inline int real_set_traits(std::true_type, lua_State* L) {
+ return uc::set(L);
+ }
+
+ static inline int real_set_traits(std::false_type, lua_State* L) {
+ return default_uc::set(L);
+ }
+
+ static inline int real_set_call(lua_State* L) {
+ return real_set_traits(container_detail::has_traits_set<uc>(), L);
+ }
+
+ static inline int real_index_set_traits(std::true_type, lua_State* L) {
+ return uc::index_set(L);
+ }
+
+ static inline int real_index_set_traits(std::false_type, lua_State* L) {
+ return default_uc::index_set(L);
+ }
+
+ static inline int real_new_index_call(lua_State* L) {
+ return real_index_set_traits(container_detail::has_traits_index_set<uc>(), L);
+ }
+
+ static inline int real_pairs_traits(std::true_type, lua_State* L) {
+ return uc::pairs(L);
+ }
+
+ static inline int real_pairs_traits(std::false_type, lua_State* L) {
+ return default_uc::pairs(L);
+ }
+
+ static inline int real_pairs_call(lua_State* L) {
+ return real_pairs_traits(container_detail::has_traits_pairs<uc>(), L);
+ }
+
+ static inline int real_ipairs_traits(std::true_type, lua_State* L) {
+ return uc::ipairs(L);
+ }
+
+ static inline int real_ipairs_traits(std::false_type, lua_State* L) {
+ return default_uc::ipairs(L);
+ }
+
+ static inline int real_ipairs_call(lua_State* L) {
+ return real_ipairs_traits(container_detail::has_traits_ipairs<uc>(), L);
+ }
+
+ static inline int real_next_traits(std::true_type, lua_State* L) {
+ return uc::next(L);
+ }
+
+ static inline int real_next_traits(std::false_type, lua_State* L) {
+ return default_uc::next(L);
+ }
+
+ static inline int real_next_call(lua_State* L) {
+ return real_next_traits(container_detail::has_traits_next<uc>(), L);
+ }
+
+ static inline int real_size_traits(std::true_type, lua_State* L) {
+ return uc::size(L);
+ }
+
+ static inline int real_size_traits(std::false_type, lua_State* L) {
+ return default_uc::size(L);
+ }
+
+ static inline int real_length_call(lua_State* L) {
+ return real_size_traits(container_detail::has_traits_size<uc>(), L);
+ }
+
+ static inline int real_add_traits(std::true_type, lua_State* L) {
+ return uc::add(L);
+ }
+
+ static inline int real_add_traits(std::false_type, lua_State* L) {
+ return default_uc::add(L);
+ }
+
+ static inline int real_add_call(lua_State* L) {
+ return real_add_traits(container_detail::has_traits_add<uc>(), L);
+ }
+
+ static inline int real_insert_traits(std::true_type, lua_State* L) {
+ return uc::insert(L);
+ }
+
+ static inline int real_insert_traits(std::false_type, lua_State* L) {
+ return default_uc::insert(L);
+ }
+
+ static inline int real_insert_call(lua_State* L) {
+ return real_insert_traits(container_detail::has_traits_insert<uc>(), L);
+ }
+
+ static inline int real_clear_traits(std::true_type, lua_State* L) {
+ return uc::clear(L);
+ }
+
+ static inline int real_clear_traits(std::false_type, lua_State* L) {
+ return default_uc::clear(L);
+ }
+
+ static inline int real_clear_call(lua_State* L) {
+ return real_clear_traits(container_detail::has_traits_clear<uc>(), L);
+ }
+
+ static inline int real_empty_traits(std::true_type, lua_State* L) {
+ return uc::empty(L);
+ }
+
+ static inline int real_empty_traits(std::false_type, lua_State* L) {
+ return default_uc::empty(L);
+ }
+
+ static inline int real_empty_call(lua_State* L) {
+ return real_empty_traits(container_detail::has_traits_empty<uc>(), L);
+ }
+
+ static inline int real_erase_traits(std::true_type, lua_State* L) {
+ return uc::erase(L);
+ }
+
+ static inline int real_erase_traits(std::false_type, lua_State* L) {
+ return default_uc::erase(L);
+ }
+
+ static inline int real_erase_call(lua_State* L) {
+ return real_erase_traits(container_detail::has_traits_erase<uc>(), L);
+ }
+
+ static inline int real_find_traits(std::true_type, lua_State* L) {
+ return uc::find(L);
+ }
+
+ static inline int real_find_traits(std::false_type, lua_State* L) {
+ return default_uc::find(L);
+ }
+
+ static inline int real_find_call(lua_State* L) {
+ return real_find_traits(container_detail::has_traits_find<uc>(), L);
+ }
+
+ static inline int real_index_of_call(lua_State* L) {
+ if constexpr (container_detail::has_traits_index_of<uc>()) {
+ return uc::index_of(L);
+ }
+ else {
+ return default_uc::index_of(L);
+ }
+ }
+
+ static inline int add_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L);
+ }
+
+ static inline int erase_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L);
+ }
+
+ static inline int insert_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L);
+ }
+
+ static inline int clear_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L);
+ }
+
+ static inline int empty_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L);
+ }
+
+ static inline int find_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L);
+ }
+
+ static inline int index_of_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_index_of_call), (&real_index_of_call)>(L);
+ }
+
+ static inline int length_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L);
+ }
+
+ static inline int pairs_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L);
+ }
+
+ static inline int ipairs_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L);
+ }
+
+ static inline int next_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L);
+ }
+
+ static inline int at_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L);
+ }
+
+ static inline int get_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L);
+ }
+
+ static inline int set_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L);
+ }
+
+ static inline int index_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
+ }
+
+ static inline int new_index_call(lua_State* L) {
+ return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
+ }
+ };
+ } // namespace container_detail
+
+ namespace stack {
+ namespace stack_detail {
+ template <typename T, bool is_shim = false>
+ struct metatable_setup {
+ lua_State* L;
+
+ metatable_setup(lua_State* L) : L(L) {
+ }
+
+ void operator()() {
+ using meta_usertype_container
+ = container_detail::u_c_launch<meta::conditional_t<is_shim, as_container_t<std::remove_pointer_t<T>>, std::remove_pointer_t<T>>>;
+ static const char* metakey
+ = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0];
+ static const std::array<luaL_Reg, 20> reg = { {
+ // clang-format off
+ { "__pairs", &meta_usertype_container::pairs_call },
+ { "__ipairs", &meta_usertype_container::ipairs_call },
+ { "__len", &meta_usertype_container::length_call },
+ { "__index", &meta_usertype_container::index_call },
+ { "__newindex", &meta_usertype_container::new_index_call },
+ { "pairs", &meta_usertype_container::pairs_call },
+ { "next", &meta_usertype_container::next_call },
+ { "at", &meta_usertype_container::at_call },
+ { "get", &meta_usertype_container::get_call },
+ { "set", &meta_usertype_container::set_call },
+ { "size", &meta_usertype_container::length_call },
+ { "empty", &meta_usertype_container::empty_call },
+ { "clear", &meta_usertype_container::clear_call },
+ { "insert", &meta_usertype_container::insert_call },
+ { "add", &meta_usertype_container::add_call },
+ { "find", &meta_usertype_container::find_call },
+ { "index_of", &meta_usertype_container::index_of_call },
+ { "erase", &meta_usertype_container::erase_call },
+ std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destroy<T> },
+ { nullptr, nullptr }
+ // clang-format on
+ } };
+
+ if (luaL_newmetatable(L, metakey) == 1) {
+ luaL_setfuncs(L, reg.data(), 0);
+ }
+ lua_setmetatable(L, -2);
+ }
+ };
+ } // namespace stack_detail
+
+ template <typename T>
+ struct unqualified_pusher<as_container_t<T>> {
+ using C = meta::unqualified_t<T>;
+
+ static int push_lvalue(std::true_type, lua_State* L, const C& cont) {
+ stack_detail::metatable_setup<C*, true> fx(L);
+ return stack::push<detail::as_pointer_tag<const C>>(L, detail::with_function_tag(), fx, detail::ptr(cont));
+ }
+
+ static int push_lvalue(std::false_type, lua_State* L, const C& cont) {
+ stack_detail::metatable_setup<C, true> fx(L);
+ return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, cont);
+ }
+
+ static int push_rvalue(std::true_type, lua_State* L, C&& cont) {
+ stack_detail::metatable_setup<C, true> fx(L);
+ return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, std::move(cont));
+ }
+
+ static int push_rvalue(std::false_type, lua_State* L, const C& cont) {
+ return push_lvalue(std::is_lvalue_reference<T>(), L, cont);
+ }
+
+ static int push(lua_State* L, const as_container_t<T>& as_cont) {
+ return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.value());
+ }
+
+ static int push(lua_State* L, as_container_t<T>&& as_cont) {
+ return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.value()));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<as_container_t<T*>> {
+ using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
+
+ static int push(lua_State* L, T* cont) {
+ stack_detail::metatable_setup<C> fx(L);
+ return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<T, std::enable_if_t<is_container_v<T>>> {
+ using C = T;
+
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ stack_detail::metatable_setup<C> fx(L);
+ return stack::push<detail::as_value_tag<T>>(L, detail::with_function_tag(), fx, std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<T*, std::enable_if_t<is_container_v<T>>> {
+ using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
+
+ static int push(lua_State* L, T* cont) {
+ stack_detail::metatable_setup<C> fx(L);
+ return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
+ }
+ };
+ } // namespace stack
+
+} // namespace sol
+
+// end of sol/usertype_container_launch.hpp
+
+#include <sstream>
+#include <type_traits>
+
+namespace sol {
+ namespace u_detail {
+ constexpr const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1);
+
+ constexpr const int environment_index = 1;
+ constexpr const int usertype_storage_index = 2;
+ constexpr const int usertype_storage_base_index = 3;
+ constexpr const int exact_function_index = 4;
+ constexpr const int magic_index = 5;
+
+ constexpr const int simple_usertype_storage_index = 2;
+ constexpr const int index_function_index = 3;
+ constexpr const int new_index_function_index = 4;
+
+ constexpr const int base_walking_failed_index = -32467;
+ constexpr const int lookup_failed_index = -42469;
+
+ enum class submetatable_type {
+ // must be sequential
+ value,
+ reference,
+ unique,
+ const_reference,
+ const_value,
+ // must be LAST!
+ named
+ };
+
+ inline auto make_string_view(string_view s) {
+ return s;
+ }
+
+#if SOL_IS_ON(SOL_CHAR8_T)
+ inline auto make_string_view(const char8_t* s) {
+ return string_view(reinterpret_cast<const char*>(s));
+ }
+#endif
+
+ inline auto make_string_view(call_construction) {
+ return string_view(to_string(meta_function::call_function));
+ }
+
+ inline auto make_string_view(meta_function mf) {
+ return string_view(to_string(mf));
+ }
+
+ inline auto make_string_view(base_classes_tag) {
+ return string_view(detail::base_class_cast_key());
+ }
+
+ template <typename Arg>
+ inline std::string make_string(Arg&& arg) {
+ string_view s = make_string_view(arg);
+ return std::string(s.data(), s.size());
+ }
+
+ inline int is_indexer(string_view s) {
+ if (s == to_string(meta_function::index)) {
+ return 1;
+ }
+ else if (s == to_string(meta_function::new_index)) {
+ return 2;
+ }
+ return 0;
+ }
+
+ inline int is_indexer(meta_function mf) {
+ if (mf == meta_function::index) {
+ return 1;
+ }
+ else if (mf == meta_function::new_index) {
+ return 2;
+ }
+ return 0;
+ }
+
+ inline int is_indexer(call_construction) {
+ return 0;
+ }
+ } // namespace u_detail
+
+ namespace detail {
+
+ template <typename T, typename IFx, typename Fx>
+ inline void insert_default_registrations(IFx&& ifx, Fx&& fx) {
+ (void)ifx;
+ (void)fx;
+ if constexpr (is_automagical<T>::value) {
+ if (fx(meta_function::less_than)) {
+ if constexpr (meta::supports_op_less<T>::value) {
+ lua_CFunction f = &comparsion_operator_wrap<T, std::less<>>;
+ ifx(meta_function::less_than, f);
+ }
+ }
+ if (fx(meta_function::less_than_or_equal_to)) {
+ if constexpr (meta::supports_op_less_equal<T>::value) {
+ lua_CFunction f = &comparsion_operator_wrap<T, std::less_equal<>>;
+ ifx(meta_function::less_than_or_equal_to, f);
+ }
+ }
+ if (fx(meta_function::equal_to)) {
+ if constexpr (meta::supports_op_equal<T>::value) {
+ lua_CFunction f = &comparsion_operator_wrap<T, std::equal_to<>>;
+ ifx(meta_function::equal_to, f);
+ }
+ else {
+ lua_CFunction f = &comparsion_operator_wrap<T, no_comp>;
+ ifx(meta_function::equal_to, f);
+ }
+ }
+ if (fx(meta_function::pairs)) {
+ ifx(meta_function::pairs, &container_detail::u_c_launch<as_container_t<T>>::pairs_call);
+ }
+ if (fx(meta_function::length)) {
+ if constexpr (meta::has_size<const T>::value || meta::has_size<T>::value) {
+ auto f = &default_size<T>;
+ ifx(meta_function::length, f);
+ }
+ }
+ if (fx(meta_function::to_string)) {
+ if constexpr (is_to_stringable_v<T>) {
+ if constexpr (!meta::is_probably_stateless_lambda_v<T> && !std::is_member_pointer_v<T>) {
+ auto f = &detail::static_trampoline<&default_to_string<T>>;
+ ifx(meta_function::to_string, f);
+ }
+ }
+ }
+ if (fx(meta_function::call_function)) {
+ if constexpr (is_callable_v<T>) {
+ if constexpr (meta::call_operator_deducible_v<T>) {
+ auto f = &c_call<decltype(&T::operator()), &T::operator()>;
+ ifx(meta_function::call_function, f);
+ }
+ }
+ }
+ }
+ }
+ } // namespace detail
+
+ namespace stack { namespace stack_detail {
+ template <typename X>
+ void set_undefined_methods_on(stack_reference t) {
+ using T = std::remove_pointer_t<X>;
+
+ lua_State* L = t.lua_state();
+
+ t.push();
+
+ detail::lua_reg_table l {};
+ int index = 0;
+ detail::indexed_insert insert_fx(l, index);
+ detail::insert_default_registrations<T>(insert_fx, detail::property_always_true);
+ if constexpr (!std::is_pointer_v<X>) {
+ l[index] = luaL_Reg { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
+ }
+ luaL_setfuncs(L, l, 0);
+
+ // __type table
+ lua_createtable(L, 0, 2);
+ const std::string& name = detail::demangle<T>();
+ lua_pushlstring(L, name.c_str(), name.size());
+ lua_setfield(L, -2, "name");
+ lua_CFunction is_func = &detail::is_check<T>;
+ lua_pushcclosure(L, is_func, 0);
+ lua_setfield(L, -2, "is");
+ lua_setfield(L, t.stack_index(), to_string(meta_function::type).c_str());
+
+ t.pop();
+ }
+ }} // namespace stack::stack_detail
+} // namespace sol
+
+// end of sol/usertype_core.hpp
+
+// beginning of sol/usertype_storage.hpp
+
+#include <bitset>
+#include <unordered_map>
+#include <memory>
+
+namespace sol { namespace u_detail {
+
+ struct usertype_storage_base;
+ template <typename T>
+ struct usertype_storage;
+
+ optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L_, int index);
+ usertype_storage_base& get_usertype_storage_base(lua_State* L_, const char* gcmetakey);
+ template <typename T>
+ optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L_);
+ template <typename T>
+ usertype_storage<T>& get_usertype_storage(lua_State* L_);
+
+ using index_call_function = int(lua_State*, void*);
+ using change_indexing_mem_func = void (usertype_storage_base::*)(
+ lua_State*, submetatable_type, void*, stateless_stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction);
+
+ struct index_call_storage {
+ index_call_function* index;
+ index_call_function* new_index;
+ void* binding_data;
+ };
+
+ struct new_index_call_storage : index_call_storage {
+ void* new_binding_data;
+ };
+
+ struct binding_base {
+ virtual void* data() = 0;
+ virtual ~binding_base() {
+ }
+ };
+
+ template <typename K, typename Fq, typename T = void>
+ struct binding : binding_base {
+ using uF = meta::unqualified_t<Fq>;
+ using F = meta::conditional_t<meta::is_c_str_of_v<uF, char>
+#if SOL_IS_ON(SOL_CHAR8_T)
+ || meta::is_c_str_of_v<uF, char8_t>
+#endif
+ || meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>,
+ std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>;
+ F data_;
+
+ template <typename... Args>
+ binding(Args&&... args) : data_(std::forward<Args>(args)...) {
+ }
+
+ virtual void* data() override {
+ return static_cast<void*>(std::addressof(data_));
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int call_with_(lua_State* L_, void* target) {
+ constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
+ auto& f = *static_cast<F*>(target);
+ return call_detail::call_wrapped<T, is_index, is_variable, boost>(L_, f);
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int call_(lua_State* L_) {
+ void* f = stack::get<void*>(L_, upvalue_index(usertype_storage_index));
+ return call_with_<is_index, is_variable>(L_, f);
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int call(lua_State* L_) {
+ int r = detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L_);
+ if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
+ return lua_yield(L_, r);
+ }
+ else {
+ return r;
+ }
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int index_call_with_(lua_State* L_, void* target) {
+ if constexpr (!is_variable) {
+ if constexpr (is_lua_c_function_v<std::decay_t<F>>) {
+ auto& f = *static_cast<std::decay_t<F>*>(target);
+ return stack::push(L_, f);
+ }
+ else {
+ // set up upvalues
+ // for a chained call
+ int upvalues = 0;
+ upvalues += stack::push(L_, nullptr);
+ upvalues += stack::push(L_, target);
+ auto cfunc = &call<is_index, is_variable>;
+ return stack::push(L_, c_closure(cfunc, upvalues));
+ }
+ }
+ else {
+ constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
+ auto& f = *static_cast<F*>(target);
+ return call_detail::call_wrapped<T, is_index, is_variable, boost>(L_, f);
+ }
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int index_call_(lua_State* L_) {
+ void* f = stack::get<void*>(L_, upvalue_index(usertype_storage_index));
+ return index_call_with_<is_index, is_variable>(L_, f);
+ }
+
+ template <bool is_index = true, bool is_variable = false>
+ static inline int index_call(lua_State* L_) {
+ int r = detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L_);
+ if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
+ return lua_yield(L_, r);
+ }
+ else {
+ return r;
+ }
+ }
+ };
+
+ inline int index_fail(lua_State* L_) {
+ if (lua_getmetatable(L_, 1) == 1) {
+ int metatarget = lua_gettop(L_);
+ stack::get_field<false, true>(L_, stack_reference(L_, raw_index(2)), metatarget);
+ return 1;
+ }
+ // With runtime extensibility, we can't
+ // hard-error things. They have to
+ // return nil, like regular table types
+ return stack::push(L_, lua_nil);
+ }
+
+ inline int index_target_fail(lua_State* L_, void*) {
+ return index_fail(L_);
+ }
+
+ inline int new_index_fail(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype");
+ }
+
+ inline int new_index_target_fail(lua_State* L_, void*) {
+ return new_index_fail(L_);
+ }
+
+ struct string_for_each_metatable_func {
+ bool is_destruction = false;
+ bool is_index = false;
+ bool is_new_index = false;
+ bool is_static_index = false;
+ bool is_static_new_index = false;
+ bool poison_indexing = false;
+ bool is_unqualified_lua_CFunction = false;
+ bool is_unqualified_lua_reference = false;
+ std::string* p_key = nullptr;
+ reference* p_binding_ref = nullptr;
+ lua_CFunction call_func = nullptr;
+ index_call_storage* p_ics = nullptr;
+ usertype_storage_base* p_usb = nullptr;
+ void* p_derived_usb = nullptr;
+ lua_CFunction idx_call = nullptr, new_idx_call = nullptr, meta_idx_call = nullptr, meta_new_idx_call = nullptr;
+ change_indexing_mem_func change_indexing;
+
+ void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
+ std::string& key = *p_key;
+ usertype_storage_base& usb = *p_usb;
+ index_call_storage& ics = *p_ics;
+
+ if (smt_ == submetatable_type::named) {
+ // do not override __call or
+ // other specific meta functions on named metatable:
+ // we need that for call construction
+ // and other amenities
+ return;
+ }
+ int fast_index_table_push = fast_index_table_.push(L_);
+ stateless_stack_reference t(L_, -fast_index_table_push);
+ if (poison_indexing) {
+ (usb.*change_indexing)(L_, smt_, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
+ }
+ if (is_destruction
+ && (smt_ == submetatable_type::reference || smt_ == submetatable_type::const_reference || smt_ == submetatable_type::named
+ || smt_ == submetatable_type::unique)) {
+ // gc does not apply to us here
+ // for reference types (raw T*, std::ref)
+ // for the named metatable itself,
+ // or for unique_usertypes, which do their own custom destroyion
+ t.pop(L_);
+ return;
+ }
+ if (is_index || is_new_index || is_static_index || is_static_new_index) {
+ // do not serialize the new_index and index functions here directly
+ // we control those...
+ t.pop(L_);
+ return;
+ }
+ if (is_unqualified_lua_CFunction) {
+ stack::set_field<false, true>(L_, key, call_func, t.stack_index());
+ }
+ else if (is_unqualified_lua_reference) {
+ reference& binding_ref = *p_binding_ref;
+ stack::set_field<false, true>(L_, key, binding_ref, t.stack_index());
+ }
+ else {
+ stack::set_field<false, true>(L_, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index());
+ }
+ t.pop(L_);
+ }
+ };
+
+ struct lua_reference_func {
+ reference key;
+ reference value;
+
+ void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
+ if (smt_ == submetatable_type::named) {
+ return;
+ }
+ int fast_index_table_push = fast_index_table_.push(L_);
+ stateless_stack_reference t(L_, -fast_index_table_push);
+ stack::set_field<false, true>(L_, key, value, t.stack_index());
+ t.pop(L_);
+ }
+ };
+
+ struct update_bases_func {
+ detail::inheritance_check_function base_class_check_func;
+ detail::inheritance_cast_function base_class_cast_func;
+ lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call;
+ usertype_storage_base* p_usb;
+ void* p_derived_usb;
+ change_indexing_mem_func change_indexing;
+
+ void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
+ int fast_index_table_push = fast_index_table_.push(L_);
+ stateless_stack_reference t(L_, -fast_index_table_push);
+ stack::set_field(L_, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index());
+ stack::set_field(L_, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index());
+ // change indexing, forcefully
+ (p_usb->*change_indexing)(L_, smt_, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
+ t.pop(L_);
+ }
+ };
+
+ struct binding_data_equals {
+ void* binding_data;
+
+ binding_data_equals(void* b) : binding_data(b) {
+ }
+
+ bool operator()(const std::unique_ptr<binding_base>& ptr) const {
+ return binding_data == ptr->data();
+ }
+ };
+
+ struct usertype_storage_base {
+ public:
+ lua_State* m_L;
+ std::vector<std::unique_ptr<binding_base>> storage;
+ std::vector<std::unique_ptr<char[]>> string_keys_storage;
+ std::unordered_map<string_view, index_call_storage> string_keys;
+ std::unordered_map<stateless_reference, stateless_reference, stateless_reference_hash, stateless_reference_equals> auxiliary_keys;
+ stateless_reference value_index_table;
+ stateless_reference reference_index_table;
+ stateless_reference unique_index_table;
+ stateless_reference const_reference_index_table;
+ stateless_reference const_value_index_table;
+ stateless_reference named_index_table;
+ stateless_reference type_table;
+ stateless_reference gc_names_table;
+ stateless_reference named_metatable;
+ new_index_call_storage base_index;
+ new_index_call_storage static_base_index;
+ bool is_using_index;
+ bool is_using_new_index;
+ std::bitset<64> properties;
+
+ usertype_storage_base(lua_State* L_)
+ : m_L(L_)
+ , storage()
+ , string_keys_storage()
+ , string_keys()
+ , auxiliary_keys(0, stateless_reference_hash(L_), stateless_reference_equals(L_))
+ , value_index_table()
+ , reference_index_table()
+ , unique_index_table()
+ , const_reference_index_table()
+ , const_value_index_table()
+ , named_index_table()
+ , type_table(make_reference<stateless_reference>(L_, create))
+ , gc_names_table(make_reference<stateless_reference>(L_, create))
+ , named_metatable(make_reference<stateless_reference>(L_, create))
+ , base_index()
+ , static_base_index()
+ , is_using_index(false)
+ , is_using_new_index(false)
+ , properties() {
+ base_index.binding_data = nullptr;
+ base_index.index = index_target_fail;
+ base_index.new_index = new_index_target_fail;
+ base_index.new_binding_data = nullptr;
+ static_base_index.binding_data = nullptr;
+ static_base_index.index = index_target_fail;
+ static_base_index.new_binding_data = this;
+ static_base_index.new_index = new_index_target_set;
+ }
+
+ template <typename Fx>
+ void for_each_table(lua_State* L_, Fx&& fx) {
+ for (int i = 0; i < 6; ++i) {
+ submetatable_type smt = static_cast<submetatable_type>(i);
+ stateless_reference* p_fast_index_table = nullptr;
+ switch (smt) {
+ case submetatable_type::const_value:
+ p_fast_index_table = &this->const_value_index_table;
+ break;
+ case submetatable_type::reference:
+ p_fast_index_table = &this->reference_index_table;
+ break;
+ case submetatable_type::unique:
+ p_fast_index_table = &this->unique_index_table;
+ break;
+ case submetatable_type::const_reference:
+ p_fast_index_table = &this->const_reference_index_table;
+ break;
+ case submetatable_type::named:
+ p_fast_index_table = &this->named_index_table;
+ break;
+ case submetatable_type::value:
+ default:
+ p_fast_index_table = &this->value_index_table;
+ break;
+ }
+ fx(L_, smt, *p_fast_index_table);
+ }
+ }
+
+ void add_entry(string_view sv, index_call_storage ics) {
+ string_keys_storage.emplace_back(new char[sv.size()]);
+ std::unique_ptr<char[]>& sv_storage = string_keys_storage.back();
+ std::memcpy(sv_storage.get(), sv.data(), sv.size());
+ string_view stored_sv(sv_storage.get(), sv.size());
+ string_keys.insert_or_assign(std::move(stored_sv), std::move(ics));
+ }
+
+ template <typename T, typename... Bases>
+ void update_bases(lua_State* L_, bases<Bases...>) {
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
+ "The size of this data pointer is too small to fit the inheritance checking function: Please file "
+ "a bug report.");
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
+ "The size of this data pointer is too small to fit the inheritance checking function: Please file "
+ "a bug report.");
+ static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
+ if constexpr (sizeof...(Bases) > 0) {
+ (void)detail::swallow { 0, ((weak_derive<Bases>::value = true), 0)... };
+
+ void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
+
+ update_bases_func for_each_fx;
+ for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>;
+ for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>;
+ for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>;
+ for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>;
+ for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>;
+ for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>;
+ for_each_fx.p_usb = this;
+ for_each_fx.p_derived_usb = derived_this;
+ for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
+ for_each_fx.p_derived_usb = derived_this;
+ this->for_each_table(L_, for_each_fx);
+ }
+ else {
+ (void)L_;
+ }
+ }
+
+ void clear() {
+ if (value_index_table.valid(m_L)) {
+ stack::clear(m_L, value_index_table);
+ }
+ if (reference_index_table.valid(m_L)) {
+ stack::clear(m_L, reference_index_table);
+ }
+ if (unique_index_table.valid(m_L)) {
+ stack::clear(m_L, unique_index_table);
+ }
+ if (const_reference_index_table.valid(m_L)) {
+ stack::clear(m_L, const_reference_index_table);
+ }
+ if (const_value_index_table.valid(m_L)) {
+ stack::clear(m_L, const_value_index_table);
+ }
+ if (named_index_table.valid(m_L)) {
+ stack::clear(m_L, named_index_table);
+ }
+ if (type_table.valid(m_L)) {
+ stack::clear(m_L, type_table);
+ }
+ if (gc_names_table.valid(m_L)) {
+ stack::clear(m_L, gc_names_table);
+ }
+ if (named_metatable.valid(m_L)) {
+ auto pp = stack::push_pop(m_L, named_metatable);
+ int named_metatable_index = pp.index_of(named_metatable);
+ if (lua_getmetatable(m_L, named_metatable_index) == 1) {
+ stack::clear(m_L, absolute_index(m_L, -1));
+ }
+ stack::clear(m_L, named_metatable);
+ }
+
+ value_index_table.reset(m_L);
+ reference_index_table.reset(m_L);
+ unique_index_table.reset(m_L);
+ const_reference_index_table.reset(m_L);
+ const_value_index_table.reset(m_L);
+ named_index_table.reset(m_L);
+ type_table.reset(m_L);
+ gc_names_table.reset(m_L);
+ named_metatable.reset(m_L);
+
+ storage.clear();
+ string_keys.clear();
+ auxiliary_keys.clear();
+ string_keys_storage.clear();
+ }
+
+ template <bool is_new_index, typename Base>
+ static void base_walk_index(lua_State* L_, usertype_storage_base& self, bool& keep_going, int& base_result) {
+ using bases = typename base<Base>::type;
+ if (!keep_going) {
+ return;
+ }
+ (void)L_;
+ (void)self;
+#if SOL_IS_ON(SOL_USE_UNSAFE_BASE_LOOKUP)
+ usertype_storage_base& base_storage = get_usertype_storage<Base>(L_);
+ base_result = self_index_call<is_new_index, true>(bases(), L_, base_storage);
+#else
+ optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L_);
+ if (static_cast<bool>(maybe_base_storage)) {
+ base_result = self_index_call<is_new_index, true>(bases(), L_, *maybe_base_storage);
+ keep_going = base_result == base_walking_failed_index;
+ }
+#endif // Fast versus slow, safe base lookup
+ }
+
+ template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases>
+ static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) {
+ if constexpr (!from_named_metatable || !is_new_index) {
+ type k_type = stack::get<type>(L, 2);
+ if (k_type == type::string) {
+ index_call_storage* target = nullptr;
+ string_view k = stack::get<string_view>(L, 2);
+ {
+ auto it = self.string_keys.find(k);
+ if (it != self.string_keys.cend()) {
+ target = &it->second;
+ }
+ }
+ if (target != nullptr) {
+ // let the target decide what to do, unless it's named...
+ if constexpr (is_new_index) {
+ return (target->new_index)(L, target->binding_data);
+ }
+ else {
+ return (target->index)(L, target->binding_data);
+ }
+ }
+ }
+ else if (k_type != type::lua_nil && k_type != type::none) {
+ stateless_reference* target = nullptr;
+ {
+ stack_reference k = stack::get<stack_reference>(L, 2);
+ auto it = self.auxiliary_keys.find(k);
+ if (it != self.auxiliary_keys.cend()) {
+ target = &it->second;
+ }
+ }
+ if (target != nullptr) {
+ if constexpr (is_new_index) {
+ // set value and return
+ target->reset(L, 3);
+ return 0;
+ }
+ else {
+ // push target to return
+ // what we found
+ return stack::push(L, *target);
+ }
+ }
+ }
+ }
+
+ // retrieve bases and walk through them.
+ bool keep_going = true;
+ int base_result;
+ (void)keep_going;
+ (void)base_result;
+ (void)detail::swallow { 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... };
+ if constexpr (sizeof...(Bases) > 0) {
+ if (!keep_going) {
+ return base_result;
+ }
+ }
+ if constexpr (base_walking) {
+ // if we're JUST base-walking then don't index-fail, just
+ // return the false bits
+ return base_walking_failed_index;
+ }
+ else if constexpr (from_named_metatable) {
+ if constexpr (is_new_index) {
+ return self.static_base_index.new_index(L, self.static_base_index.new_binding_data);
+ }
+ else {
+ return self.static_base_index.index(L, self.static_base_index.binding_data);
+ }
+ }
+ else {
+ if constexpr (is_new_index) {
+ return self.base_index.new_index(L, self.base_index.new_binding_data);
+ }
+ else {
+ return self.base_index.index(L, self.base_index.binding_data);
+ }
+ }
+ }
+
+ void change_indexing(lua_State* L_, submetatable_type submetatable_, void* derived_this_, stateless_stack_reference& t_, lua_CFunction index_,
+ lua_CFunction new_index_, lua_CFunction meta_index_, lua_CFunction meta_new_index_) {
+ usertype_storage_base& this_base = *this;
+ void* base_this = static_cast<void*>(&this_base);
+
+ this->is_using_index |= true;
+ this->is_using_new_index |= true;
+ if (submetatable_ == submetatable_type::named) {
+ stack::set_field(L_, metatable_key, named_index_table, t_.stack_index());
+ stateless_stack_reference stack_metametatable(L_, -named_metatable.push(L_));
+ stack::set_field<false, true>(L_,
+ meta_function::index,
+ make_closure(meta_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic),
+ stack_metametatable.stack_index());
+ stack::set_field<false, true>(L_,
+ meta_function::new_index,
+ make_closure(meta_new_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic),
+ stack_metametatable.stack_index());
+ stack_metametatable.pop(L_);
+ }
+ else {
+ stack::set_field<false, true>(
+ L_, meta_function::index, make_closure(index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic), t_.stack_index());
+ stack::set_field<false, true>(
+ L_, meta_function::new_index, make_closure(new_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic), t_.stack_index());
+ }
+ }
+
+ template <typename T = void, typename Key, typename Value>
+ void set(lua_State* L, Key&& key, Value&& value);
+
+ static int new_index_target_set(lua_State* L, void* target) {
+ usertype_storage_base& self = *static_cast<usertype_storage_base*>(target);
+ self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3)));
+ return 0;
+ }
+
+ ~usertype_storage_base() {
+ value_index_table.reset(m_L);
+ reference_index_table.reset(m_L);
+ unique_index_table.reset(m_L);
+ const_reference_index_table.reset(m_L);
+ const_value_index_table.reset(m_L);
+ named_index_table.reset(m_L);
+ type_table.reset(m_L);
+ gc_names_table.reset(m_L);
+ named_metatable.reset(m_L);
+
+ auto auxiliary_first = auxiliary_keys.cbegin();
+ auto auxiliary_last = auxiliary_keys.cend();
+ while (auxiliary_first != auxiliary_last) {
+ // save a copy to what we're going to destroy
+ auto auxiliary_target = auxiliary_first;
+ // move the iterator up by 1
+ ++auxiliary_first;
+ // extract the node and destroy the key
+ auto extracted_node = auxiliary_keys.extract(auxiliary_target);
+ extracted_node.key().reset(m_L);
+ extracted_node.mapped().reset(m_L);
+ // continue if auxiliary_first hasn't been exhausted
+ }
+ }
+ };
+
+ template <typename T>
+ struct usertype_storage : usertype_storage_base {
+
+ using usertype_storage_base::usertype_storage_base;
+
+ template <bool is_new_index, bool from_named_metatable>
+ static inline int index_call_(lua_State* L) {
+ using bases = typename base<T>::type;
+ usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
+ return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
+ }
+
+ template <bool is_new_index, bool from_named_metatable, typename... Bases>
+ static inline int index_call_with_bases_(lua_State* L) {
+ using bases = types<Bases...>;
+ usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
+ return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
+ }
+
+ template <bool is_new_index>
+ static inline int index_call(lua_State* L) {
+ return detail::static_trampoline<&index_call_<is_new_index, false>>(L);
+ }
+
+ template <bool is_new_index, typename... Bases>
+ static inline int index_call_with_bases(lua_State* L) {
+ return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L);
+ }
+
+ template <bool is_new_index>
+ static inline int meta_index_call(lua_State* L) {
+ return detail::static_trampoline<&index_call_<is_new_index, true>>(L);
+ }
+
+ template <bool is_new_index, typename... Bases>
+ static inline int meta_index_call_with_bases(lua_State* L) {
+ return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L);
+ }
+
+ template <typename Key, typename Value>
+ inline void set(lua_State* L, Key&& key, Value&& value);
+ };
+
+ template <typename T, typename Key, typename Value>
+ void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) {
+ using ValueU = meta::unwrap_unqualified_t<Value>;
+ using KeyU = meta::unwrap_unqualified_t<Key>;
+ using Binding = binding<KeyU, ValueU, T>;
+ using is_var_bind = is_variable_binding<ValueU>;
+ if constexpr (std::is_same_v<KeyU, call_construction>) {
+ (void)key;
+ std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
+ Binding& b = *p_binding;
+ this->storage.push_back(std::move(p_binding));
+
+ this->named_index_table.push(L);
+ absolute_index metametatable_index(L, -1);
+ std::string_view call_metamethod_name = to_string(meta_function::call);
+ lua_pushlstring(L, call_metamethod_name.data(), call_metamethod_name.size());
+ stack::push(L, nullptr);
+ stack::push(L, b.data());
+ lua_CFunction target_func = &b.template call<false, false>;
+ lua_pushcclosure(L, target_func, 2);
+ lua_rawset(L, metametatable_index);
+ this->named_index_table.pop(L);
+ }
+ else if constexpr (std::is_same_v<KeyU, base_classes_tag>) {
+ (void)key;
+ this->update_bases<T>(L, std::forward<Value>(value));
+ }
+ else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) {
+ std::string s = u_detail::make_string(std::forward<Key>(key));
+ auto storage_it = this->storage.end();
+ auto string_it = this->string_keys.find(s);
+ if (string_it != this->string_keys.cend()) {
+ const auto& binding_data = string_it->second.binding_data;
+ storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data));
+ this->string_keys.erase(string_it);
+ }
+
+ std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
+ Binding& b = *p_binding;
+ if (storage_it != this->storage.cend()) {
+ *storage_it = std::move(p_binding);
+ }
+ else {
+ this->storage.push_back(std::move(p_binding));
+ }
+
+ bool is_index = (s == to_string(meta_function::index));
+ bool is_new_index = (s == to_string(meta_function::new_index));
+ bool is_static_index = (s == to_string(meta_function::static_index));
+ bool is_static_new_index = (s == to_string(meta_function::static_new_index));
+ bool is_destruction = s == to_string(meta_function::garbage_collect);
+ bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index);
+ void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
+ index_call_storage ics;
+ ics.binding_data = b.data();
+ ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value>
+ : &Binding::template index_call_with_<true, is_var_bind::value>;
+ ics.new_index = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value>
+ : &Binding::template index_call_with_<false, is_var_bind::value>;
+
+ string_for_each_metatable_func for_each_fx;
+ for_each_fx.is_destruction = is_destruction;
+ for_each_fx.is_index = is_index;
+ for_each_fx.is_new_index = is_new_index;
+ for_each_fx.is_static_index = is_static_index;
+ for_each_fx.is_static_new_index = is_static_new_index;
+ for_each_fx.poison_indexing = poison_indexing;
+ for_each_fx.p_key = &s;
+ for_each_fx.p_ics = &ics;
+ if constexpr (is_lua_c_function_v<ValueU>) {
+ for_each_fx.is_unqualified_lua_CFunction = true;
+ for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data);
+ }
+ else if constexpr (is_lua_reference_or_proxy_v<ValueU>) {
+ for_each_fx.is_unqualified_lua_reference = true;
+ for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data);
+ }
+ else {
+ for_each_fx.call_func = &b.template call<false, is_var_bind::value>;
+ }
+ for_each_fx.p_usb = this;
+ for_each_fx.p_derived_usb = derived_this;
+ for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>;
+ for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>;
+ for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>;
+ for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>;
+ for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
+ // set base index and base new_index
+ // functions here
+ if (is_index) {
+ this->base_index.index = ics.index;
+ this->base_index.binding_data = ics.binding_data;
+ }
+ if (is_new_index) {
+ this->base_index.new_index = ics.new_index;
+ this->base_index.new_binding_data = ics.binding_data;
+ }
+ if (is_static_index) {
+ this->static_base_index.index = ics.index;
+ this->static_base_index.binding_data = ics.binding_data;
+ }
+ if (is_static_new_index) {
+ this->static_base_index.new_index = ics.new_index;
+ this->static_base_index.new_binding_data = ics.binding_data;
+ }
+ this->for_each_table(L, for_each_fx);
+ this->add_entry(s, std::move(ics));
+ }
+ else {
+ // the reference-based implementation might compare poorly and hash
+ // poorly in some cases...
+ if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) {
+ if (key.get_type() == type::string) {
+ stack::push(L, key);
+ std::string string_key = stack::pop<std::string>(L);
+ this->set<T>(L, string_key, std::forward<Value>(value));
+ }
+ else {
+ lua_reference_func ref_additions_fx { key, value };
+
+ this->for_each_table(L, ref_additions_fx);
+ this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value));
+ }
+ }
+ else {
+ reference ref_key = make_reference(L, std::forward<Key>(key));
+ reference ref_value = make_reference(L, std::forward<Value>(value));
+ lua_reference_func ref_additions_fx { ref_key, ref_value };
+
+ this->for_each_table(L, ref_additions_fx);
+ this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value));
+ }
+ }
+ }
+
+ template <typename T>
+ template <typename Key, typename Value>
+ void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) {
+ static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <typename T>
+ inline void clear_usertype_registry_names(lua_State* L) {
+ using u_traits = usertype_traits<T>;
+ using u_const_traits = usertype_traits<const T>;
+ using u_unique_traits = usertype_traits<d::u<T>>;
+ using u_ref_traits = usertype_traits<T*>;
+ using u_const_ref_traits = usertype_traits<T const*>;
+
+ stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
+ registry.push();
+ // eliminate all named entries for this usertype
+ // in the registry (luaL_newmetatable does
+ // [name] = new table
+ // in registry upon creation
+ stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index());
+ stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index());
+ stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index());
+ stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index());
+ stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index());
+ registry.pop();
+ }
+
+ template <typename T>
+ inline int destroy_usertype_storage(lua_State* L) noexcept {
+ clear_usertype_registry_names<T>(L);
+ return detail::user_alloc_destroy<usertype_storage<T>>(L);
+ }
+
+ template <typename T>
+ inline usertype_storage<T>& create_usertype_storage(lua_State* L) {
+ const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
+
+ // Make sure userdata's memory is properly in lua first,
+ // otherwise all the light userdata we make later will become invalid
+ int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L);
+ stack_reference usertype_storage_ref(L, -usertype_storage_push_count);
+
+ // create and push onto the stack a table to use as metatable for this GC
+ // we create a metatable to attach to the regular gc_table
+ // so that the destructor is called for the usertype storage
+ int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1));
+ stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count);
+ // set the destroyion routine on the metatable
+ stack::set_field(L, meta_function::garbage_collect, &destroy_usertype_storage<T>, usertype_storage_metatable.stack_index());
+ // set the metatable on the usertype storage userdata
+ stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index());
+ usertype_storage_metatable.pop();
+
+ // set the usertype storage and its metatable
+ // into the global table...
+ stack::set_field<true>(L, gcmetakey, usertype_storage_ref);
+ usertype_storage_ref.pop();
+
+ // then retrieve the lua-stored version so we have a well-pinned
+ // reference that does not die
+ stack::get_field<true>(L, gcmetakey);
+ usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
+ return target_umt;
+ }
+
+ inline optional<usertype_storage_base&> maybe_as_usertype_storage_base(lua_State* L, int index) {
+ if (type_of(L, index) != type::lightuserdata) {
+ return nullopt;
+ }
+ usertype_storage_base& base_storage = *static_cast<usertype_storage_base*>(stack::get<void*>(L, index));
+ return base_storage;
+ }
+
+ inline optional<usertype_storage_base&> maybe_get_usertype_storage_base_inside(lua_State* L, int index) {
+ // okay, maybe we're looking at a table that is nested?
+ if (type_of(L, index) != type::table) {
+ return nullopt;
+ }
+ stack::get_field(L, meta_function::storage, index);
+ auto maybe_storage_base = maybe_as_usertype_storage_base(L, -1);
+ lua_pop(L, 1);
+ return maybe_storage_base;
+ }
+
+ inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) {
+ // If we can get the index directly as this type, go for it
+ auto maybe_already_is_usertype_storage_base = maybe_as_usertype_storage_base(L, index);
+ if (maybe_already_is_usertype_storage_base) {
+ return maybe_already_is_usertype_storage_base;
+ }
+ return maybe_get_usertype_storage_base_inside(L, index);
+ }
+
+ inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
+ stack::get_field<true>(L, gcmetakey);
+ auto maybe_storage = maybe_as_usertype_storage_base(L, lua_gettop(L));
+ lua_pop(L, 1);
+ return maybe_storage;
+ }
+
+ inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
+ stack::get_field<true>(L, gcmetakey);
+ stack::record tracking;
+ usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
+ lua_pop(L, 1);
+ return target_umt;
+ }
+
+ template <typename T>
+ inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) {
+ const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
+ stack::get_field<true>(L, gcmetakey);
+ int target = lua_gettop(L);
+ if (!stack::check<user<usertype_storage<T>>>(L, target)) {
+ return nullopt;
+ }
+ usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
+ return target_umt;
+ }
+
+ template <typename T>
+ inline usertype_storage<T>& get_usertype_storage(lua_State* L) {
+ const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
+ stack::get_field<true>(L, gcmetakey);
+ usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
+ return target_umt;
+ }
+
+ template <typename T>
+ inline void clear_usertype_storage(lua_State* L) {
+ using u_traits = usertype_traits<T>;
+
+ const char* gcmetakey = &u_traits::gc_table()[0];
+ stack::get_field<true>(L, gcmetakey);
+ if (!stack::check<user<usertype_storage<T>>>(L)) {
+ lua_pop(L, 1);
+ return;
+ }
+ usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
+ target_umt.clear();
+
+ clear_usertype_registry_names<T>(L);
+
+ stack::set_field<true>(L, gcmetakey, lua_nil);
+ }
+
+ template <typename T, automagic_flags enrollment_flags>
+ inline int register_usertype(lua_State* L_, automagic_enrollments enrollments_ = {}) {
+ using u_traits = usertype_traits<T>;
+ using u_const_traits = usertype_traits<const T>;
+ using u_unique_traits = usertype_traits<d::u<T>>;
+ using u_ref_traits = usertype_traits<T*>;
+ using u_const_ref_traits = usertype_traits<T const*>;
+ using uts = usertype_storage<T>;
+
+ // always have __new_index point to usertype_storage method
+ // have __index always point to regular fast-lookup
+ // meta_method table
+ // if __new_index is invoked, runtime-swap
+ // to slow __index if necessary
+ // (no speed penalty because function calls
+ // are all read-only -- only depend on __index
+ // to retrieve function and then call happens VIA Lua)
+
+ // __type entry:
+ // table contains key -> value lookup,
+ // where key is entry in metatable
+ // and value is type information as a string as
+ // best as we can give it
+
+ // name entry:
+ // string that contains raw class name,
+ // as defined from C++
+
+ // is entry:
+ // checks if argument supplied is of type T
+
+ // __storage entry:
+ // a light userdata pointing to the storage
+ // mostly to enable this new abstraction
+ // to not require the type name `T`
+ // to get at the C++ usertype storage within
+
+ // we then let typical definitions potentially override these intrinsics
+ // it's the user's fault if they override things or screw them up:
+ // these names have been reserved and documented since sol2
+
+ // STEP 0: tell the old usertype (if it exists)
+ // to fuck off
+ clear_usertype_storage<T>(L_);
+
+ // STEP 1: Create backing store for usertype storage
+ // Pretty much the most important step.
+ // STEP 2: Create Lua tables used for fast method indexing.
+ // This is done inside of the storage table's constructor
+ usertype_storage<T>& storage = create_usertype_storage<T>(L_);
+ usertype_storage_base& base_storage = storage;
+ void* light_storage = static_cast<void*>(&storage);
+ void* light_base_storage = static_cast<void*>(&base_storage);
+
+ // STEP 3: set up GC escape hatch table entirely
+ storage.gc_names_table.push(L_);
+ stateless_stack_reference gnt(L_, -1);
+ stack::set_field(L_, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index());
+ stack::set_field(L_, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index());
+ stack::set_field(L_, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index());
+ stack::set_field(L_, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index());
+ stack::set_field(L_, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index());
+ stack::set_field(L_, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index());
+ gnt.pop(L_);
+
+ // STEP 4: add some useful information to the type table
+ stateless_stack_reference stacked_type_table(L_, -storage.type_table.push(L_));
+ stack::set_field(L_, "name", detail::demangle<T>(), stacked_type_table.stack_index());
+ stack::set_field(L_, "is", &detail::is_check<T>, stacked_type_table.stack_index());
+ stacked_type_table.pop(L_);
+
+ // STEP 5: create and hook up metatable,
+ // add intrinsics
+ // this one is the actual meta-handling table,
+ // the next one will be the one for
+ int for_each_backing_metatable_calls = 0;
+ auto for_each_backing_metatable = [&](lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
+ // Pointer types, AKA "references" from C++
+ const char* metakey = nullptr;
+ switch (smt_) {
+ case submetatable_type::const_value:
+ metakey = &u_const_traits::metatable()[0];
+ break;
+ case submetatable_type::reference:
+ metakey = &u_ref_traits::metatable()[0];
+ break;
+ case submetatable_type::unique:
+ metakey = &u_unique_traits::metatable()[0];
+ break;
+ case submetatable_type::const_reference:
+ metakey = &u_const_ref_traits::metatable()[0];
+ break;
+ case submetatable_type::named:
+ metakey = &u_traits::user_metatable()[0];
+ break;
+ case submetatable_type::value:
+ default:
+ metakey = &u_traits::metatable()[0];
+ break;
+ }
+
+ luaL_newmetatable(L_, metakey);
+ if (smt_ == submetatable_type::named) {
+ // the named table itself
+ // gets the associated name value
+ storage.named_metatable.reset(L_, -1);
+ lua_pop(L_, 1);
+ // but the thing we perform the methods on
+ // is still the metatable of the named
+ // table
+ lua_createtable(L_, 0, 6);
+ }
+ stateless_stack_reference t(L_, -1);
+ fast_index_table_.reset(L_, t.stack_index());
+ stack::set_field<false, true>(L_, meta_function::type, storage.type_table, t.stack_index());
+ // destructible? serialize default destructor here
+ // otherwise, not destructible: serialize a "hey you messed up"
+ switch (smt_) {
+ case submetatable_type::const_reference:
+ case submetatable_type::reference:
+ case submetatable_type::named:
+ break;
+ case submetatable_type::unique:
+ if constexpr (std::is_destructible_v<T>) {
+ stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::unique_destroy<T>, t.stack_index());
+ }
+ else {
+ stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::cannot_destroy<T>, t.stack_index());
+ }
+ break;
+ case submetatable_type::value:
+ case submetatable_type::const_value:
+ default:
+ if constexpr (std::is_destructible_v<T>) {
+ stack::set_field<false, true>(L_, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index());
+ }
+ else {
+ stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::cannot_destroy<T>, t.stack_index());
+ }
+ break;
+ }
+
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
+ "The size of this data pointer is too small to fit the inheritance checking function: file a bug "
+ "report.");
+ static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
+ "The size of this data pointer is too small to fit the inheritance checking function: file a bug "
+ "report.");
+ stack::set_field<false, true>(L_, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index());
+ stack::set_field<false, true>(L_, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index());
+
+ auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments_);
+ auto insert_fx = [&L_, &t, &storage](meta_function mf, lua_CFunction reg) {
+ stack::set_field<false, true>(L_, mf, reg, t.stack_index());
+ storage.properties[static_cast<std::size_t>(mf)] = true;
+ };
+ detail::insert_default_registrations<T>(insert_fx, prop_fx);
+
+ // There are no variables, so serialize the fast function stuff
+ // be sure to reset the index stuff to the non-fast version
+ // if the user ever adds something later!
+ if (smt_ == submetatable_type::named) {
+ // add escape hatch storage pointer and gc names
+ stack::set_field<false, true>(L_, meta_function::storage, light_base_storage, t.stack_index());
+ stack::set_field<false, true>(L_, meta_function::gc_names, storage.gc_names_table, t.stack_index());
+
+ // fancy new_indexing when using the named table
+ {
+ absolute_index named_metatable_index(L_, -storage.named_metatable.push(L_));
+ stack::set_field<false, true>(L_, metatable_key, t, named_metatable_index);
+ storage.named_metatable.pop(L_);
+ }
+ stack_reference stack_metametatable(L_, -storage.named_index_table.push(L_));
+ stack::set_field<false, true>(L_,
+ meta_function::index,
+ make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
+ stack_metametatable.stack_index());
+ stack::set_field<false, true>(L_,
+ meta_function::new_index,
+ make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
+ stack_metametatable.stack_index());
+ stack_metametatable.pop();
+ }
+ else {
+ // otherwise just plain for index,
+ // and elaborated for new_index
+ stack::set_field<false, true>(L_, meta_function::index, t, t.stack_index());
+ stack::set_field<false, true>(L_,
+ meta_function::new_index,
+ make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
+ t.stack_index());
+ storage.is_using_new_index = true;
+ }
+
+ ++for_each_backing_metatable_calls;
+ fast_index_table_.reset(L_, t.stack_index());
+ t.pop(L_);
+ };
+
+ storage.for_each_table(L_, for_each_backing_metatable);
+
+ // can only use set AFTER we initialize all the metatables
+ if constexpr (std::is_default_constructible_v<T> && has_flag(enrollment_flags, automagic_flags::default_constructor)) {
+ if (enrollments_.default_constructor) {
+ storage.set(L_, meta_function::construct, constructors<T()>());
+ }
+ }
+
+ // return the named metatable we want names linked into
+ storage.named_metatable.push(L_);
+ return 1;
+ }
+}} // namespace sol::u_detail
+
+// end of sol/usertype_storage.hpp
+
+// beginning of sol/usertype_proxy.hpp
+
+namespace sol {
+ template <typename Table, typename Key>
+ struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> {
+ private:
+ using key_type = detail::proxy_key_t<Key>;
+
+ template <typename T, std::size_t... I>
+ decltype(auto) tuple_get(std::index_sequence<I...>) const& {
+ return tbl.template traverse_get<T>(std::get<I>(key)...);
+ }
+
+ template <typename T, std::size_t... I>
+ decltype(auto) tuple_get(std::index_sequence<I...>) && {
+ return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
+ }
+
+ template <std::size_t... I, typename T>
+ void tuple_set(std::index_sequence<I...>, T&& value) & {
+ if constexpr (sizeof...(I) > 1) {
+ tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
+ }
+ else {
+ tbl.set(std::get<I>(key)..., std::forward<T>(value));
+ }
+ }
+
+ template <std::size_t... I, typename T>
+ void tuple_set(std::index_sequence<I...>, T&& value) && {
+ if constexpr (sizeof...(I) > 1) {
+ tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
+ }
+ else {
+ tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value));
+ }
+ }
+
+ public:
+ Table tbl;
+ key_type key;
+
+ template <typename T>
+ usertype_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {
+ }
+
+ template <typename T>
+ usertype_proxy& set(T&& item) & {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ tuple_set(idx_seq(), std::forward<T>(item));
+ return *this;
+ }
+
+ template <typename T>
+ usertype_proxy&& set(T&& item) && {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ std::move(*this).tuple_set(idx_seq(), std::forward<T>(item));
+ return std::move(*this);
+ }
+
+ template <typename T>
+ usertype_proxy& operator=(T&& other) & {
+ return set(std::forward<T>(other));
+ }
+
+ template <typename T>
+ usertype_proxy&& operator=(T&& other) && {
+ return std::move(*this).set(std::forward<T>(other));
+ }
+
+ template <typename T>
+ usertype_proxy& operator=(std::initializer_list<T> other) & {
+ return set(std::move(other));
+ }
+
+ template <typename T>
+ usertype_proxy&& operator=(std::initializer_list<T> other) && {
+ return std::move(*this).set(std::move(other));
+ }
+
+ template <typename T>
+ decltype(auto) get() const& {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ return tuple_get<T>(idx_seq());
+ }
+
+ template <typename T>
+ decltype(auto) get() && {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ return std::move(*this).template tuple_get<T>(idx_seq());
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) const& {
+ auto keys = meta::tuplefy(key, std::forward<K>(k));
+ return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) & {
+ auto keys = meta::tuplefy(key, std::forward<K>(k));
+ return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) && {
+ auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
+ return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
+ // MSVC is ass sometimes
+ return get<function>().call<Ret...>(std::forward<Args>(args)...);
+#else
+ return get<function>().template call<Ret...>(std::forward<Args>(args)...);
+#endif
+ }
+
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ bool valid() const {
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
+ lua_pop(lua_state(), p.levels);
+ return p;
+ }
+
+ int push() const noexcept {
+ return push(this->lua_state());
+ }
+
+ int push(lua_State* L) const noexcept {
+ return get<reference>().push(L);
+ }
+
+ type get_type() const {
+ type t = type::none;
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
+ if (p) {
+ t = type_of(lua_state(), -1);
+ }
+ lua_pop(lua_state(), p.levels);
+ return t;
+ }
+
+ lua_State* lua_state() const {
+ return tbl.lua_state();
+ }
+ };
+} // namespace sol
+
+// end of sol/usertype_proxy.hpp
+
+// beginning of sol/metatable.hpp
+
+// beginning of sol/table_core.hpp
+
+// beginning of sol/table_proxy.hpp
+
+namespace sol {
+
+ template <typename Table, typename Key>
+ struct table_proxy : public proxy_base<table_proxy<Table, Key>> {
+ private:
+ using key_type = detail::proxy_key_t<Key>;
+
+ template <typename T, std::size_t... I>
+ decltype(auto) tuple_get(std::index_sequence<I...>) const& {
+ return tbl.template traverse_get<T>(std::get<I>(key)...);
+ }
+
+ template <typename T, std::size_t... I>
+ decltype(auto) tuple_get(std::index_sequence<I...>) && {
+ return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
+ }
+
+ template <std::size_t... I, typename T>
+ void tuple_set(std::index_sequence<I...>, T&& value) & {
+ tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
+ }
+
+ template <std::size_t... I, typename T>
+ void tuple_set(std::index_sequence<I...>, T&& value) && {
+ tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
+ }
+
+ auto setup_table(std::true_type) {
+ auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index());
+ lua_pop(lua_state(), p.levels);
+ return p;
+ }
+
+ bool is_valid(std::false_type) {
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state()));
+ lua_pop(lua_state(), p.levels);
+ return p;
+ }
+
+ public:
+ Table tbl;
+ key_type key;
+
+ template <typename T>
+ table_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {
+ }
+
+ table_proxy(const table_proxy&) = default;
+ table_proxy(table_proxy&&) = default;
+ table_proxy& operator=(const table_proxy& right) {
+ return set(right);
+ }
+ table_proxy& operator=(table_proxy&& right) {
+ return set(std::move(right));
+ }
+
+ template <typename T>
+ table_proxy& set(T&& item) & {
+ tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
+ return *this;
+ }
+
+ template <typename T>
+ table_proxy&& set(T&& item) && {
+ std::move(*this).tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
+ return std::move(*this);
+ }
+
+ template <typename... Args>
+ table_proxy& set_function(Args&&... args) & {
+ tbl.set_function(key, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename... Args>
+ table_proxy&& set_function(Args&&... args) && {
+ tbl.set_function(std::move(key), std::forward<Args>(args)...);
+ return std::move(*this);
+ }
+
+ template <typename T, std::enable_if_t<!std::is_same_v<meta::unqualified_t<T>, table_proxy>>* = nullptr>
+ table_proxy& operator=(T&& other) & {
+ using Tu = meta::unwrap_unqualified_t<T>;
+ if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_invocable_v<Tu>) {
+ return set_function(std::forward<T>(other));
+ }
+ else {
+ return set(std::forward<T>(other));
+ }
+ }
+
+ template <typename T, std::enable_if_t<!std::is_same_v<meta::unqualified_t<T>, table_proxy>>* = nullptr>
+ table_proxy&& operator=(T&& other) && {
+ using Tu = meta::unwrap_unqualified_t<T>;
+ if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_invocable_v<Tu> && !detail::is_msvc_callable_rigged_v<T>) {
+ return std::move(*this).set_function(std::forward<T>(other));
+ }
+ else {
+ return std::move(*this).set(std::forward<T>(other));
+ }
+ }
+
+ template <typename T>
+ table_proxy& operator=(std::initializer_list<T> other) & {
+ return set(std::move(other));
+ }
+
+ template <typename T>
+ table_proxy&& operator=(std::initializer_list<T> other) && {
+ return std::move(*this).set(std::move(other));
+ }
+
+ template <typename T>
+ bool is() const {
+ typedef decltype(get<T>()) U;
+ optional<U> option = this->get<optional<U>>();
+ return option.has_value();
+ }
+
+ template <typename T>
+ decltype(auto) get() const& {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ return tuple_get<T>(idx_seq());
+ }
+
+ template <typename T>
+ decltype(auto) get() && {
+ using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
+ return std::move(*this).template tuple_get<T>(idx_seq());
+ }
+
+ template <typename T>
+ decltype(auto) get_or(T&& otherwise) const {
+ typedef decltype(get<T>()) U;
+ optional<U> option = get<optional<U>>();
+ if (option) {
+ return static_cast<U>(option.value());
+ }
+ return static_cast<U>(std::forward<T>(otherwise));
+ }
+
+ template <typename T, typename D>
+ decltype(auto) get_or(D&& otherwise) const {
+ optional<T> option = get<optional<T>>();
+ if (option) {
+ return static_cast<T>(option.value());
+ }
+ return static_cast<T>(std::forward<D>(otherwise));
+ }
+
+ template <typename T>
+ decltype(auto) get_or_create() {
+ return get_or_create<T>(new_table());
+ }
+
+ template <typename T, typename Otherwise>
+ decltype(auto) get_or_create(Otherwise&& other) {
+ if (!this->valid()) {
+ this->set(std::forward<Otherwise>(other));
+ }
+ return get<T>();
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) const& {
+ auto keys = meta::tuplefy(key, std::forward<K>(k));
+ return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) & {
+ auto keys = meta::tuplefy(key, std::forward<K>(k));
+ return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename K>
+ decltype(auto) operator[](K&& k) && {
+ auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
+ return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ lua_State* L = this->lua_state();
+ push(L);
+ int idx = lua_gettop(L);
+ stack_aligned_function func(L, idx);
+ return func.call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ bool valid() const {
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
+ lua_pop(lua_state(), p.levels);
+ return p;
+ }
+
+ int push() const noexcept {
+ return push(this->lua_state());
+ }
+
+ int push(lua_State* L) const noexcept {
+ if constexpr (std::is_same_v<meta::unqualified_t<Table>, global_table> || is_stack_table_v<meta::unqualified_t<Table>>) {
+ auto pp = stack::push_pop<true>(tbl);
+ int tableindex = pp.index_of(tbl);
+ int top_index = lua_gettop(L);
+ stack::get_field<true>(lua_state(), key, tableindex);
+ lua_replace(L, top_index + 1);
+ lua_settop(L, top_index + 1);
+ }
+ else {
+ auto pp = stack::push_pop<false>(tbl);
+ int tableindex = pp.index_of(tbl);
+ int aftertableindex = lua_gettop(L);
+ stack::get_field<false>(lua_state(), key, tableindex);
+ lua_replace(L, tableindex);
+ lua_settop(L, aftertableindex + 1);
+ }
+ return 1;
+ }
+
+ type get_type() const {
+ type t = type::none;
+ auto pp = stack::push_pop(tbl);
+ auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
+ if (p) {
+ t = type_of(lua_state(), -1);
+ }
+ lua_pop(lua_state(), p.levels);
+ return t;
+ }
+
+ lua_State* lua_state() const {
+ return tbl.lua_state();
+ }
+
+ table_proxy& force() {
+ if (!this->valid()) {
+ this->set(new_table());
+ }
+ return *this;
+ }
+ };
+
+ template <typename Table, typename Key, typename T>
+ inline bool operator==(T&& left, const table_proxy<Table, Key>& right) {
+ using G = decltype(stack::get<T>(nullptr, 0));
+ return right.template get<optional<G>>() == left;
+ }
+
+ template <typename Table, typename Key, typename T>
+ inline bool operator==(const table_proxy<Table, Key>& right, T&& left) {
+ using G = decltype(stack::get<T>(nullptr, 0));
+ return right.template get<optional<G>>() == left;
+ }
+
+ template <typename Table, typename Key, typename T>
+ inline bool operator!=(T&& left, const table_proxy<Table, Key>& right) {
+ using G = decltype(stack::get<T>(nullptr, 0));
+ return right.template get<optional<G>>() != left;
+ }
+
+ template <typename Table, typename Key, typename T>
+ inline bool operator!=(const table_proxy<Table, Key>& right, T&& left) {
+ using G = decltype(stack::get<T>(nullptr, 0));
+ return right.template get<optional<G>>() != left;
+ }
+
+ template <typename Table, typename Key>
+ inline bool operator==(lua_nil_t, const table_proxy<Table, Key>& right) {
+ return !right.valid();
+ }
+
+ template <typename Table, typename Key>
+ inline bool operator==(const table_proxy<Table, Key>& right, lua_nil_t) {
+ return !right.valid();
+ }
+
+ template <typename Table, typename Key>
+ inline bool operator!=(lua_nil_t, const table_proxy<Table, Key>& right) {
+ return right.valid();
+ }
+
+ template <typename Table, typename Key>
+ inline bool operator!=(const table_proxy<Table, Key>& right, lua_nil_t) {
+ return right.valid();
+ }
+
+ template <bool b>
+ template <typename Super>
+ basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) {
+ basic_reference<b> v = r;
+ this->operator=(std::move(v));
+ return *this;
+ }
+
+ template <bool b>
+ template <typename Super>
+ basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) {
+ basic_reference<b> v = r;
+ this->operator=(std::move(v));
+ return *this;
+ }
+
+ namespace stack {
+ template <typename Table, typename Key>
+ struct unqualified_pusher<table_proxy<Table, Key>> {
+ static int push(lua_State* L, const table_proxy<Table, Key>& p) {
+ return p.push(L);
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/table_proxy.hpp
+
+// beginning of sol/table_iterator.hpp
+
+#include <iterator>
+
+namespace sol {
+
+ template <typename reference_type>
+ class basic_table_iterator {
+ public:
+ typedef object key_type;
+ typedef object mapped_type;
+ typedef std::pair<object, object> value_type;
+ typedef std::input_iterator_tag iterator_category;
+ typedef std::ptrdiff_t difference_type;
+ typedef value_type* pointer;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+
+ private:
+ std::pair<object, object> kvp;
+ reference_type ref;
+ int tableidx = 0;
+ int keyidx = 0;
+ std::ptrdiff_t idx = 0;
+
+ public:
+ basic_table_iterator() noexcept : keyidx(-1), idx(-1) {
+ }
+
+ basic_table_iterator(reference_type x) noexcept : ref(std::move(x)) {
+ ref.push();
+ tableidx = lua_gettop(ref.lua_state());
+ stack::push(ref.lua_state(), lua_nil);
+ this->operator++();
+ if (idx == -1) {
+ return;
+ }
+ --idx;
+ }
+
+ basic_table_iterator& operator++() noexcept {
+ if (idx == -1)
+ return *this;
+
+ if (lua_next(ref.lua_state(), tableidx) == 0) {
+ idx = -1;
+ keyidx = -1;
+ return *this;
+ }
+ ++idx;
+ kvp.first = object(ref.lua_state(), -2);
+ kvp.second = object(ref.lua_state(), -1);
+ lua_pop(ref.lua_state(), 1);
+ // leave key on the stack
+ keyidx = lua_gettop(ref.lua_state());
+ return *this;
+ }
+
+ basic_table_iterator operator++(int) noexcept {
+ auto saved = *this;
+ this->operator++();
+ return saved;
+ }
+
+ reference operator*() const noexcept {
+ return const_cast<reference>(kvp);
+ }
+
+ bool operator==(const basic_table_iterator& right) const noexcept {
+ return idx == right.idx;
+ }
+
+ bool operator!=(const basic_table_iterator& right) const noexcept {
+ return idx != right.idx;
+ }
+
+ ~basic_table_iterator() {
+ if (keyidx != -1) {
+ stack::remove(ref.lua_state(), keyidx, 1);
+ }
+ if (ref.lua_state() != nullptr && ref.valid()) {
+ stack::remove(ref.lua_state(), tableidx, 1);
+ }
+ }
+ };
+
+} // namespace sol
+
+// end of sol/table_iterator.hpp
+
+// beginning of sol/pairs_iterator.hpp
+
+// beginning of sol/stack/detail/pairs.hpp
+
+#include <optional>
+
+namespace sol { namespace stack { namespace stack_detail {
+
+ inline bool maybe_push_lua_next_function(lua_State* L_) {
+ stack::get_field<true, false>(L_, "next");
+ bool is_next = stack::check<protected_function>(L_);
+ if (is_next) {
+ return true;
+ }
+ stack::get_field<true, false>(L_, "table");
+ stack::record tracking{};
+ if (!stack::loose_table_check(L_, -1, &no_panic, tracking)) {
+ return false;
+ }
+ lua_getfield(L_, -1, "next");
+ bool is_table_next_func = stack::check<protected_function>(L_, -1);
+ if (is_table_next_func) {
+ return true;
+ }
+ lua_pop(L_, 1);
+ return false;
+ }
+
+ inline std::optional<protected_function> find_lua_next_function(lua_State* L_) {
+ if (maybe_push_lua_next_function(L_)) {
+ return stack::pop<protected_function>(L_);
+ }
+ return std::nullopt;
+ }
+
+ inline int c_lua_next(lua_State* L_) noexcept {
+ stack_reference table_stack_ref(L_, raw_index(1));
+ stateless_stack_reference key_stack_ref(L_, raw_index(2));
+ int result = lua_next(table_stack_ref.lua_state(), table_stack_ref.stack_index());
+ if (result == 0) {
+ stack::push(L_, lua_nil);
+ return 1;
+ }
+ return 2;
+ }
+
+ inline int readonly_pairs(lua_State* L_) noexcept {
+ int pushed = 0;
+ if (!maybe_push_lua_next_function(L_)) {
+ // we do not have the "next" function in the global namespace
+ // from the "table" global entiry, use our own
+ pushed += stack::push(L_, &c_lua_next);
+ }
+ else {
+ pushed += 1;
+ }
+ int metatable_exists = lua_getmetatable(L_, 1);
+ SOL_ASSERT(metatable_exists == 1);
+ const auto& index_key = to_string(sol::meta_function::index);
+ lua_getfield(L_, lua_gettop(L_), index_key.c_str());
+ lua_remove(L_, -2);
+ pushed += 1;
+ pushed += stack::push(L_, lua_nil);
+ return pushed;
+ }
+
+}}} // sol::stack::stack_detail
+
+// end of sol/stack/detail/pairs.hpp
+
+namespace sol {
+
+ struct pairs_sentinel { };
+
+ class pairs_iterator {
+ private:
+ inline static constexpr int empty_key_index = -1;
+
+ public:
+ using key_type = object;
+ using mapped_type = object;
+ using value_type = std::pair<object, object>;
+ using iterator_category = std::input_iterator_tag;
+ using difference_type = std::ptrdiff_t;
+ using pointer = value_type*;
+ using const_pointer = value_type const*;
+ using reference = value_type&;
+ using const_reference = const value_type&;
+
+ pairs_iterator() noexcept
+ : m_L(nullptr)
+ , m_next_function_ref(lua_nil)
+ , m_table_ref(lua_nil)
+ , m_cached_key_value_pair({ lua_nil, lua_nil })
+ , m_key_index(empty_key_index)
+ , m_iteration_index(0) {
+ }
+
+ pairs_iterator(const pairs_iterator&) = delete;
+ pairs_iterator& operator=(const pairs_iterator&) = delete;
+
+ pairs_iterator(pairs_iterator&& right) noexcept
+ : m_L(right.m_L)
+ , m_next_function_ref(std::move(right.m_next_function_ref))
+ , m_table_ref(std::move(right.m_table_ref))
+ , m_cached_key_value_pair(std::move(right.m_cached_key_value_pair))
+ , m_key_index(right.m_key_index)
+ , m_iteration_index(right.m_iteration_index) {
+ right.m_key_index = empty_key_index;
+ }
+
+ pairs_iterator& operator=(pairs_iterator&& right) noexcept {
+ m_L = right.m_L;
+ m_next_function_ref = std::move(right.m_next_function_ref);
+ m_table_ref = std::move(right.m_table_ref);
+ m_cached_key_value_pair = std::move(right.m_cached_key_value_pair);
+ m_key_index = right.m_key_index;
+ m_iteration_index = right.m_iteration_index;
+ right.m_key_index = empty_key_index;
+ return *this;
+ }
+
+ template <typename Source>
+ pairs_iterator(const Source& source_) noexcept : m_L(source_.lua_state()), m_key_index(empty_key_index), m_iteration_index(0) {
+ if (m_L == nullptr || !source_.valid()) {
+ m_key_index = empty_key_index;
+ return;
+ }
+ int source_index = -source_.push(m_L);
+ int abs_source_index = lua_absindex(m_L, source_index);
+ int metatable_exists = lua_getmetatable(m_L, abs_source_index);
+ lua_remove(m_L, abs_source_index);
+ if (metatable_exists == 1) {
+ // just has a metatable, but does it have __pairs ?
+ stack_reference metatable(m_L, raw_index(abs_source_index));
+ stack::get_field<is_global_table_v<Source>, true>(m_L, meta_function::pairs, metatable.stack_index());
+ optional<protected_function> maybe_pairs_function = stack::pop<optional<protected_function>>(m_L);
+ if (maybe_pairs_function.has_value()) {
+ protected_function& pairs_function = *maybe_pairs_function;
+ protected_function_result next_fn_and_table_and_first_key = pairs_function(source_);
+ if (next_fn_and_table_and_first_key.valid()) {
+ m_next_function_ref = next_fn_and_table_and_first_key.get<protected_function>(0);
+ m_table_ref = next_fn_and_table_and_first_key.get<sol::reference>(1);
+ m_key_index = next_fn_and_table_and_first_key.stack_index() - 1;
+ // remove next function and table
+ lua_remove(m_L, m_key_index);
+ lua_remove(m_L, m_key_index);
+ next_fn_and_table_and_first_key.abandon();
+ lua_remove(m_L, abs_source_index);
+ this->operator++();
+ m_iteration_index = 0;
+ return;
+ }
+ }
+ }
+
+ {
+ auto maybe_next = stack::stack_detail::find_lua_next_function(m_L);
+ if (maybe_next.has_value()) {
+ m_next_function_ref = std::move(*maybe_next);
+ m_table_ref = source_;
+
+ stack::push(m_L, lua_nil);
+ m_key_index = lua_gettop(m_L);
+ this->operator++();
+ m_iteration_index = 0;
+ return;
+ }
+ }
+
+ // okay, so none of the above worked and now we need to create
+ // a shim / polyfill instead
+ stack::push(m_L, &stack::stack_detail::c_lua_next);
+ m_next_function_ref = stack::pop<protected_function>(m_L);
+ m_table_ref = source_;
+ stack::push(m_L, lua_nil);
+ m_key_index = lua_gettop(m_L);
+ this->operator++();
+ m_iteration_index = 0;
+ }
+
+ pairs_iterator& operator++() {
+ if (m_key_index == empty_key_index) {
+ return *this;
+ }
+ {
+ sol::protected_function_result next_results = m_next_function_ref(m_table_ref, stack_reference(m_L, m_key_index));
+ if (!next_results.valid()) {
+ // TODO: abort, or throw an error?
+ m_clear();
+ m_key_index = empty_key_index;
+ return *this;
+ }
+ int next_results_count = next_results.return_count();
+ if (next_results_count < 2) {
+ // iteration is over!
+ next_results.abandon();
+ lua_settop(m_L, m_key_index - 1);
+ m_key_index = empty_key_index;
+ ++m_iteration_index;
+ return *this;
+ }
+ else {
+ lua_remove(m_L, m_key_index);
+ m_key_index = next_results.stack_index() - 1;
+ m_cached_key_value_pair.first = stack::get<object>(m_L, m_key_index);
+ m_cached_key_value_pair.second = stack::get<object>(m_L, m_key_index + 1);
+ lua_settop(m_L, m_key_index);
+ next_results.abandon();
+ }
+ }
+ ++m_iteration_index;
+ return *this;
+ }
+
+ std::ptrdiff_t index() const {
+ return static_cast<std::ptrdiff_t>(m_iteration_index);
+ }
+
+ const_reference operator*() const noexcept {
+ return m_cached_key_value_pair;
+ }
+
+ reference operator*() noexcept {
+ return m_cached_key_value_pair;
+ }
+
+ friend bool operator==(const pairs_iterator& left, const pairs_iterator& right) noexcept {
+ return left.m_table_ref == right.m_table_ref && left.m_iteration_index == right.m_iteration_index;
+ }
+
+ friend bool operator!=(const pairs_iterator& left, const pairs_iterator& right) noexcept {
+ return left.m_table_ref != right.m_table_ref || left.m_iteration_index != right.m_iteration_index;
+ }
+
+ friend bool operator==(const pairs_iterator& left, const pairs_sentinel&) noexcept {
+ return left.m_key_index == empty_key_index;
+ }
+
+ friend bool operator!=(const pairs_iterator& left, const pairs_sentinel&) noexcept {
+ return left.m_key_index != empty_key_index;
+ }
+
+ friend bool operator==(const pairs_sentinel&, const pairs_iterator& left) noexcept {
+ return left.m_key_index == empty_key_index;
+ }
+
+ friend bool operator!=(const pairs_sentinel&, const pairs_iterator& left) noexcept {
+ return left.m_key_index != empty_key_index;
+ }
+
+ ~pairs_iterator() {
+ if (m_key_index != empty_key_index) {
+ m_clear();
+ }
+ }
+
+ private:
+ void m_clear() noexcept {
+ lua_remove(m_L, m_key_index);
+ }
+
+ lua_State* m_L;
+ protected_function m_next_function_ref;
+ sol::reference m_table_ref;
+ std::pair<object, object> m_cached_key_value_pair;
+ int m_key_index;
+ int m_iteration_index;
+ };
+
+ template <typename Source>
+ class basic_pairs_range {
+ private:
+ using source_t = std::add_lvalue_reference_t<Source>;
+ source_t m_source;
+
+ public:
+ using iterator = pairs_iterator;
+ using const_iterator = pairs_iterator;
+
+ basic_pairs_range(source_t source_) noexcept : m_source(source_) {
+ }
+
+ iterator begin() noexcept {
+ return iterator(m_source);
+ }
+
+ iterator begin() const noexcept {
+ return iterator(m_source);
+ }
+
+ const_iterator cbegin() const noexcept {
+ return const_iterator(m_source);
+ }
+
+ pairs_sentinel end() noexcept {
+ return {};
+ }
+
+ pairs_sentinel end() const noexcept {
+ return {};
+ }
+
+ pairs_sentinel cend() const noexcept {
+ return {};
+ }
+ };
+} // namespace sol
+
+// end of sol/pairs_iterator.hpp
+
+namespace sol {
+ namespace detail {
+ template <std::size_t n>
+ struct clean {
+ lua_State* L;
+ clean(lua_State* luastate) : L(luastate) {
+ }
+ ~clean() {
+ lua_pop(L, static_cast<int>(n));
+ }
+ };
+
+ struct ref_clean {
+ lua_State* L;
+ int& pop_count;
+
+ ref_clean(lua_State* L_, int& pop_count_) noexcept : L(L_), pop_count(pop_count_) {
+ }
+ ~ref_clean() {
+ lua_pop(L, static_cast<int>(pop_count));
+ }
+ };
+
+ inline int fail_on_newindex(lua_State* L_) {
+ return luaL_error(L_, "sol: cannot modify the elements of an enumeration table");
+ }
+
+ } // namespace detail
+
+ template <bool top_level, typename ref_t>
+ class basic_table_core : public basic_object<ref_t> {
+ private:
+ using base_t = basic_object<ref_t>;
+
+ friend class state;
+ friend class state_view;
+ template <typename, typename>
+ friend class basic_usertype;
+ template <typename>
+ friend class basic_metatable;
+
+ template <typename T>
+ using is_get_direct_tableless = meta::boolean<stack::stack_detail::is_get_direct_tableless_v<T, top_level, false>>;
+
+ template <typename T>
+ using is_raw_get_direct_tableless = std::false_type;
+
+ template <typename T>
+ using is_set_direct_tableless = meta::boolean<stack::stack_detail::is_set_direct_tableless_v<T, top_level, false>>;
+
+ template <typename T>
+ using is_raw_set_direct_tableless = std::false_type;
+
+ template <bool raw, typename... Ret, typename... Keys>
+ decltype(auto) tuple_get(int table_index, Keys&&... keys) const {
+ if constexpr (sizeof...(Ret) < 2) {
+ return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...);
+ }
+ else {
+ using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr));
+ return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...);
+ }
+ }
+
+ template <bool raw, typename Ret, size_t... I, typename Key>
+ decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const {
+ return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...);
+ }
+
+ template <bool raw, typename Ret, typename Key>
+ decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const {
+ if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) {
+ return traverse_get_single_tuple<raw, Ret>(
+ table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key));
+ }
+ else {
+ return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key));
+ }
+ }
+
+ template <bool raw, typename Ret, typename... Keys>
+ decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const {
+ constexpr static bool global = (meta::count_for_to_pack_v < 1, is_get_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) {
+ int popcount = 0;
+ detail::ref_clean c(base_t::lua_state(), popcount);
+ return traverse_get_deep_optional<global, raw, detail::insert_mode::none, Ret>(popcount, table_index, std::forward<Keys>(keys)...);
+ }
+ else {
+ detail::clean<sizeof...(Keys) - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>> c(base_t::lua_state());
+ return traverse_get_deep<global, raw, detail::insert_mode::none, Ret>(table_index, std::forward<Keys>(keys)...);
+ }
+ }
+
+ template <bool raw, typename Pairs, std::size_t... I>
+ void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
+ constexpr static bool global = (meta::count_even_for_pack_v < is_set_direct_tableless,
+ meta::unqualified_t<decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ lua_State* L = base_t::lua_state();
+ (void)table_index;
+ (void)L;
+ void(detail::swallow { (stack::set_field<(top_level), raw>(
+ L, std::get<I * 2>(std::forward<Pairs>(pairs)), std::get<I * 2 + 1>(std::forward<Pairs>(pairs)), table_index),
+ 0)... });
+ }
+
+ template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
+ decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const {
+ if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
+ (void)key;
+ return traverse_get_deep<false, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil), T>(
+ table_index, std::forward<Keys>(keys)...);
+ }
+ else {
+ lua_State* L = base_t::lua_state();
+ stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
+ if constexpr (sizeof...(Keys) > 0) {
+ if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
+ type t = type_of(L, -1);
+ if (t == type::lua_nil || t == type::none) {
+ lua_pop(L, 1);
+ stack::push(L, new_table(0, 0));
+ }
+ }
+ return traverse_get_deep<false, raw, mode, T>(lua_gettop(L), std::forward<Keys>(keys)...);
+ }
+ else {
+ if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
+ type t = type_of(L, -1);
+ if ((t == type::lua_nil || t == type::none) && (is_table_like_v<T>)) {
+ lua_pop(L, 1);
+ stack::push(L, new_table(0, 0));
+ }
+ }
+ return stack::get<T>(L);
+ }
+ }
+ }
+
+ template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
+ decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const {
+ if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
+ constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil);
+ (void)key;
+ return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
+ }
+ else if constexpr (std::is_same_v<meta::unqualified_t<Key>, update_if_empty_t>) {
+ constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty);
+ (void)key;
+ return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
+ }
+ else if constexpr (std::is_same_v<meta::unqualified_t<Key>, override_value_t>) {
+ constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value);
+ (void)key;
+ return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
+ }
+ else {
+ if constexpr (sizeof...(Keys) > 0) {
+ lua_State* L = base_t::lua_state();
+ auto p = stack::probe_get_field<global, raw>(L, std::forward<Key>(key), table_index);
+ popcount += p.levels;
+ if (!p.success) {
+ if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
+ lua_pop(L, 1);
+ constexpr bool is_seq = meta::count_for_to_pack_v < 1, std::is_integral, Keys... >> 0;
+ stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
+ stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
+ }
+ else {
+ return T(nullopt);
+ }
+ }
+ return traverse_get_deep_optional<false, raw, mode, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...);
+ }
+ else {
+ using R = decltype(stack::get<T>(nullptr));
+ using value_type = typename meta::unqualified_t<R>::value_type;
+ lua_State* L = base_t::lua_state();
+ auto p = stack::probe_get_field<global, raw, value_type>(L, key, table_index);
+ popcount += p.levels;
+ if (!p.success) {
+ if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
+ lua_pop(L, 1);
+ stack::push(L, new_table(0, 0));
+ stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
+ if (stack::check<value_type>(L, lua_gettop(L), &no_panic)) {
+ return stack::get<T>(L);
+ }
+ }
+ return R(nullopt);
+ }
+ return stack::get<T>(L);
+ }
+ }
+ }
+
+ template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys>
+ void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const {
+ using KeyU = meta::unqualified_t<Key>;
+ if constexpr (std::is_same_v<KeyU, update_if_empty_t>) {
+ (void)key;
+ traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty)>(
+ table_index, std::forward<Keys>(keys)...);
+ }
+ else if constexpr (std::is_same_v<KeyU, create_if_nil_t>) {
+ (void)key;
+ traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil)>(
+ table_index, std::forward<Keys>(keys)...);
+ }
+ else if constexpr (std::is_same_v<KeyU, override_value_t>) {
+ (void)key;
+ traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value)>(
+ table_index, std::forward<Keys>(keys)...);
+ }
+ else {
+ lua_State* L = base_t::lua_state();
+ if constexpr (sizeof...(Keys) == 1) {
+ if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) {
+ auto p = stack::probe_get_field<global, raw>(L, key, table_index);
+ lua_pop(L, p.levels);
+ if (!p.success) {
+ stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
+ }
+ }
+ else {
+ stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
+ }
+ }
+ else {
+ if constexpr (mode != detail::insert_mode::none) {
+ stack::get_field<global, raw>(L, key, table_index);
+ type vt = type_of(L, -1);
+ if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty
+ || (mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
+ if (vt == type::lua_nil || vt == type::none) {
+ constexpr bool is_seq = meta::count_for_to_pack_v < 1, std::is_integral, Keys... >> 0;
+ lua_pop(L, 1);
+ stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
+ stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
+ }
+ }
+ else {
+ if (vt != type::table) {
+ constexpr bool is_seq = meta::count_for_to_pack_v < 1, std::is_integral, Keys... >> 0;
+ lua_pop(L, 1);
+ stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
+ stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
+ }
+ }
+ }
+ else {
+ stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
+ }
+ traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...);
+ }
+ }
+ }
+
+ protected:
+ basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
+ }
+ basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
+ }
+ basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
+ }
+
+ public:
+ using iterator = basic_table_iterator<ref_t>;
+ using const_iterator = iterator;
+
+ using base_t::lua_state;
+
+ basic_table_core() noexcept = default;
+ basic_table_core(const basic_table_core&) = default;
+ basic_table_core(basic_table_core&&) = default;
+ basic_table_core& operator=(const basic_table_core&) = default;
+ basic_table_core& operator=(basic_table_core&&) = default;
+
+ basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {
+ }
+
+ basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {
+ }
+
+ template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ constructor_handler handler {};
+ stack::check<basic_table_core>(lua_state(), table_index, handler);
+#endif // Safety
+ }
+
+ basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) {
+ if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
+ lua_pop(L, 1);
+ }
+ }
+
+ basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_table_core>(L, index, handler);
+#endif // Safety
+ }
+
+ basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ constructor_handler handler {};
+ stack::check<basic_table_core>(lua_state(), table_index, handler);
+#endif // Safety
+ }
+
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_table<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ constructor_handler handler {};
+ stack::check<basic_table_core>(lua_state(), table_index, handler);
+ }
+#endif // Safety
+ }
+
+ basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) {
+ }
+
+ basic_table_core(lua_State* L, global_tag_t t) noexcept : base_t(L, t) {
+ }
+
+ iterator begin() const {
+ if (this->get_type() == type::table) {
+ return iterator(*this);
+ }
+ return iterator();
+ }
+
+ iterator end() const {
+ return iterator();
+ }
+
+ const_iterator cbegin() const {
+ return begin();
+ }
+
+ const_iterator cend() const {
+ return end();
+ }
+
+ basic_pairs_range<basic_table_core> pairs() noexcept {
+ return basic_pairs_range<basic_table_core>(*this);
+ }
+
+ basic_pairs_range<const basic_table_core> pairs() const noexcept {
+ return basic_pairs_range<const basic_table_core>(*this);
+ }
+
+ void clear() {
+ auto pp = stack::push_pop<false>(*this);
+ int table_index = pp.index_of(*this);
+ stack::clear(lua_state(), table_index);
+ }
+
+ template <typename... Ret, typename... Keys>
+ decltype(auto) get(Keys&&... keys) const {
+ static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
+ constexpr static bool global = meta::all<meta::boolean<top_level>, is_get_direct_tableless<meta::unqualified_t<Keys>>...>::value;
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...);
+ }
+
+ template <typename T, typename Key>
+ decltype(auto) get_or(Key&& key, T&& otherwise) const {
+ typedef decltype(get<T>("")) U;
+ optional<U> option = get<optional<U>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<U>(option.value());
+ }
+ return static_cast<U>(std::forward<T>(otherwise));
+ }
+
+ template <typename T, typename Key, typename D>
+ decltype(auto) get_or(Key&& key, D&& otherwise) const {
+ optional<T> option = get<optional<T>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<T>(option.value());
+ }
+ return static_cast<T>(std::forward<D>(otherwise));
+ }
+
+ template <typename T, typename... Keys>
+ decltype(auto) traverse_get(Keys&&... keys) const {
+ static_assert(sizeof...(Keys) > 0, "must pass at least 1 key to get");
+ constexpr static bool global = (meta::count_for_to_pack_v < 1, is_get_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...);
+ }
+
+ template <typename... Keys>
+ basic_table_core& traverse_set(Keys&&... keys) {
+ static_assert(sizeof...(Keys) > 1, "must pass at least 1 key and 1 value to set");
+ constexpr static bool global
+ = (meta::count_when_for_to_pack_v < detail::is_not_insert_mode, 1, is_set_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ lua_State* L = base_t::lua_state();
+ auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
+ traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...);
+ return *this;
+ }
+
+ template <typename... Args>
+ basic_table_core& set(Args&&... args) {
+ if constexpr (sizeof...(Args) == 2) {
+ traverse_set(std::forward<Args>(args)...);
+ }
+ else {
+ tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ return *this;
+ }
+
+ template <typename... Ret, typename... Keys>
+ decltype(auto) raw_get(Keys&&... keys) const {
+ static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
+ constexpr static bool global = (meta::count_for_to_pack_v < 1, is_raw_get_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...);
+ }
+
+ template <typename T, typename Key>
+ decltype(auto) raw_get_or(Key&& key, T&& otherwise) const {
+ typedef decltype(raw_get<T>("")) U;
+ optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<U>(option.value());
+ }
+ return static_cast<U>(std::forward<T>(otherwise));
+ }
+
+ template <typename T, typename Key, typename D>
+ decltype(auto) raw_get_or(Key&& key, D&& otherwise) const {
+ optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
+ if (option) {
+ return static_cast<T>(option.value());
+ }
+ return static_cast<T>(std::forward<D>(otherwise));
+ }
+
+ template <typename T, typename... Keys>
+ decltype(auto) traverse_raw_get(Keys&&... keys) const {
+ constexpr static bool global = (meta::count_for_to_pack_v < 1, is_raw_get_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ int table_index = pp.index_of(*this);
+ return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...);
+ }
+
+ template <typename... Keys>
+ basic_table_core& traverse_raw_set(Keys&&... keys) {
+ constexpr static bool global = (meta::count_for_to_pack_v < 1, is_raw_set_direct_tableless, meta::unqualified_t<Keys>... >> 0);
+ auto pp = stack::push_pop<global>(*this);
+ lua_State* L = base_t::lua_state();
+ auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
+ traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...);
+ return *this;
+ }
+
+ template <typename... Args>
+ basic_table_core& raw_set(Args&&... args) {
+ tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
+ return *this;
+ }
+
+ template <typename Class, typename Key>
+ usertype<Class> new_usertype(Key&& key);
+
+ template <typename Class, typename Key, automagic_flags enrollment_flags>
+ usertype<Class> new_usertype(Key&& key, constant_automagic_enrollments<enrollment_flags> enrollment);
+
+ template <typename Class, typename Key>
+ usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment);
+
+ template <typename Class, typename Key, typename Arg, typename... Args,
+ typename = std::enable_if_t<!std::is_base_of_v<automagic_enrollments, meta::unqualified_t<Arg>>>>
+ usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args);
+
+ template <bool read_only = true, typename... Args>
+ table new_enum(const string_view& name, Args&&... args) {
+ table target = create_with(std::forward<Args>(args)...);
+ if constexpr (read_only) {
+ // Need to create a special iterator to handle this
+ table x
+ = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target, meta_function::pairs, stack::stack_detail::readonly_pairs);
+ table shim = create_named(name, metatable_key, x);
+ return shim;
+ }
+ else {
+ set(name, target);
+ return target;
+ }
+ }
+
+ template <typename T, bool read_only = true>
+ table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
+ table target = create(static_cast<int>(items.size()), static_cast<int>(0));
+ for (const auto& kvp : items) {
+ target.set(kvp.first, kvp.second);
+ }
+ if constexpr (read_only) {
+ table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
+ table shim = create_named(name, metatable_key, x);
+ return shim;
+ }
+ else {
+ set(name, target);
+ return target;
+ }
+ }
+
+ template <typename Key = object, typename Value = object, typename Fx>
+ void for_each(Fx&& fx) const {
+ lua_State* L = base_t::lua_state();
+ if constexpr (std::is_invocable_v<Fx, Key, Value>) {
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ stack::push(L, lua_nil);
+ while (lua_next(L, table_index)) {
+ Key key(L, -2);
+ Value value(L, -1);
+ auto pn = stack::pop_n(L, 1);
+ fx(key, value);
+ }
+ }
+ else {
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ stack::push(L, lua_nil);
+ while (lua_next(L, table_index)) {
+ Key key(L, -2);
+ Value value(L, -1);
+ auto pn = stack::pop_n(L, 1);
+ std::pair<Key&, Value&> keyvalue(key, value);
+ fx(keyvalue);
+ }
+ }
+ }
+
+ size_t size() const {
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ lua_State* L = base_t::lua_state();
+ lua_len(L, table_index);
+ return stack::pop<size_t>(L);
+ }
+
+ bool empty() const {
+ return cbegin() == cend();
+ }
+
+ template <typename T>
+ auto operator[](T&& key) & {
+ return table_proxy<basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
+ }
+
+ template <typename T>
+ auto operator[](T&& key) const& {
+ return table_proxy<const basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
+ }
+
+ template <typename T>
+ auto operator[](T&& key) && {
+ return table_proxy<basic_table_core, detail::proxy_key_t<T>>(std::move(*this), std::forward<T>(key));
+ }
+
+ template <typename Sig, typename Key, typename... Args>
+ basic_table_core& set_function(Key&& key, Args&&... args) {
+ set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Key, typename... Args>
+ basic_table_core& set_function(Key&& key, Args&&... args) {
+ set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename... Args>
+ basic_table_core& add(Args&&... args) {
+ auto pp = stack::push_pop(*this);
+ int table_index = pp.index_of(*this);
+ lua_State* L = base_t::lua_state();
+ (void)detail::swallow { 0, (stack::stack_detail::raw_table_set(L, std::forward<Args>(args), table_index), 0)... };
+ return *this;
+ }
+
+ private:
+ template <typename R, typename... Args, typename Fx, typename Key, typename = std::invoke_result_t<Fx, Args...>>
+ void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
+ set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx) {
+ set(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, typename... Args,
+ meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
+ }
+
+ template <typename... Sig, typename... Args, typename Key>
+ void set_resolved_function(Key&& key, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
+ }
+
+ public:
+ static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
+ lua_createtable(L, narr, nrec);
+ table result(L);
+ lua_pop(L, 1);
+ return result;
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ lua_createtable(L, narr, nrec);
+ table result(L);
+ result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ lua_pop(L, 1);
+ return result;
+ }
+
+ template <typename... Args>
+ static inline table create_with(lua_State* L, Args&&... args) {
+ static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
+ constexpr int narr = static_cast<int>(meta::count_odd_for_pack_v<std::is_integral, Args...>);
+ return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
+ }
+
+ table create(int narr = 0, int nrec = 0) {
+ return create(base_t::lua_state(), narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename Name>
+ table create(Name&& name, int narr = 0, int nrec = 0) {
+ table x = create(base_t::lua_state(), narr, nrec);
+ this->set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ template <typename Name, typename Key, typename Value, typename... Args>
+ table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ this->set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ template <typename... Args>
+ table create_with(Args&&... args) {
+ return create_with(base_t::lua_state(), std::forward<Args>(args)...);
+ }
+
+ template <typename Name, typename... Args>
+ table create_named(Name&& name, Args&&... args) {
+ static const int narr = static_cast<int>(meta::count_even_for_pack_v<std::is_integral, Args...>);
+ return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
+ }
+ };
+} // namespace sol
+
+// end of sol/table_core.hpp
+
+namespace sol {
+
+ template <typename base_type>
+ class basic_metatable : public basic_table<base_type> {
+ typedef basic_table<base_type> base_t;
+ friend class state;
+ friend class state_view;
+
+ protected:
+ basic_metatable(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
+ }
+ basic_metatable(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
+ }
+ basic_metatable(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_metatable(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_metatable(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
+ }
+
+ template <typename R, typename... Args, typename Fx, typename Key, typename = std::invoke_result_t<Fx, Args...>>
+ void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
+ set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx) {
+ set(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, typename... Args,
+ meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
+ }
+
+ template <typename... Sig, typename... Args, typename Key>
+ void set_resolved_function(Key&& key, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
+ }
+
+ public:
+ using base_t::lua_state;
+
+ basic_metatable() noexcept = default;
+ basic_metatable(const basic_metatable&) = default;
+ basic_metatable(basic_metatable&&) = default;
+ basic_metatable& operator=(const basic_metatable&) = default;
+ basic_metatable& operator=(basic_metatable&&) = default;
+ basic_metatable(const stack_reference& r) : basic_metatable(r.lua_state(), r.stack_index()) {
+ }
+ basic_metatable(stack_reference&& r) : basic_metatable(r.lua_state(), r.stack_index()) {
+ }
+ template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_metatable(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_metatable>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_metatable(lua_State* L, int index = -1) : basic_metatable(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_metatable>(L, index, handler);
+#endif // Safety
+ }
+ basic_metatable(lua_State* L, ref_index index) : basic_metatable(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_metatable>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_metatable(T&& r) noexcept : basic_metatable(detail::no_safety, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_table<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_metatable>(base_t::lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_metatable(lua_nil_t r) noexcept : basic_metatable(detail::no_safety, r) {
+ }
+
+ template <typename Key, typename Value>
+ basic_metatable<base_type>& set(Key&& key, Value&& value);
+
+ template <typename Sig, typename Key, typename... Args>
+ basic_metatable& set_function(Key&& key, Args&&... args) {
+ set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Key, typename... Args>
+ basic_metatable& set_function(Key&& key, Args&&... args) {
+ set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ void unregister() {
+ using ustorage_base = u_detail::usertype_storage_base;
+
+ lua_State* L = this->lua_state();
+
+ auto pp = stack::push_pop(*this);
+ int top = lua_gettop(L);
+
+ stack_reference mt(L, -1);
+ stack::get_field(L, meta_function::gc_names, mt.stack_index());
+ if (type_of(L, -1) != type::table) {
+ lua_settop(L, top);
+ return;
+ }
+ stack_reference gc_names_table(L, -1);
+ stack::get_field(L, meta_function::storage, mt.stack_index());
+ if (type_of(L, -1) != type::lightuserdata) {
+ lua_settop(L, top);
+ return;
+ }
+ ustorage_base& base_storage = *static_cast<ustorage_base*>(stack::get<void*>(L, -1));
+ std::array<string_view, 6> registry_traits;
+ for (std::size_t i = 0; i < registry_traits.size(); ++i) {
+ u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
+ stack::get_field<false, true>(L, smt, gc_names_table.stack_index());
+ registry_traits[i] = stack::get<string_view>(L, -1);
+ }
+
+ // get the registry
+ stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
+ registry.push();
+ // eliminate all named entries for this usertype
+ // in the registry (luaL_newmetatable does
+ // [name] = new table
+ // in registry upon creation)
+ for (std::size_t i = 0; i < registry_traits.size(); ++i) {
+ u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
+ const string_view& gcmetakey = registry_traits[i];
+ if (smt == u_detail::submetatable_type::named) {
+ // use .data() to make it treat it like a c string,
+ // which it is...
+ stack::set_field<true>(L, gcmetakey.data(), lua_nil);
+ }
+ else {
+ // do not change the values in the registry: they need to be present
+ // no matter what, for safety's sake
+ // stack::set_field(L, gcmetakey, lua_nil, registry.stack_index());
+ }
+ }
+
+ // destroy all storage and tables
+ base_storage.clear();
+
+ // 6 strings from gc_names table,
+ // + 1 registry,
+ // + 1 gc_names table
+ // + 1 light userdata of storage
+ // + 1 registry
+ // 10 total, 4 left since popping off 6 gc_names tables
+ lua_settop(L, top);
+ }
+ };
+
+} // namespace sol
+
+// end of sol/metatable.hpp
+
+namespace sol {
+
+ template <typename T, typename base_type>
+ class basic_usertype : private basic_metatable<base_type> {
+ private:
+ using base_t = basic_metatable<base_type>;
+ using table_base_t = basic_table<base_type>;
+
+ template <typename>
+ friend class basic_metatable;
+
+ template <bool, typename>
+ friend class basic_table_core;
+
+ template <std::size_t... I, typename... Args>
+ void tuple_set(std::index_sequence<I...>, std::tuple<Args...>&& args) {
+ (void)args;
+ (void)detail::swallow { 0, (this->set(std::get<I * 2>(std::move(args)), std::get<I * 2 + 1>(std::move(args))), 0)... };
+ }
+
+ template <typename R, typename... Args, typename Fx, typename Key, typename = std::invoke_result_t<Fx, Args...>>
+ void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
+ set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx) {
+ set(std::forward<Key>(key), std::forward<Fx>(fx));
+ }
+
+ template <typename Fx, typename Key, typename... Args,
+ meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
+ void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
+ }
+
+ template <typename... Sig, typename... Args, typename Key>
+ void set_resolved_function(Key&& key, Args&&... args) {
+ set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
+ }
+
+ public:
+ using base_t::base_t;
+
+ using base_t::get;
+ using base_t::lua_state;
+ using base_t::pop;
+ using base_t::push;
+ using base_t::traverse_get;
+ using base_t::traverse_set;
+ using base_t::unregister;
+
+ template <typename Key, typename Value>
+ basic_usertype& set(Key&& key, Value&& value) {
+ optional<u_detail::usertype_storage<T>&> maybe_uts = u_detail::maybe_get_usertype_storage<T>(this->lua_state());
+ if (maybe_uts) {
+ u_detail::usertype_storage<T>& uts = *maybe_uts;
+ uts.set(this->lua_state(), std::forward<Key>(key), std::forward<Value>(value));
+ }
+ else {
+ using ValueU = meta::unqualified_t<Value>;
+ // cannot get metatable: try regular table set?
+ if constexpr (detail::is_non_factory_constructor_v<ValueU> || detail::is_policy_v<ValueU>) {
+ // tag constructors so we don't get destroyed by lack of info
+ table_base_t::set(std::forward<Key>(key), detail::tagged<T, Value>(std::forward<Value>(value)));
+ }
+ else {
+ table_base_t::set(std::forward<Key>(key), std::forward<Value>(value));
+ }
+ }
+ return *this;
+ }
+
+ template <typename Sig, typename Key, typename... Args>
+ basic_usertype& set_function(Key&& key, Args&&... args) {
+ set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Key, typename... Args>
+ basic_usertype& set_function(Key&& key, Args&&... args) {
+ set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Key>
+ usertype_proxy<basic_usertype&, std::decay_t<Key>> operator[](Key&& key) {
+ return usertype_proxy<basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
+ }
+
+ template <typename Key>
+ usertype_proxy<const basic_usertype&, std::decay_t<Key>> operator[](Key&& key) const {
+ return usertype_proxy<const basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
+ }
+ };
+
+} // namespace sol
+
+// end of sol/usertype.hpp
+
+// beginning of sol/table.hpp
+
+// beginning of sol/lua_table.hpp
+
+namespace sol {
+
+ template <typename ref_t>
+ struct basic_lua_table : basic_table_core<false, ref_t> {
+ private:
+ using base_t = basic_table_core<false, ref_t>;
+
+ friend class state;
+ friend class state_view;
+
+ public:
+ using base_t::lua_state;
+
+ basic_lua_table() noexcept = default;
+ basic_lua_table(const basic_lua_table&) = default;
+ basic_lua_table(basic_lua_table&&) = default;
+ basic_lua_table& operator=(const basic_lua_table&) = default;
+ basic_lua_table& operator=(basic_lua_table&&) = default;
+ basic_lua_table(const stack_reference& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
+ }
+ basic_lua_table(stack_reference&& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
+ }
+ template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lua_table(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_lua_table(lua_State* L, const new_table& nt) : base_t(L, nt) {
+ if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
+ lua_pop(L, 1);
+ }
+ }
+ basic_lua_table(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_lua_table>(L, index, handler);
+#endif // Safety
+ }
+ basic_lua_table(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_lua_table>>, meta::neg<std::is_same<ref_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lua_table(T&& r) noexcept : basic_lua_table(detail::no_safety, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_table<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_lua_table(lua_nil_t r) noexcept : basic_lua_table(detail::no_safety, r) {
+ }
+ };
+
+} // namespace sol
+
+// end of sol/lua_table.hpp
+
+namespace sol {
+ typedef table_core<false> table;
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key) {
+ constant_automagic_enrollments<> enrollments {};
+ return this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
+ }
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key, automagic_flags enrollment_flags>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, constant_automagic_enrollments<enrollment_flags> enrollments) {
+ int mt_index = u_detail::register_usertype<Class, enrollment_flags>(this->lua_state(), std::move(enrollments));
+ usertype<Class> mt(this->lua_state(), -mt_index);
+ lua_pop(this->lua_state(), 1);
+ set(std::forward<Key>(key), mt);
+ return mt;
+ }
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, automagic_enrollments enrollments) {
+ int mt_index = u_detail::register_usertype<Class, automagic_flags::all>(this->lua_state(), std::move(enrollments));
+ usertype<Class> mt(this->lua_state(), -mt_index);
+ lua_pop(this->lua_state(), 1);
+ set(std::forward<Key>(key), mt);
+ return mt;
+ }
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key, typename Arg, typename... Args, typename>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, Arg&& arg, Args&&... args) {
+ constexpr automagic_flags enrollment_flags = meta::any_same_v<no_construction, meta::unqualified_t<Arg>, meta::unqualified_t<Args>...>
+ ? clear_flags(automagic_flags::all, automagic_flags::default_constructor)
+ : automagic_flags::all;
+ constant_automagic_enrollments<enrollment_flags> enrollments;
+ enrollments.default_constructor = !detail::any_is_constructor_v<Arg, Args...>;
+ enrollments.destructor = !detail::any_is_destructor_v<Arg, Args...>;
+ usertype<Class> ut = this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
+ static_assert(sizeof...(Args) % 2 == static_cast<std::size_t>(!detail::any_is_constructor_v<Arg>),
+ "you must pass an even number of arguments to new_usertype after first passing a constructor");
+ if constexpr (detail::any_is_constructor_v<Arg>) {
+ ut.set(meta_function::construct, std::forward<Arg>(arg));
+ ut.tuple_set(std::make_index_sequence<(sizeof...(Args)) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ else {
+ ut.tuple_set(std::make_index_sequence<(sizeof...(Args) + 1) / 2>(), std::forward_as_tuple(std::forward<Arg>(arg), std::forward<Args>(args)...));
+ }
+ return ut;
+ }
+
+ template <typename base_type>
+ template <typename Key, typename Value>
+ basic_metatable<base_type>& basic_metatable<base_type>::set(Key&& key, Value&& value) {
+ this->push();
+ lua_State* L = this->lua_state();
+ int target = lua_gettop(L);
+ optional<u_detail::usertype_storage_base&> maybe_uts = nullopt;
+ maybe_uts = u_detail::maybe_get_usertype_storage_base(L, target);
+ if (maybe_uts) {
+ u_detail::usertype_storage_base& uts = *maybe_uts;
+ uts.set(L, std::forward<Key>(key), std::forward<Value>(value));
+ return *this;
+ }
+ else {
+ base_t::set(std::forward<Key>(key), std::forward<Value>(value));
+ }
+ this->pop();
+ return *this;
+ }
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<metatable_key_t> {
+ static metatable get(lua_State* L, int index = -1) {
+ if (lua_getmetatable(L, index) == 0) {
+ return metatable(L, ref_index(LUA_REFNIL));
+ }
+ return metatable(L, -1);
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/table.hpp
+
+// beginning of sol/state.hpp
+
+// beginning of sol/state_view.hpp
+
+// beginning of sol/environment.hpp
+
+namespace sol {
+
+ template <typename base_type>
+ struct basic_environment : basic_table<base_type> {
+ private:
+ typedef basic_table<base_type> base_t;
+
+ public:
+ using base_t::lua_state;
+
+ basic_environment() noexcept = default;
+ basic_environment(const basic_environment&) = default;
+ basic_environment(basic_environment&&) = default;
+ basic_environment& operator=(const basic_environment&) = default;
+ basic_environment& operator=(basic_environment&&) = default;
+ basic_environment(const stack_reference& r) : basic_environment(r.lua_state(), r.stack_index()) {
+ }
+ basic_environment(stack_reference&& r) : basic_environment(r.lua_state(), r.stack_index()) {
+ }
+
+ basic_environment(lua_State* L, new_table nt) : base_t(L, std::move(nt)) {
+ }
+ template <bool b>
+ basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) : basic_environment(L, std::move(t)) {
+ stack_table mt(L, new_table(0, 1));
+ mt.set(meta_function::index, fallback);
+ this->set(metatable_key, mt);
+ mt.pop();
+ }
+
+ basic_environment(env_key_t, const stack_reference& extraction_target)
+ : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<env_key_t>(this->lua_state(), -1, handler);
+#endif // Safety
+ lua_pop(this->lua_state(), 1);
+ }
+ template <bool b>
+ basic_environment(env_key_t, const basic_reference<b>& extraction_target)
+ : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<env_key_t>(this->lua_state(), -1, handler);
+#endif // Safety
+ lua_pop(this->lua_state(), 1);
+ }
+ basic_environment(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_environment>(L, index, handler);
+#endif // Safety
+ }
+ basic_environment(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_environment>(L, -1, handler);
+#endif // Safety
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_environment(T&& r) noexcept : base_t(detail::no_safety, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_environment<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_environment>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_environment(lua_nil_t r) noexcept : base_t(detail::no_safety, r) {
+ }
+
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_environment(lua_State* L, T&& r) noexcept : base_t(detail::no_safety, L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_environment<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_environment>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+
+ template <typename T>
+ bool set_on(const T& target) const {
+ lua_State* L = target.lua_state();
+ auto pp = stack::push_pop(target);
+ int target_index = pp.index_of(target);
+#if SOL_LUA_VERSION_I_ < 502
+ // Use lua_setfenv
+ this->push();
+ int success_result = lua_setfenv(L, target_index);
+ return success_result != 0;
+#else
+ // If this is a C function, the environment is always placed in
+ // the first value, as is expected of sol2 (all upvalues have an empty name, "")
+ if (lua_iscfunction(L, target_index) != 0) {
+ const char* maybe_upvalue_name = lua_getupvalue(L, target_index, 1);
+ if (maybe_upvalue_name == nullptr) {
+ return false;
+ }
+ string_view upvalue_name(maybe_upvalue_name);
+ if (upvalue_name == "") {
+ this->push();
+ const char* success = lua_setupvalue(L, target_index, 1);
+ if (success == nullptr) {
+ // left things alone on the stack, pop them off
+ lua_pop(L, 2);
+ return false;
+ }
+ lua_pop(L, 1);
+ return true;
+ }
+ lua_pop(L, 1);
+ return false;
+ }
+ else {
+ // Must search for the right upvalue target on index
+ for (int upvalue_index = 1;; ++upvalue_index) {
+ const char* maybe_upvalue_name = lua_getupvalue(L, target_index, upvalue_index);
+ if (maybe_upvalue_name == nullptr) {
+ break;
+ }
+ string_view upvalue_name(maybe_upvalue_name);
+ if (upvalue_name == "_ENV") {
+ lua_pop(L, 1);
+ this->push();
+ const char* success = lua_setupvalue(L, target_index, upvalue_index);
+ if (success == nullptr) {
+ // left things alone on the stack, pop them off
+ lua_pop(L, 1);
+ break;
+ }
+ // whether or not we succeeded, we found _ENV
+ // so we need to break
+ return true;
+ }
+ lua_pop(L, 1);
+ }
+ // if we get here,
+ // we did not find an _ENV here...
+ return false;
+ }
+#endif
+ }
+ };
+
+ template <typename T, typename E>
+ bool set_environment(const basic_environment<E>& env, const T& target) {
+ return env.set_on(target);
+ }
+
+ template <typename E = reference, typename T>
+ basic_environment<E> get_environment(const T& target) {
+ lua_State* L = target.lua_state();
+ auto pp = stack::pop_n(L, stack::push_environment_of(target));
+ return basic_environment<E>(L, -1);
+ }
+
+ struct this_environment {
+ optional<environment> env;
+
+ this_environment() : env(nullopt) {
+ }
+ this_environment(environment e) : env(std::move(e)) {
+ }
+ this_environment(const this_environment&) = default;
+ this_environment(this_environment&&) = default;
+ this_environment& operator=(const this_environment&) = default;
+ this_environment& operator=(this_environment&&) = default;
+
+ explicit operator bool() const {
+ return static_cast<bool>(env);
+ }
+
+ operator optional<environment>&() {
+ return env;
+ }
+
+ operator const optional<environment>&() const {
+ return env;
+ }
+
+ operator environment&() {
+ return env.value();
+ }
+
+ operator const environment&() const {
+ return env.value();
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<env_key_t> {
+ static environment get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ return get_environment(stack_reference(L, raw_index(index)));
+ }
+ };
+
+ template <>
+ struct unqualified_getter<this_environment> {
+ static this_environment get(lua_State* L, int, record& tracking) {
+ tracking.use(0);
+ lua_Debug info;
+ // Level 0 means current function (this C function, which may or may not be useful for us?)
+ // Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call)
+ int pre_stack_size = lua_gettop(L);
+ if (lua_getstack(L, 1, &info) != 1) {
+ if (lua_getstack(L, 0, &info) != 1) {
+ lua_settop(L, pre_stack_size);
+ return this_environment();
+ }
+ }
+ if (lua_getinfo(L, "f", &info) == 0) {
+ lua_settop(L, pre_stack_size);
+ return this_environment();
+ }
+
+ stack_reference f(L, -1);
+ environment env(env_key, f);
+ if (!env.valid()) {
+ lua_settop(L, pre_stack_size);
+ return this_environment();
+ }
+ return this_environment(std::move(env));
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/environment.hpp
+
+// beginning of sol/load_result.hpp
+
+#include <cstdint>
+
+namespace sol {
+ struct load_result : public proxy_base<load_result> {
+ private:
+ lua_State* L;
+ int index;
+ int returncount;
+ int popcount;
+ load_status err;
+
+ public:
+ load_result() noexcept : load_result(nullptr) {}
+ load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept
+ : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
+ }
+
+ // We do not want anyone to copy these around willy-nilly
+ // Will likely break people, but also will probably get rid of quiet bugs that have
+ // been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
+ // LuaJIT and other Lua engines will implode and segfault at random later times.)
+ load_result(const load_result&) = delete;
+ load_result& operator=(const load_result&) = delete;
+
+ load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = load_status::syntax;
+ }
+ load_result& operator=(load_result&& o) noexcept {
+ L = o.L;
+ index = o.index;
+ returncount = o.returncount;
+ popcount = o.popcount;
+ err = o.err;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.returncount = 0;
+ o.popcount = 0;
+ o.err = load_status::syntax;
+ return *this;
+ }
+
+ load_status status() const noexcept {
+ return err;
+ }
+
+ bool valid() const noexcept {
+ return status() == load_status::ok;
+ }
+
+ template <typename T>
+ T get() const {
+ using UT = meta::unqualified_t<T>;
+ if constexpr (meta::is_optional_v<UT>) {
+ using ValueType = typename UT::value_type;
+ if constexpr (std::is_same_v<ValueType, error>) {
+ if (valid()) {
+ return UT(nullopt);
+ }
+ return error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+ else {
+ if (!valid()) {
+ return UT(nullopt);
+ }
+ return stack::get<UT>(L, index);
+ }
+ }
+ else {
+ if constexpr (std::is_same_v<T, error>) {
+#if SOL_IS_ON(SOL_SAFE_PROXIES)
+ if (valid()) {
+ type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)");
+ }
+#endif // Check proxy type's safety
+ return error(detail::direct_error, stack::get<std::string>(L, index));
+ }
+ else {
+#if SOL_IS_ON(SOL_SAFE_PROXIES)
+ if (!valid()) {
+ type_panic_c_str(L, index, type_of(L, index), type::none);
+ }
+#endif // Check proxy type's safety
+ return stack::get<T>(L, index);
+ }
+ }
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ decltype(auto) operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ };
+ int stack_index() const noexcept {
+ return index;
+ };
+
+ ~load_result() {
+ if (L != nullptr) {
+ stack::remove(L, index, popcount);
+ }
+ }
+ };
+} // namespace sol
+
+// end of sol/load_result.hpp
+
+// beginning of sol/state_handling.hpp
+
+// beginning of sol/lua_value.hpp
+
+namespace sol {
+ struct lua_value {
+ public:
+ struct arr : detail::ebco<std::initializer_list<lua_value>> {
+ private:
+ using base_t = detail::ebco<std::initializer_list<lua_value>>;
+
+ public:
+ using base_t::base_t;
+ };
+
+ private:
+ template <typename T>
+ using is_reference_or_lua_value_init_list
+ = meta::any<meta::is_specialization_of<T, std::initializer_list>, std::is_same<T, reference>, std::is_same<T, arr>>;
+
+ template <typename T>
+ using is_lua_value_single_constructible = meta::any<std::is_same<T, lua_value>, is_reference_or_lua_value_init_list<T>>;
+
+ static lua_State*& thread_local_lua_state() {
+#if SOL_IS_ON(SOL_USE_THREAD_LOCAL)
+ static thread_local lua_State* L = nullptr;
+#else
+ static lua_State* L = nullptr;
+#endif
+ return L;
+ }
+
+ reference ref_value;
+
+ public:
+ static void set_lua_state(lua_State* L) {
+ thread_local_lua_state() = L;
+ }
+
+ template <typename T, meta::disable<is_reference_or_lua_value_init_list<meta::unqualified_t<T>>> = meta::enabler>
+ lua_value(lua_State* L_, T&& value) : lua_value(((set_lua_state(L_)), std::forward<T>(value))) {
+ }
+
+ template <typename T, meta::disable<is_lua_value_single_constructible<meta::unqualified_t<T>>> = meta::enabler>
+ lua_value(T&& value) : ref_value(make_reference(thread_local_lua_state(), std::forward<T>(value))) {
+ }
+
+ lua_value(lua_State* L_, std::initializer_list<std::pair<lua_value, lua_value>> il)
+ : lua_value([&L_, &il]() {
+ set_lua_state(L_);
+ return std::move(il);
+ }()) {
+ }
+
+ lua_value(std::initializer_list<std::pair<lua_value, lua_value>> il) : ref_value(make_reference(thread_local_lua_state(), std::move(il))) {
+ }
+
+ lua_value(lua_State* L_, arr il)
+ : lua_value([&L_, &il]() {
+ set_lua_state(L_);
+ return std::move(il);
+ }()) {
+ }
+
+ lua_value(arr il) : ref_value(make_reference(thread_local_lua_state(), std::move(il.value()))) {
+ }
+
+ lua_value(lua_State* L_, reference r)
+ : lua_value([&L_, &r]() {
+ set_lua_state(L_);
+ return std::move(r);
+ }()) {
+ }
+
+ lua_value(reference r) : ref_value(std::move(r)) {
+ }
+
+ lua_value(const lua_value&) noexcept = default;
+ lua_value(lua_value&&) = default;
+ lua_value& operator=(const lua_value&) = default;
+ lua_value& operator=(lua_value&&) = default;
+
+ const reference& value() const& {
+ return ref_value;
+ }
+
+ reference& value() & {
+ return ref_value;
+ }
+
+ reference&& value() && {
+ return std::move(ref_value);
+ }
+
+ template <typename T>
+ decltype(auto) as() const {
+ ref_value.push();
+ return stack::pop<T>(ref_value.lua_state());
+ }
+
+ template <typename T>
+ bool is() const {
+ int r = ref_value.registry_index();
+ if (r == LUA_REFNIL)
+ return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
+ if (r == LUA_NOREF)
+ return false;
+ auto pp = stack::push_pop(ref_value);
+ return stack::check<T>(ref_value.lua_state(), -1, &no_panic);
+ }
+ };
+
+ using array_value = typename lua_value::arr;
+
+ namespace stack {
+ template <>
+ struct unqualified_pusher<lua_value> {
+ static int push(lua_State* L, const lua_value& lv) {
+ return stack::push(L, lv.value());
+ }
+
+ static int push(lua_State* L, lua_value&& lv) {
+ return stack::push(L, std::move(lv).value());
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lua_value> {
+ static lua_value get(lua_State* L, int index, record& tracking) {
+ return lua_value(L, stack::get<reference>(L, index, tracking));
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/lua_value.hpp
+
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+#include <iostream>
+#endif
+
+namespace sol {
+ inline void register_main_thread(lua_State* L) {
+#if SOL_LUA_VERSION_I_ < 502
+ if (L == nullptr) {
+ lua_pushnil(L);
+ lua_setglobal(L, detail::default_main_thread_name());
+ return;
+ }
+ lua_pushthread(L);
+ lua_setglobal(L, detail::default_main_thread_name());
+#else
+ (void)L;
+#endif
+ }
+
+ inline int default_at_panic(lua_State* L) {
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ (void)L;
+ return -1;
+#else
+ size_t messagesize;
+ const char* message = lua_tolstring(L, -1, &messagesize);
+ if (message) {
+ std::string err(message, messagesize);
+ lua_settop(L, 0);
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+ std::cerr << "[sol2] An error occurred and panic has been invoked: ";
+ std::cerr << err;
+ std::cerr << std::endl;
+#endif
+ throw error(err);
+ }
+ lua_settop(L, 0);
+ throw error(std::string("An unexpected error occurred and panic has been invoked"));
+#endif // Printing Errors
+ }
+
+ inline int default_traceback_error_handler(lua_State* L) {
+ std::string msg = "An unknown error has triggered the default error handler";
+ optional<string_view> maybetopmsg = stack::unqualified_check_get<string_view>(L, 1, &no_panic);
+ if (maybetopmsg) {
+ const string_view& topmsg = maybetopmsg.value();
+ msg.assign(topmsg.data(), topmsg.size());
+ }
+ luaL_traceback(L, L, msg.c_str(), 1);
+ optional<string_view> maybetraceback = stack::unqualified_check_get<string_view>(L, -1, &no_panic);
+ if (maybetraceback) {
+ const string_view& traceback = maybetraceback.value();
+ msg.assign(traceback.data(), traceback.size());
+ }
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+ // std::cerr << "[sol2] An error occurred and was caught in traceback: ";
+ // std::cerr << msg;
+ // std::cerr << std::endl;
+#endif // Printing
+ return stack::push(L, msg);
+ }
+
+ inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic,
+ lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>,
+ exception_handler_function exf = detail::default_exception_handler) {
+ lua_atpanic(L, panic_function);
+ protected_function::set_default_handler(object(L, in_place, traceback_function));
+ set_default_exception_handler(L, exf);
+ register_main_thread(L);
+ stack::luajit_exception_handler(L);
+ lua_value::set_lua_state(L);
+ }
+
+ inline std::size_t total_memory_used(lua_State* L) {
+ std::size_t kb = static_cast<std::size_t>(lua_gc(L, LUA_GCCOUNT, 0));
+ kb *= 1024;
+ kb += static_cast<std::size_t>(lua_gc(L, LUA_GCCOUNTB, 0));
+ return kb;
+ }
+
+ inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) {
+ return result;
+ }
+
+ inline protected_function_result script_throw_on_error(lua_State* L, protected_function_result result) {
+ type t = type_of(L, result.stack_index());
+ std::string err = "sol: ";
+ err += to_string(result.status());
+ err += " error";
+#if SOL_IS_ON(SOL_EXCEPTIONS)
+ std::exception_ptr eptr = std::current_exception();
+ if (eptr) {
+ err += " with a ";
+ try {
+ std::rethrow_exception(eptr);
+ }
+ catch (const std::exception& ex) {
+ err += "std::exception -- ";
+ err.append(ex.what());
+ }
+ catch (const std::string& message) {
+ err += "thrown message -- ";
+ err.append(message);
+ }
+ catch (const char* message) {
+ err += "thrown message -- ";
+ err.append(message);
+ }
+ catch (...) {
+ err.append("thrown but unknown type, cannot serialize into error message");
+ }
+ }
+#endif // serialize exception information if possible
+ if (t == type::string) {
+ err += ": ";
+ string_view serr = stack::unqualified_get<string_view>(L, result.stack_index());
+ err.append(serr.data(), serr.size());
+ }
+#if SOL_IS_ON(SOL_PRINT_ERRORS)
+ std::cerr << "[sol2] An error occurred and has been passed to an error handler: ";
+ std::cerr << err;
+ std::cerr << std::endl;
+#endif
+ // replacing information of stack error into pfr
+ int target = result.stack_index();
+ if (result.pop_count() > 0) {
+ stack::remove(L, target, result.pop_count());
+ }
+ stack::push(L, err);
+ int top = lua_gettop(L);
+ int towards = top - target;
+ if (towards != 0) {
+ lua_rotate(L, top, towards);
+ }
+#if SOL_IS_OFF(SOL_EXCEPTIONS)
+ return result;
+#else
+ // just throw our error
+ throw error(detail::direct_error, err);
+#endif // If exceptions are allowed
+ }
+
+ inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) {
+#if SOL_IS_ON(SOL_DEFAULT_PASS_ON_ERROR)
+ return script_pass_on_error(L, std::move(pfr));
+#else
+ return script_throw_on_error(L, std::move(pfr));
+#endif
+ }
+
+ namespace stack {
+ inline error get_traceback_or_errors(lua_State* L) {
+ int p = default_traceback_error_handler(L);
+ sol::error err = stack::get<sol::error>(L, -p);
+ lua_pop(L, p);
+ return err;
+ }
+ } // namespace stack
+} // namespace sol
+
+// end of sol/state_handling.hpp
+
+#include <memory>
+#include <cstddef>
+
+namespace sol {
+
+ class state_view {
+ private:
+ lua_State* L;
+ table reg;
+ global_table global;
+
+ optional<object> is_loaded_package(const std::string& key) {
+ auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
+ bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
+ if (is53mod)
+ return loaded;
+#if SOL_LUA_VERSION_I_ <= 501
+ auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
+ bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
+ if (is51mod)
+ return loaded51;
+#endif
+ return nullopt;
+ }
+
+ template <typename T>
+ void ensure_package(const std::string& key, T&& sr) {
+#if SOL_LUA_VERSION_I_ <= 501
+ auto pkg = global["package"];
+ if (!pkg.valid()) {
+ pkg = create_table_with("loaded", create_table_with(key, sr));
+ }
+ else {
+ auto ld = pkg["loaded"];
+ if (!ld.valid()) {
+ ld = create_table_with(key, sr);
+ }
+ else {
+ ld[key] = sr;
+ }
+ }
+#endif
+ auto loaded = reg["_LOADED"];
+ if (!loaded.valid()) {
+ loaded = create_table_with(key, sr);
+ }
+ else {
+ loaded[key] = sr;
+ }
+ }
+
+ template <typename Fx>
+ object require_core(const std::string& key, Fx&& action, bool create_global = true) {
+ optional<object> loaded = is_loaded_package(key);
+ if (loaded && loaded->valid())
+ return std::move(*loaded);
+ int before = lua_gettop(L);
+ action();
+ int after = lua_gettop(L);
+ if (before == after) {
+ // I mean, you were supposed to return
+ // something, ANYTHING, from your requires script. I guess I'll just
+ // but some trash in here, it's on you after that?
+ ensure_package(key, static_cast<void*>(L));
+ return object(L, lua_nil);
+ }
+ stack_reference sr(L, -1);
+ if (create_global)
+ set(key, sr);
+ ensure_package(key, sr);
+ return stack::pop<object>(L);
+ }
+
+ public:
+ using iterator = typename global_table::iterator;
+ using const_iterator = typename global_table::const_iterator;
+
+ state_view(lua_State* Ls) : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, global_tag) {
+ }
+
+ state_view(this_state Ls) : state_view(Ls.L) {
+ }
+
+ lua_State* lua_state() const {
+ return L;
+ }
+
+ template <typename... Args>
+ void open_libraries(Args&&... args) {
+ static_assert(meta::all_same<lib, meta::unqualified_t<Args>...>::value, "all types must be libraries");
+ if constexpr (sizeof...(args) == 0) {
+ luaL_openlibs(L);
+ return;
+ }
+ else {
+ lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
+
+ for (auto&& library : libraries) {
+ switch (library) {
+#if SOL_LUA_VERSION_I_ <= 501 && SOL_IS_ON(SOL_USE_LUAJIT)
+ case lib::coroutine:
+#endif // luajit opens coroutine base stuff
+ case lib::base:
+ luaL_requiref(L, "base", luaopen_base, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::package:
+ luaL_requiref(L, "package", luaopen_package, 1);
+ lua_pop(L, 1);
+ break;
+#if SOL_IS_OFF(SOL_USE_LUAJIT)
+ case lib::coroutine:
+#if SOL_LUA_VERSION_I_ > 501
+ luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
+ lua_pop(L, 1);
+#endif // Lua 5.2+ only
+ break;
+#endif // Not LuaJIT - comes builtin
+ case lib::string:
+ luaL_requiref(L, "string", luaopen_string, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::table:
+ luaL_requiref(L, "table", luaopen_table, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::math:
+ luaL_requiref(L, "math", luaopen_math, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::bit32:
+#if SOL_IS_ON(SOL_USE_LUAJIT)
+ luaL_requiref(L, "bit32", luaopen_bit, 1);
+ lua_pop(L, 1);
+#elif SOL_IS_ON(SOL_LUA_BIT32_LIB)
+ luaL_requiref(L, "bit32", luaopen_bit32, 1);
+ lua_pop(L, 1);
+#else
+#endif
+ break;
+ case lib::io:
+ luaL_requiref(L, "io", luaopen_io, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::os:
+ luaL_requiref(L, "os", luaopen_os, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::debug:
+ luaL_requiref(L, "debug", luaopen_debug, 1);
+ lua_pop(L, 1);
+ break;
+ case lib::utf8:
+#if SOL_LUA_VERSION_I_ > 502 && SOL_IS_OFF(SOL_USE_LUAJIT)
+ luaL_requiref(L, "utf8", luaopen_utf8, 1);
+ lua_pop(L, 1);
+#endif // Lua 5.3+ only
+ break;
+ case lib::ffi:
+#if SOL_IS_ON(SOL_USE_LUAJIT) && SOL_IS_OFF(SOL_LUAJIT_FFI_DISABLED)
+ luaL_requiref(L, "ffi", luaopen_ffi, 1);
+ lua_pop(L, 1);
+#endif // LuaJIT only
+ break;
+ case lib::jit:
+#if SOL_IS_ON(SOL_USE_LUAJIT)
+ luaL_requiref(L, "jit", luaopen_jit, 0);
+ lua_pop(L, 1);
+#endif // LuaJIT Only
+ break;
+ case lib::count:
+ default:
+ break;
+ }
+ }
+ }
+ }
+
+ object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
+ luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
+ return stack::pop<object>(L);
+ }
+
+ object require_script(const std::string& key, const string_view& code, bool create_global = true,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ auto action = [this, &code, &chunkname, &mode]() { stack::script(L, code, chunkname, mode); };
+ return require_core(key, action, create_global);
+ }
+
+ object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) {
+ auto action = [this, &filename, &mode]() { stack::script_file(L, filename, mode); };
+ return require_core(key, action, create_global);
+ }
+
+ void clear_package_loaders() {
+ optional<table> maybe_package = this->global["package"];
+ if (!maybe_package) {
+ // package lib wasn't opened
+ // open package lib
+ return;
+ }
+ table& package = *maybe_package;
+ // yay for version differences...
+ // one day Lua 5.1 will die a peaceful death
+ // and its old bones will find blissful rest
+ auto loaders_proxy = package
+#if SOL_LUA_VERSION_I_ < 502
+ ["loaders"]
+#else
+ ["searchers"]
+#endif
+ ;
+ if (!loaders_proxy.valid()) {
+ // nothing to clear
+ return;
+ }
+ // we need to create the table for loaders
+ // table does not exist, so create and move forward
+ loaders_proxy = new_table(1, 0);
+ }
+
+ template <typename Fx>
+ void add_package_loader(Fx&& fx, bool clear_all_package_loaders = false) {
+ optional<table> maybe_package = this->global["package"];
+ if (!maybe_package) {
+ // package lib wasn't opened
+ // open package lib
+ return;
+ }
+ table& package = *maybe_package;
+ // yay for version differences...
+ // one day Lua 5.1 will die a peaceful death
+ // and its old bones will find blissful rest
+ auto loaders_proxy = package
+#if SOL_LUA_VERSION_I_ < 502
+ ["loaders"]
+#else
+ ["searchers"]
+#endif
+ ;
+ bool make_new_table = clear_all_package_loaders || !loaders_proxy.valid();
+ if (make_new_table) {
+ // we need to create the table for loaders
+ // table does not exist, so create and move forward
+ loaders_proxy = new_table(1, 0);
+ }
+ optional<table> maybe_loaders = loaders_proxy;
+ if (!maybe_loaders) {
+ // loaders/searches
+ // thing exists in package, but it
+ // ain't a table or a table-alike...!
+ return;
+ }
+ table loaders = loaders_proxy;
+ loaders.add(std::forward<Fx>(fx));
+ }
+
+ template <typename E>
+ protected_function_result do_reader(lua_Reader reader, void* data, const basic_environment<E>& env,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ set_environment(env, pf);
+ return pf();
+ }
+
+ protected_function_result do_reader(
+ lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ return pf();
+ }
+
+ template <typename E>
+ protected_function_result do_string(const string_view& code, const basic_environment<E>& env,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ set_environment(env, pf);
+ return pf();
+ }
+
+ protected_function_result do_string(
+ const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ return pf();
+ }
+
+ template <typename E>
+ protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
+ load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ set_environment(env, pf);
+ return pf();
+ }
+
+ protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) {
+ load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
+ if (x != load_status::ok) {
+ return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
+ }
+ stack_aligned_protected_function pf(L, -1);
+ return pf();
+ }
+
+ template <typename Fx,
+ meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
+ meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
+ protected_function_result safe_script(
+ lua_Reader reader, void* data, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ protected_function_result pfr = do_reader(reader, data, chunkname, mode);
+ if (!pfr.valid()) {
+ return on_error(L, std::move(pfr));
+ }
+ return pfr;
+ }
+
+ protected_function_result safe_script(
+ lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(reader, data, script_default_on_error, chunkname, mode);
+ }
+
+ template <typename Fx,
+ meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
+ meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
+ protected_function_result safe_script(
+ const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ protected_function_result pfr = do_string(code, chunkname, mode);
+ if (!pfr.valid()) {
+ return on_error(L, std::move(pfr));
+ }
+ return pfr;
+ }
+
+ template <typename Fx, typename E>
+ protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ protected_function_result pfr = do_string(code, env, chunkname, mode);
+ if (!pfr.valid()) {
+ return on_error(L, std::move(pfr));
+ }
+ return pfr;
+ }
+
+ template <typename E>
+ protected_function_result safe_script(const string_view& code, const basic_environment<E>& env,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, env, script_default_on_error, chunkname, mode);
+ }
+
+ protected_function_result safe_script(
+ const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, script_default_on_error, chunkname, mode);
+ }
+
+ template <typename Fx,
+ meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
+ meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
+ protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
+ protected_function_result pfr = do_file(filename, mode);
+ if (!pfr.valid()) {
+ return on_error(L, std::move(pfr));
+ }
+ return pfr;
+ }
+
+ template <typename Fx, typename E>
+ protected_function_result safe_script_file(
+ const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
+ protected_function_result pfr = do_file(filename, env, mode);
+ if (!pfr.valid()) {
+ return on_error(L, std::move(pfr));
+ }
+ return pfr;
+ }
+
+ template <typename E>
+ protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, env, script_default_on_error, mode);
+ }
+
+ protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, script_default_on_error, mode);
+ }
+
+ template <typename E>
+ unsafe_function_result unsafe_script(lua_Reader reader, void* data, const basic_environment<E>& env,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ int index = lua_gettop(L);
+ if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())) {
+ lua_error(L);
+ }
+ set_environment(env, stack_reference(L, raw_index(index + 1)));
+ if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ unsafe_function_result unsafe_script(
+ lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ int index = lua_gettop(L);
+ stack::script(L, reader, data, chunkname, mode);
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ template <typename E>
+ unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ int index = lua_gettop(L);
+ if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) {
+ lua_error(L);
+ }
+ set_environment(env, stack_reference(L, raw_index(index + 1)));
+ if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ unsafe_function_result unsafe_script(
+ const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ int index = lua_gettop(L);
+ stack::script(L, code, chunkname, mode);
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ template <typename E>
+ unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
+ int index = lua_gettop(L);
+ if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) {
+ lua_error(L);
+ }
+ set_environment(env, stack_reference(L, raw_index(index + 1)));
+ if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
+ int index = lua_gettop(L);
+ stack::script_file(L, filename, mode);
+ int postindex = lua_gettop(L);
+ int returns = postindex - index;
+ return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
+ }
+
+ template <typename Fx,
+ meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
+ meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
+ protected_function_result script(
+ const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, std::forward<Fx>(on_error), chunkname, mode);
+ }
+
+ template <typename Fx,
+ meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
+ meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
+ protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, std::forward<Fx>(on_error), mode);
+ }
+
+ template <typename Fx, typename E>
+ protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
+ const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode);
+ }
+
+ template <typename Fx, typename E>
+ protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, env, std::forward<Fx>(on_error), mode);
+ }
+
+ protected_function_result script(
+ const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, env, script_default_on_error, chunkname, mode);
+ }
+
+ protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, env, script_default_on_error, mode);
+ }
+
+#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS)
+ protected_function_result script(
+ lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(reader, data, chunkname, mode);
+ }
+
+ protected_function_result script(
+ const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return safe_script(code, chunkname, mode);
+ }
+
+ protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
+ return safe_script_file(filename, mode);
+ }
+#else
+ unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return unsafe_script(code, chunkname, mode);
+ }
+
+ unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
+ return unsafe_script_file(filename, mode);
+ }
+#endif
+ load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
+ return load_result(L, absolute_index(L, -1), 1, 1, x);
+ }
+
+ load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return load(string_view(buff, size), chunkname, mode);
+ }
+
+ load_result load_buffer(
+ const std::byte* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ return load(string_view(reinterpret_cast<const char*>(buff), size), chunkname, mode);
+ }
+
+ load_result load_file(const std::string& filename, load_mode mode = load_mode::any) {
+ load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
+ return load_result(L, absolute_index(L, -1), 1, 1, x);
+ }
+
+ load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
+ return load_result(L, absolute_index(L, -1), 1, 1, x);
+ }
+
+ iterator begin() const {
+ return global.begin();
+ }
+
+ iterator end() const {
+ return global.end();
+ }
+
+ const_iterator cbegin() const {
+ return global.cbegin();
+ }
+
+ const_iterator cend() const {
+ return global.cend();
+ }
+
+ global_table globals() const {
+ // if we return a reference
+ // we'll be screwed a bit
+ return global;
+ }
+
+ global_table& globals() {
+ return global;
+ }
+
+ table registry() const {
+ return reg;
+ }
+
+ std::size_t memory_used() const {
+ return total_memory_used(lua_state());
+ }
+
+ int stack_top() const {
+ return stack::top(L);
+ }
+
+ int stack_clear() {
+ int s = stack_top();
+ lua_pop(L, s);
+ return s;
+ }
+
+ bool supports_gc_mode(gc_mode mode) const noexcept {
+#if SOL_LUA_VERSION_I_ >= 504
+ // supports all modes
+ (void)mode;
+ return true;
+#endif
+ return mode == gc_mode::default_value;
+ }
+
+ bool is_gc_on() const {
+#if SOL_LUA_VERSION_I_ >= 502
+ return lua_gc(lua_state(), LUA_GCISRUNNING, 0) == 1;
+#else
+ // You cannot turn it off in Lua 5.1
+ return true;
+#endif
+ }
+
+ void collect_garbage() {
+ lua_gc(lua_state(), LUA_GCCOLLECT, 0);
+ }
+
+ void collect_gc() {
+ collect_garbage();
+ }
+
+ bool step_gc(int step_size_kilobytes) {
+ // THOUGHT: std::chrono-alikes to map "kilobyte size" here...?
+ // Make it harder to give MB or KB to a B parameter...?
+ // Probably overkill for now.
+#if SOL_LUA_VERSION_I_ >= 504
+ // The manual implies that this function is almost always successful...
+ // is it?? It could depend on the GC mode...
+ return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) != 0;
+#else
+ return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) == 1;
+#endif
+ }
+
+ void restart_gc() {
+ lua_gc(lua_state(), LUA_GCRESTART, 0);
+ }
+
+ void stop_gc() {
+ lua_gc(lua_state(), LUA_GCSTOP, 0);
+ }
+
+ // Returns the old GC mode. Check support using the supports_gc_mode function.
+ gc_mode change_gc_mode_incremental(int pause, int step_multiplier, int step_byte_size) {
+ // "What the fuck does any of this mean??"
+ // http://www.lua.org/manual/5.4/manual.html#2.5.1
+
+ // THOUGHT: std::chrono-alikes to map "byte size" here...?
+ // Make it harder to give MB or KB to a B parameter...?
+ // Probably overkill for now.
+#if SOL_LUA_VERSION_I_ >= 504
+ int old_mode = lua_gc(lua_state(), LUA_GCINC, pause, step_multiplier, step_byte_size);
+ if (old_mode == LUA_GCGEN) {
+ return gc_mode::generational;
+ }
+ else if (old_mode == LUA_GCINC) {
+ return gc_mode::incremental;
+ }
+#else
+ lua_gc(lua_state(), LUA_GCSETPAUSE, pause);
+ lua_gc(lua_state(), LUA_GCSETSTEPMUL, step_multiplier);
+ (void)step_byte_size; // means nothing in older versions
+#endif
+ return gc_mode::default_value;
+ }
+
+ // Returns the old GC mode. Check support using the supports_gc_mode function.
+ gc_mode change_gc_mode_generational(int minor_multiplier, int major_multiplier) {
+#if SOL_LUA_VERSION_I_ >= 504
+ // "What does this shit mean?"
+ // http://www.lua.org/manual/5.4/manual.html#2.5.2
+ int old_mode = lua_gc(lua_state(), LUA_GCGEN, minor_multiplier, major_multiplier);
+ if (old_mode == LUA_GCGEN) {
+ return gc_mode::generational;
+ }
+ else if (old_mode == LUA_GCINC) {
+ return gc_mode::incremental;
+ }
+#else
+ (void)minor_multiplier;
+ (void)major_multiplier;
+#endif
+ return gc_mode::default_value;
+ }
+
+ operator lua_State*() const {
+ return lua_state();
+ }
+
+ void set_panic(lua_CFunction panic) {
+ lua_atpanic(lua_state(), panic);
+ }
+
+ void set_exception_handler(exception_handler_function handler) {
+ set_default_exception_handler(lua_state(), handler);
+ }
+
+ template <typename... Args, typename... Keys>
+ decltype(auto) get(Keys&&... keys) const {
+ return global.get<Args...>(std::forward<Keys>(keys)...);
+ }
+
+ template <typename T, typename Key>
+ decltype(auto) get_or(Key&& key, T&& otherwise) const {
+ return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
+ }
+
+ template <typename T, typename Key, typename D>
+ decltype(auto) get_or(Key&& key, D&& otherwise) const {
+ return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
+ }
+
+ template <typename... Args>
+ state_view& set(Args&&... args) {
+ global.set(std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename T, typename... Keys>
+ decltype(auto) traverse_get(Keys&&... keys) const {
+ return global.traverse_get<T>(std::forward<Keys>(keys)...);
+ }
+
+ template <typename... Args>
+ state_view& traverse_set(Args&&... args) {
+ global.traverse_set(std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Class, typename... Args>
+ usertype<Class> new_usertype(Args&&... args) {
+ return global.new_usertype<Class>(std::forward<Args>(args)...);
+ }
+
+ template <bool read_only = true, typename... Args>
+ state_view& new_enum(const string_view& name, Args&&... args) {
+ global.new_enum<read_only>(name, std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename T, bool read_only = true>
+ state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
+ global.new_enum<T, read_only>(name, std::move(items));
+ return *this;
+ }
+
+ template <typename Fx>
+ void for_each(Fx&& fx) {
+ global.for_each(std::forward<Fx>(fx));
+ }
+
+ template <typename T>
+ table_proxy<global_table&, detail::proxy_key_t<T>> operator[](T&& key) {
+ return global[std::forward<T>(key)];
+ }
+
+ template <typename T>
+ table_proxy<const global_table&, detail::proxy_key_t<T>> operator[](T&& key) const {
+ return global[std::forward<T>(key)];
+ }
+
+ template <typename Sig, typename... Args, typename Key>
+ state_view& set_function(Key&& key, Args&&... args) {
+ global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename... Args, typename Key>
+ state_view& set_function(Key&& key, Args&&... args) {
+ global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
+ return *this;
+ }
+
+ template <typename Name>
+ table create_table(Name&& name, int narr = 0, int nrec = 0) {
+ return global.create(std::forward<Name>(name), narr, nrec);
+ }
+
+ template <typename Name, typename Key, typename Value, typename... Args>
+ table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename Name, typename... Args>
+ table create_named_table(Name&& name, Args&&... args) {
+ table x = global.create_with(std::forward<Args>(args)...);
+ global.set(std::forward<Name>(name), x);
+ return x;
+ }
+
+ table create_table(int narr = 0, int nrec = 0) {
+ return create_table(lua_state(), narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ table create_table_with(Args&&... args) {
+ return create_table_with(lua_state(), std::forward<Args>(args)...);
+ }
+
+ static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
+ return global_table::create(L, narr, nrec);
+ }
+
+ template <typename Key, typename Value, typename... Args>
+ static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
+ return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ static inline table create_table_with(lua_State* L, Args&&... args) {
+ return global_table::create_with(L, std::forward<Args>(args)...);
+ }
+ };
+} // namespace sol
+
+// end of sol/state_view.hpp
+
+// beginning of sol/thread.hpp
+
+namespace sol {
+ struct lua_thread_state {
+ lua_State* L;
+
+ lua_thread_state(lua_State* Ls) : L(Ls) {
+ }
+
+ lua_State* lua_state() const noexcept {
+ return L;
+ }
+ operator lua_State*() const noexcept {
+ return lua_state();
+ }
+ lua_State* operator->() const noexcept {
+ return lua_state();
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_pusher<lua_thread_state> {
+ int push(lua_State*, lua_thread_state lts) {
+ lua_pushthread(lts.L);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lua_thread_state> {
+ lua_thread_state get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ lua_thread_state lts(lua_tothread(L, index));
+ return lts;
+ }
+ };
+
+ template <>
+ struct unqualified_check_getter<lua_thread_state> {
+ template <typename Handler>
+ optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ lua_thread_state lts(lua_tothread(L, index));
+ if (lts.lua_state() == nullptr) {
+ handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type");
+ return nullopt;
+ }
+ tracking.use(1);
+ return lts;
+ }
+ };
+ } // namespace stack
+
+ template <typename ref_t>
+ class basic_thread : public basic_object<ref_t> {
+ private:
+ using base_t = basic_object<ref_t>;
+
+ public:
+ using base_t::lua_state;
+
+ basic_thread() noexcept = default;
+ basic_thread(const basic_thread&) = default;
+ basic_thread(basic_thread&&) = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_thread(T&& r) : base_t(std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_thread>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_thread(const stack_reference& r) : basic_thread(r.lua_state(), r.stack_index()) {};
+ basic_thread(stack_reference&& r) : basic_thread(r.lua_state(), r.stack_index()) {};
+ basic_thread& operator=(const basic_thread&) = default;
+ basic_thread& operator=(basic_thread&&) = default;
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_thread(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_thread>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_thread(lua_State* L, int index = -1) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_thread>(L, index, handler);
+#endif // Safety
+ }
+ basic_thread(lua_State* L, ref_index index) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_thread>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_thread(lua_State* L, lua_State* actualthread) : basic_thread(L, lua_thread_state { actualthread }) {
+ }
+ basic_thread(lua_State* L, this_state actualthread) : basic_thread(L, lua_thread_state { actualthread.L }) {
+ }
+ basic_thread(lua_State* L, lua_thread_state actualthread) : base_t(L, -stack::push(L, actualthread)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_thread>(lua_state(), -1, handler);
+#endif // Safety
+ if (!is_stack_based<base_t>::value) {
+ lua_pop(lua_state(), 1);
+ }
+ }
+
+ state_view state() const {
+ return state_view(this->thread_state());
+ }
+
+ bool is_main_thread() const {
+ return stack::is_main_thread(this->thread_state());
+ }
+
+ lua_State* thread_state() const {
+ auto pp = stack::push_pop(*this);
+ lua_State* lthread = lua_tothread(lua_state(), -1);
+ return lthread;
+ }
+
+ thread_status status() const {
+ lua_State* lthread = thread_state();
+ auto lstat = static_cast<thread_status>(lua_status(lthread));
+ if (lstat == thread_status::ok) {
+ lua_Debug ar;
+ if (lua_getstack(lthread, 0, &ar) > 0)
+ return thread_status::ok;
+ else if (lua_gettop(lthread) == 0)
+ return thread_status::dead;
+ else
+ return thread_status::yielded;
+ }
+ return lstat;
+ }
+
+ basic_thread create() {
+ return create(lua_state());
+ }
+
+ static basic_thread create(lua_State* L) {
+ lua_newthread(L);
+ basic_thread result(L);
+ if (!is_stack_based<base_t>::value) {
+ lua_pop(L, 1);
+ }
+ return result;
+ }
+ };
+
+ typedef basic_thread<reference> thread;
+ typedef basic_thread<stack_reference> stack_thread;
+} // namespace sol
+
+// end of sol/thread.hpp
+
+namespace sol {
+
+ class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view {
+ private:
+ typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base;
+
+ public:
+ state(lua_CFunction panic = default_at_panic) : unique_base(luaL_newstate()), state_view(unique_base::get()) {
+ set_default_state(unique_base::get(), panic);
+ }
+
+ state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr)
+ : unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) {
+ set_default_state(unique_base::get(), panic);
+ }
+
+ state(const state&) = delete;
+ state(state&&) = default;
+ state& operator=(const state&) = delete;
+ state& operator=(state&& that) {
+ state_view::operator=(std::move(that));
+ unique_base::operator=(std::move(that));
+ return *this;
+ }
+
+ using state_view::get;
+
+ ~state() {
+ }
+ };
+} // namespace sol
+
+// end of sol/state.hpp
+
+// beginning of sol/coroutine.hpp
+
+namespace sol {
+ template <typename Reference>
+ class basic_coroutine : public basic_object<Reference> {
+ private:
+ using base_t = basic_object<Reference>;
+ using handler_t = reference;
+
+ private:
+ call_status stats = call_status::yielded;
+
+ void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
+#if SOL_LUA_VERSION_I_ >= 504
+ int nresults;
+ stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nresults));
+#else
+ stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
+#endif
+ }
+
+ template <std::size_t... I, typename... Ret>
+ auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
+ luacall(n, sizeof...(Ret));
+ return stack::pop<std::tuple<Ret...>>(lua_state());
+ }
+
+ template <std::size_t I, typename Ret>
+ Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
+ luacall(n, 1);
+ return stack::pop<Ret>(lua_state());
+ }
+
+ template <std::size_t I>
+ void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
+ luacall(n, 0);
+ }
+
+ protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
+ int firstreturn = 1;
+ luacall(n, LUA_MULTRET);
+ int poststacksize = lua_gettop(this->lua_state());
+ int returncount = poststacksize - (firstreturn - 1);
+ if (error()) {
+ if (m_error_handler.valid()) {
+ string_view err = stack::get<string_view>(this->lua_state(), poststacksize);
+ m_error_handler.push();
+ stack::push(this->lua_state(), err);
+ lua_call(lua_state(), 1, 1);
+ }
+ return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status());
+ }
+ return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status());
+ }
+
+ public:
+ using base_t::lua_state;
+
+ basic_coroutine() = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>,
+ meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_coroutine(T&& r) noexcept
+ : base_t(std::forward<T>(r)), m_error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_function<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+
+ basic_coroutine(const basic_coroutine& other) = default;
+ basic_coroutine& operator=(const basic_coroutine&) = default;
+
+ basic_coroutine(basic_coroutine&& other) noexcept : base_t(std::move(other)), m_error_handler(this->lua_state(), std::move(other.m_error_handler)) {
+ }
+
+ basic_coroutine& operator=(basic_coroutine&& other) noexcept {
+ base_t::operator=(std::move(other));
+ // must change the state, since it could change on the coroutine type
+ m_error_handler = handler_t(this->lua_state(), std::move(other.m_error_handler));
+ return *this;
+ }
+
+ basic_coroutine(const basic_function<base_t>& b) noexcept
+ : basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
+ }
+ basic_coroutine(basic_function<base_t>&& b) noexcept
+ : basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
+ }
+ basic_coroutine(const basic_function<base_t>& b, handler_t eh) noexcept : base_t(b), m_error_handler(std::move(eh)) {
+ }
+ basic_coroutine(basic_function<base_t>&& b, handler_t eh) noexcept : base_t(std::move(b)), m_error_handler(std::move(eh)) {
+ }
+ basic_coroutine(const stack_reference& r) noexcept
+ : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
+ }
+ basic_coroutine(stack_reference&& r) noexcept
+ : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
+ }
+ basic_coroutine(const stack_reference& r, handler_t eh) noexcept : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
+ }
+ basic_coroutine(stack_reference&& r, handler_t eh) noexcept : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
+ }
+
+ template <typename Super>
+ basic_coroutine(const proxy_base<Super>& p)
+ : basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
+ }
+ template <typename Super>
+ basic_coroutine(proxy_base<Super>&& p)
+ : basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
+ }
+ template <typename Proxy, typename HandlerReference,
+ meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>,
+ meta::neg<is_lua_index<meta::unqualified_t<HandlerReference>>>> = meta::enabler>
+ basic_coroutine(Proxy&& p, HandlerReference&& eh) : basic_coroutine(detail::force_cast<base_t>(p), std::forward<HandlerReference>(eh)) {
+ }
+
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_coroutine(lua_State* L, T&& r) noexcept
+ : basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_coroutine(lua_State* L, T&& r, handler_t eh) : base_t(L, std::forward<T>(r)), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(lua_state(), -1, handler);
+#endif // Safety
+ }
+
+ basic_coroutine(lua_nil_t n) : base_t(n), m_error_handler(n) {
+ }
+
+ basic_coroutine(lua_State* L, int index = -1)
+ : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
+ }
+ basic_coroutine(lua_State* L, int index, handler_t eh) : base_t(L, index), m_error_handler(std::move(eh)) {
+#ifdef SOL_SAFE_REFERENCES
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(L, index, handler);
+#endif // Safety
+ }
+ basic_coroutine(lua_State* L, absolute_index index)
+ : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
+ }
+ basic_coroutine(lua_State* L, absolute_index index, handler_t eh) : base_t(L, index), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(L, index, handler);
+#endif // Safety
+ }
+ basic_coroutine(lua_State* L, raw_index index)
+ : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
+ }
+ basic_coroutine(lua_State* L, raw_index index, handler_t eh) : base_t(L, index), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(L, index, handler);
+#endif // Safety
+ }
+ basic_coroutine(lua_State* L, ref_index index)
+ : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
+ }
+ basic_coroutine(lua_State* L, ref_index index, handler_t eh) : base_t(L, index), m_error_handler(std::move(eh)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_coroutine>(lua_state(), -1, handler);
+#endif // Safety
+ }
+
+ call_status status() const noexcept {
+ return stats;
+ }
+
+ bool error() const noexcept {
+ call_status cs = status();
+ return cs != call_status::ok && cs != call_status::yielded;
+ }
+
+ bool runnable() const noexcept {
+ return base_t::valid() && (status() == call_status::yielded);
+ }
+
+ explicit operator bool() const noexcept {
+ return runnable();
+ }
+
+ template <typename... Args>
+ protected_function_result operator()(Args&&... args) {
+ return call<>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) operator()(types<Ret...>, Args&&... args) {
+ return call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ template <typename... Ret, typename... Args>
+ decltype(auto) call(Args&&... args) {
+ // some users screw up coroutine.create
+ // and try to use it with sol::coroutine without ever calling the first resume in Lua
+ // this makes the stack incompatible with other kinds of stacks: protect against this
+ // make sure coroutines don't screw us over
+ base_t::push();
+ int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
+ return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
+ }
+
+ private:
+ handler_t m_error_handler;
+ };
+} // namespace sol
+
+// end of sol/coroutine.hpp
+
+// beginning of sol/userdata.hpp
+
+namespace sol {
+ template <typename base_type>
+ class basic_userdata : public basic_table<base_type> {
+ private:
+ using base_t = basic_table<base_type>;
+
+ public:
+ using base_t::lua_state;
+
+ basic_userdata() noexcept = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>,
+ is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_userdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_userdata<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ type_assert(lua_state(), -1, type::userdata);
+ }
+#endif // Safety
+ }
+ basic_userdata(const basic_userdata&) = default;
+ basic_userdata(basic_userdata&&) = default;
+ basic_userdata& operator=(const basic_userdata&) = default;
+ basic_userdata& operator=(basic_userdata&&) = default;
+ basic_userdata(const stack_reference& r) : basic_userdata(r.lua_state(), r.stack_index()) {
+ }
+ basic_userdata(stack_reference&& r) : basic_userdata(r.lua_state(), r.stack_index()) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_userdata(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_userdata>(L, -1, handler);
+#endif // Safety
+ }
+ basic_userdata(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_userdata>(L, index, handler);
+#endif // Safety
+ }
+ basic_userdata(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_userdata>(L, -1, handler);
+#endif // Safety
+ }
+ };
+
+ template <typename base_type>
+ class basic_lightuserdata : public basic_object_base<base_type> {
+ typedef basic_object_base<base_type> base_t;
+
+ public:
+ using base_t::lua_state;
+
+ basic_lightuserdata() noexcept = default;
+ template <typename T,
+ meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>,
+ is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lightuserdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ if (!is_lightuserdata<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ type_assert(lua_state(), -1, type::lightuserdata);
+ }
+#endif // Safety
+ }
+ basic_lightuserdata(const basic_lightuserdata&) = default;
+ basic_lightuserdata(basic_lightuserdata&&) = default;
+ basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
+ basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
+ basic_lightuserdata(const stack_reference& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {
+ }
+ basic_lightuserdata(stack_reference&& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {
+ }
+ template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lightuserdata(lua_State* L, T&& r) : basic_lightuserdata(L, std::forward<T>(r)) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_lightuserdata>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_lightuserdata(lua_State* L, int index = -1) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ constructor_handler handler {};
+ stack::check<basic_lightuserdata>(L, index, handler);
+#endif // Safety
+ }
+ basic_lightuserdata(lua_State* L, ref_index index) : base_t(L, index) {
+#if SOL_IS_ON(SOL_SAFE_REFERENCES)
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler {};
+ stack::check<basic_lightuserdata>(lua_state(), index, handler);
+#endif // Safety
+ }
+ };
+
+} // namespace sol
+
+// end of sol/userdata.hpp
+
+// beginning of sol/as_args.hpp
+
+namespace sol {
+ template <typename T>
+ struct as_args_t {
+ T src;
+ };
+
+ template <typename Source>
+ auto as_args(Source&& source) {
+ return as_args_t<Source> { std::forward<Source>(source) };
+ }
+
+ namespace stack {
+ template <typename T>
+ struct unqualified_pusher<as_args_t<T>> {
+ int push(lua_State* L, const as_args_t<T>& e) {
+ int p = 0;
+ for (const auto& i : e.src) {
+ p += stack::push(L, i);
+ }
+ return p;
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/as_args.hpp
+
+// beginning of sol/variadic_args.hpp
+
+#include <limits>
+#include <iterator>
+
+namespace sol {
+ struct variadic_args {
+ private:
+ lua_State* L;
+ int index;
+ int stacktop;
+
+ public:
+ typedef stack_proxy reference_type;
+ typedef stack_proxy value_type;
+ typedef stack_proxy* pointer;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::size_t size_type;
+ typedef stack_iterator<stack_proxy, false> iterator;
+ typedef stack_iterator<stack_proxy, true> const_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ variadic_args() = default;
+ variadic_args(lua_State* luastate, int stackindex = -1) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {
+ }
+ variadic_args(lua_State* luastate, int stackindex, int lastindex) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) {
+ }
+ variadic_args(const variadic_args&) = default;
+ variadic_args& operator=(const variadic_args&) = default;
+ variadic_args(variadic_args&& o) : L(o.L), index(o.index), stacktop(o.stacktop) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.stacktop = 0;
+ }
+ variadic_args& operator=(variadic_args&& o) {
+ L = o.L;
+ index = o.index;
+ stacktop = o.stacktop;
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but will be thorough
+ o.L = nullptr;
+ o.index = 0;
+ o.stacktop = 0;
+ return *this;
+ }
+
+ iterator begin() {
+ return iterator(L, index, stacktop + 1);
+ }
+ iterator end() {
+ return iterator(L, stacktop + 1, stacktop + 1);
+ }
+ const_iterator begin() const {
+ return const_iterator(L, index, stacktop + 1);
+ }
+ const_iterator end() const {
+ return const_iterator(L, stacktop + 1, stacktop + 1);
+ }
+ const_iterator cbegin() const {
+ return begin();
+ }
+ const_iterator cend() const {
+ return end();
+ }
+
+ reverse_iterator rbegin() {
+ return std::reverse_iterator<iterator>(begin());
+ }
+ reverse_iterator rend() {
+ return std::reverse_iterator<iterator>(end());
+ }
+ const_reverse_iterator rbegin() const {
+ return std::reverse_iterator<const_iterator>(begin());
+ }
+ const_reverse_iterator rend() const {
+ return std::reverse_iterator<const_iterator>(end());
+ }
+ const_reverse_iterator crbegin() const {
+ return std::reverse_iterator<const_iterator>(cbegin());
+ }
+ const_reverse_iterator crend() const {
+ return std::reverse_iterator<const_iterator>(cend());
+ }
+
+ int push() const {
+ return push(L);
+ }
+
+ int push(lua_State* target) const {
+ int pushcount = 0;
+ for (int i = index; i <= stacktop; ++i) {
+ lua_pushvalue(L, i);
+ pushcount += 1;
+ }
+ if (target != L) {
+ lua_xmove(L, target, pushcount);
+ }
+ return pushcount;
+ }
+
+ template <typename T>
+ decltype(auto) get(difference_type index_offset = 0) const {
+ return stack::get<T>(L, index + static_cast<int>(index_offset));
+ }
+
+ type get_type(difference_type index_offset = 0) const noexcept {
+ return type_of(L, index + static_cast<int>(index_offset));
+ }
+
+ stack_proxy operator[](difference_type index_offset) const {
+ return stack_proxy(L, index + static_cast<int>(index_offset));
+ }
+
+ lua_State* lua_state() const {
+ return L;
+ };
+ int stack_index() const {
+ return index;
+ };
+ int leftover_count() const {
+ return stacktop - (index - 1);
+ }
+ std::size_t size() const {
+ return static_cast<std::size_t>(leftover_count());
+ }
+ int top() const {
+ return stacktop;
+ }
+ };
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<variadic_args> {
+ static variadic_args get(lua_State* L, int index, record& tracking) {
+ tracking.last = 0;
+ return variadic_args(L, index);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<variadic_args> {
+ static int push(lua_State* L, const variadic_args& ref) {
+ return ref.push(L);
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/variadic_args.hpp
+
+// beginning of sol/variadic_results.hpp
+
+// beginning of sol/as_returns.hpp
+
+namespace sol {
+ template <typename T>
+ struct as_returns_t : private detail::ebco<T> {
+ private:
+ using base_t = detail::ebco<T>;
+
+ public:
+ using base_t::base_t;
+ using base_t::value;
+ };
+
+ template <typename Source>
+ auto as_returns(Source&& source) {
+ return as_returns_t<std::decay_t<Source>> { std::forward<Source>(source) };
+ }
+
+ namespace stack {
+ template <typename T>
+ struct unqualified_pusher<as_returns_t<T>> {
+ int push(lua_State* L, const as_returns_t<T>& e) {
+ auto& src = detail::unwrap(e.value());
+ int p = 0;
+ for (const auto& i : src) {
+ p += stack::push(L, i);
+ }
+ return p;
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+// end of sol/as_returns.hpp
+
+#include <vector>
+
+namespace sol {
+
+ template <typename Al = typename std::allocator<object>>
+ struct basic_variadic_results : public std::vector<object, Al> {
+ private:
+ using base_t = std::vector<object, Al>;
+
+ public:
+ basic_variadic_results() : base_t() {
+ }
+
+ basic_variadic_results(unsafe_function_result fr) : base_t() {
+ this->reserve(fr.return_count());
+ this->insert(this->cend(), fr.begin(), fr.end());
+ }
+
+ basic_variadic_results(protected_function_result fr) : base_t() {
+ this->reserve(fr.return_count());
+ this->insert(this->cend(), fr.begin(), fr.end());
+ }
+
+ template <typename Arg0, typename... Args,
+ meta::disable_any<std::is_same<meta::unqualified_t<Arg0>, basic_variadic_results>, std::is_same<meta::unqualified_t<Arg0>, function_result>,
+ std::is_same<meta::unqualified_t<Arg0>, protected_function_result>> = meta::enabler>
+ basic_variadic_results(Arg0&& arg0, Args&&... args) : base_t(std::forward<Arg0>(arg0), std::forward<Args>(args)...) {
+ }
+
+ basic_variadic_results(const basic_variadic_results&) = default;
+ basic_variadic_results(basic_variadic_results&&) = default;
+ };
+
+ struct variadic_results : public basic_variadic_results<> {
+ private:
+ using base_t = basic_variadic_results<>;
+
+ public:
+ using base_t::base_t;
+ };
+
+ template <typename Al>
+ struct is_container<basic_variadic_results<Al>> : std::false_type { };
+
+ template <>
+ struct is_container<variadic_results> : std::false_type { };
+
+ namespace stack {
+ template <typename Al>
+ struct unqualified_pusher<basic_variadic_results<Al>> {
+ int push(lua_State* L, const basic_variadic_results<Al>& e) {
+ int p = 0;
+ for (const auto& i : e) {
+ p += stack::push(L, i);
+ }
+ return p;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<variadic_results> {
+ int push(lua_State* L, const variadic_results& r) {
+ using base_t = basic_variadic_results<>;
+ return stack::push(L, static_cast<const base_t&>(r));
+ }
+ };
+ } // namespace stack
+
+} // namespace sol
+
+// end of sol/variadic_results.hpp
+
+#if SOL_IS_ON(SOL_COMPILER_GCC)
+#pragma GCC diagnostic pop
+#elif SOL_IS_ON(SOL_COMPILER_CLANG)
+#elif SOL_IS_ON(SOL_COMPILER_VCXX)
+#pragma warning(pop)
+#endif // g++
+
+#if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE)
+#undef check
+#pragma pop_macro("check")
+#endif // Unreal Engine 4 Bullshit
+
+#endif // SOL_HPP
+// end of sol/sol.hpp
+
+#endif // SOL_SINGLE_INCLUDE_SOL_HPP