aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/solutions/tasking/tasktree.cpp
blob: 107559d6a539a4a6ec9fc6432baace97fd2c02ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
// Copyright (C) 2023 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0

#include "tasktree.h"

#include "barrier.h"

#include <QDebug>
#include <QEventLoop>
#include <QFutureWatcher>
#include <QHash>
#include <QMetaEnum>
#include <QMutex>
#include <QPromise>
#include <QPointer>
#include <QSet>
#include <QTime>
#include <QTimer>

using namespace std::chrono;

namespace Tasking {

// That's cut down qtcassert.{c,h} to avoid the dependency.
#define QT_STRING(cond) qDebug("SOFT ASSERT: \"%s\" in %s: %s", cond,  __FILE__, QT_STRINGIFY(__LINE__))
#define QT_ASSERT(cond, action) if (Q_LIKELY(cond)) {} else { QT_STRING(#cond); action; } do {} while (0)
#define QT_CHECK(cond) if (cond) {} else { QT_STRING(#cond); } do {} while (0)

class Guard
{
    Q_DISABLE_COPY(Guard)
public:
    Guard() = default;
    ~Guard() { QT_CHECK(m_lockCount == 0); }
    bool isLocked() const { return m_lockCount; }
private:
    int m_lockCount = 0;
    friend class GuardLocker;
};

class GuardLocker
{
    Q_DISABLE_COPY(GuardLocker)
public:
    GuardLocker(Guard &guard) : m_guard(guard) { ++m_guard.m_lockCount; }
    ~GuardLocker() { --m_guard.m_lockCount; }
private:
    Guard &m_guard;
};

/*!
    \module TaskingSolution
    \title Tasking Solution
    \ingroup solutions-modules
    \brief Contains a general purpose Tasking solution.

    The Tasking solution depends on Qt only, and doesn't depend on any \QC specific code.
*/

/*!
    \namespace Tasking
    \inmodule TaskingSolution
    \brief The Tasking namespace encloses all classes and global functions of the Tasking solution.
*/

/*!
    \class Tasking::TaskInterface
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief TaskInterface is the abstract base class for implementing custom task adapters.
    \reentrant

    To implement a custom task adapter, derive your adapter from the
    \c TaskAdapter<Task> class template. TaskAdapter automatically creates and destroys
    the custom task instance and associates the adapter with a given \c Task type.
*/

/*!
    \fn virtual void TaskInterface::start()

    This method is called by the running TaskTree for starting the \c Task instance.
    Reimplement this method in \c TaskAdapter<Task>'s subclass in order to start the
    associated task.

    Use TaskAdapter::task() to access the associated \c Task instance.

    \sa done(), TaskAdapter::task()
*/

/*!
    \fn void TaskInterface::done(DoneResult result)

    Emit this signal from the \c TaskAdapter<Task>'s subclass, when the \c Task is finished.
    Pass DoneResult::Success as a \a result argument when the task finishes with success;
    otherwise, when an error occurs, pass DoneResult::Error.
*/

/*!
    \class Tasking::TaskAdapter
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief A class template for implementing custom task adapters.
    \reentrant

    The TaskAdapter class template is responsible for creating a task of the \c Task type,
    starting it, and reporting success or an error when the task is finished.
    It also associates the adapter with a given \c Task type.

    Reimplement this class with the actual \c Task type to adapt the task's interface
    into the general TaskTree's interface for managing the \c Task instances.

    Each subclass needs to provide a public default constructor,
    implement the start() method, and emit the done() signal when the task is finished.
    Use task() to access the associated \c Task instance.

    To use your task adapter inside the task tree, create an alias to the
    Tasking::CustomTask template passing your task adapter as a template parameter:
    \code
        // Defines actual worker
        class Worker {...};

        // Adapts Worker's interface to work with task tree
        class WorkerTaskAdapter : public TaskAdapter<Worker> {...};

        // Defines WorkerTask as a new custom task type to be placed inside Group items
        using WorkerTask = CustomTask<WorkerTaskAdapter>;
    \endcode

    Optionally, you may pass a custom \c Deleter for the associated \c Task
    as a second template parameter of your \c TaskAdapter subclass.
    When the \c Deleter parameter is omitted, the \c std::default_delete<Task> is used by default.
    The custom \c Deleter is useful when the destructor of the running \c Task
    may potentially block the caller thread. Instead of blocking, the custom deleter may move
    the running task into a separate thread and implement the blocking destruction there.
    In this way, the fast destruction (seen from the caller thread) of the running task
    with a blocking destructor may be achieved.

    For more information on implementing the custom task adapters, refer to \l {Task Adapters}.

    \sa start(), done(), task()
*/

/*!
    \fn template <typename Task, typename Deleter = std::default_delete<Task>> TaskAdapter<Task, Deleter>::TaskAdapter<Task, Deleter>()

    Creates a task adapter for the given \c Task type.

    Internally, it creates an instance of \c Task, which is accessible via the task() method.
    The optionally provided \c Deleter is used instead of the \c Task destructor.
    When \c Deleter is omitted, the \c std::default_delete<Task> is used by default.

    \sa task()
*/

/*!
    \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task()

    Returns the pointer to the associated \c Task instance.
*/

/*!
    \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task() const
    \overload

    Returns the \c const pointer to the associated \c Task instance.
*/

/*!
    \class Tasking::Storage
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief A class template for custom data exchange in the running task tree.
    \reentrant

    The Storage class template is responsible for dynamically creating and destructing objects
    of the custom \c StorageStruct type. The creation and destruction are managed by the
    running task tree. If a Storage object is placed inside a \l {Tasking::Group} {Group} element,
    the running task tree creates the \c StorageStruct object when the group is started and before
    the group's setup handler is called. Later, whenever any handler inside this group is called,
    the task tree activates the previously created instance of the \c StorageStruct object.
    This includes all tasks' and groups' setup and done handlers inside the group where the
    Storage object was placed, also within the nested groups.
    When a copy of the Storage object is passed to the handler via the lambda capture,
    the handler may access the instance activated by the running task tree via the
    \l {Tasking::Storage::operator->()} {operator->()},
    \l {Tasking::Storage::operator*()} {operator*()}, or activeStorage() method.
    If two handlers capture the same Storage object, one of them may store a custom data there,
    and the other may read it afterwards.
    When the group is finished, the previously created instance of the \c StorageStruct
    object is destroyed after the group's done handler is called.

    An example of data exchange between tasks:

    \code
        const Storage<QString> storage;

        const auto onFirstDone = [storage](const Task &task) {
            // Assings QString, taken from the first task result, to the active QString instance
            // of the Storage object.
            *storage = task.getResultAsString();
        };

        const auto onSecondSetup = [storage](Task &task) {
            // Reads QString from the active QString instance of the Storage object and use it to
            // configure the second task before start.
            task.configureWithString(*storage);
        };

        const Group root {
            // The running task tree creates QString instance when root in entered
            storage,
            // The done handler of the first task stores the QString in the storage
            TaskItem(..., onFirstDone),
            // The setup handler of the second task reads the QString from the storage
            TaskItem(onSecondSetup, ...)
        };
    \endcode

    Since the root group executes its tasks sequentially, the \c onFirstDone handler
    is always called before the \c onSecondSetup handler. This means that the QString data,
    read from the \c storage inside the \c onSecondSetup handler's body,
    has already been set by the \c onFirstDone handler.
    You can always rely on it in \l {Tasking::sequential} {sequential} execution mode.

    The Storage internals are shared between all of its copies. That is why the copies of the
    Storage object inside the handlers' lambda captures still refer to the same Storage instance.
    You may place multiple Storage objects inside one \l {Tasking::Group} {Group} element,
    provided that they do not include copies of the same Storage object.
    Otherwise, an assert is triggered at runtime that includes an error message.
    However, you can place copies of the same Storage object in different
    \l {Tasking::Group} {Group} elements of the same recipe. In this case, the running task
    tree will create multiple instances of the \c StorageStruct objects (one for each copy)
    and storage shadowing will take place. Storage shadowing works in a similar way
    to C++ variable shadowing inside the nested blocks of code:

    \code
        Storage<QString> storage;

        const Group root {
            storage,                             // Top copy, 1st instance of StorageStruct
            onGroupSetup([storage] { ... }),     // Top copy is active
            Group {
                storage,                         // Nested copy, 2nd instance of StorageStruct,
                                                 // shadows Top copy
                onGroupSetup([storage] { ... }), // Nested copy is active
            },
            Group {
                onGroupSetup([storage] { ... }), // Top copy is active
            }
        };
    \endcode

    The Storage objects may also be used for passing the initial data to the executed task tree,
    and for reading the final data out of the task tree before it finishes.
    To do this, use \l {TaskTree::onStorageSetup()} {onStorageSetup()} or
    \l {TaskTree::onStorageDone()} {onStorageDone()}, respectively.

    \note If you use an unreachable Storage object inside the handler,
          because you forgot to place the storage in the recipe,
          or placed it, but not in any handler's ancestor group,
          you may expect a crash, preceded by the following message:
          \e {The referenced storage is not reachable in the running tree.
          A nullptr will be returned which might lead to a crash in the calling code.
          It is possible that no storage was added to the tree,
          or the storage is not reachable from where it is referenced.}
*/

/*!
    \fn template <typename StorageStruct> Storage<StorageStruct>::Storage<StorageStruct>()

    Creates a storage for the given \c StorageStruct type.

    \note All copies of \c this object are considered to be the same Storage instance.
*/

/*!
    \fn template <typename StorageStruct> StorageStruct &Storage<StorageStruct>::operator*() const noexcept

    Returns a \e reference to the active \c StorageStruct object, created by the running task tree.
    Use this function only from inside the handler body of any GroupItem element placed
    in the recipe, otherwise you may expect a crash.
    Make sure that Storage is placed in any group ancestor of the handler's group item.

    \note The returned reference is valid as long as the group that created this instance
          is still running.

    \sa activeStorage(), operator->()
*/

/*!
    \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::operator->() const noexcept

    Returns a \e pointer to the active \c StorageStruct object, created by the running task tree.
    Use this function only from inside the handler body of any GroupItem element placed
    in the recipe, otherwise you may expect a crash.
    Make sure that Storage is placed in any group ancestor of the handler's group item.

    \note The returned pointer is valid as long as the group that created this instance
          is still running.

    \sa activeStorage(), operator*()
*/

/*!
    \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::activeStorage() const

    Returns a \e pointer to the active \c StorageStruct object, created by the running task tree.
    Use this function only from inside the handler body of any GroupItem element placed
    in the recipe, otherwise you may expect a crash.
    Make sure that Storage is placed in any group ancestor of the handler's group item.

    \note The returned pointer is valid as long as the group that created this instance
          is still running.

    \sa operator->(), operator*()
*/

/*!
    \class Tasking::GroupItem
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief GroupItem represents the basic element that may be a part of any Group.
    \reentrant

    GroupItem is a basic element that may be a part of any \l {Tasking::Group} {Group}.
    It encapsulates the functionality provided by any GroupItem's subclass.
    It is a value type and it is safe to copy the GroupItem instance,
    even when it is originally created via the subclass' constructor.

    There are four main kinds of GroupItem:
    \table
    \header
        \li GroupItem Kind
        \li Brief Description
    \row
        \li \l CustomTask
        \li Defines asynchronous task type and task's start, done, and error handlers.
            Aliased with a unique task name, such as, \c ConcurrentCallTask<ResultType>
            or \c NetworkQueryTask. Asynchronous tasks are the main reason for using a task tree.
    \row
        \li \l {Tasking::Group} {Group}
        \li A container for other group items. Since the group is of the GroupItem type,
            it's possible to nest it inside another group. The group is seen by its parent
            as a single asynchronous task.
    \row
        \li GroupItem containing \l {Tasking::Storage} {Storage}
        \li Enables the child tasks of a group to exchange data. When GroupItem containing
            \l {Tasking::Storage} {Storage} is placed inside a group, the task tree instantiates
            the storage's data object just before the group is entered,
            and destroys it just after the group is left.
    \row
        \li Other group control items
        \li The items returned by \l {Tasking::parallelLimit()} {parallelLimit()} or
            \l {Tasking::workflowPolicy()} {workflowPolicy()} influence the group's behavior.
            The items returned by \l {Tasking::onGroupSetup()} {onGroupSetup()} or
            \l {Tasking::onGroupDone()} {onGroupDone()} define custom handlers called when
            the group starts or ends execution.
    \endtable
*/

/*!
    \fn template <typename StorageStruct> GroupItem::GroupItem(const Storage<StorageStruct> &storage)

    Constructs a \c GroupItem element holding the \a storage object.

    When the \l {Tasking::Group} {Group} element containing \e this GroupItem is entered
    by the running task tree, an instance of the \c StorageStruct is created dynamically.

    When that group is about to be left after its execution, the previously instantiated
    \c StorageStruct is deleted.

    The dynamically created instance of \c StorageStruct is accessible from inside any
    handler body of the parent \l {Tasking::Group} {Group} element,
    including nested groups and its tasks, via the
    \l {Tasking::Storage::operator->()} {Storage::operator->()},
    \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method.

    \sa {Tasking::Storage} {Storage}
*/

/*!
    \fn GroupItem::GroupItem(const QList<GroupItem> &items)

    Constructs a \c GroupItem element with a given list of \a items.

    When this \c GroupItem element is parsed by the TaskTree, it is simply replaced with
    its \a items.

    This constructor is useful when constructing a \l {Tasking::Group} {Group} element with
    lists of \c GroupItem elements:

    \code
        static QList<GroupItems> getItems();

        ...

        const Group root {
            parallel,
            finishAllAndSuccess,
            getItems(), // OK, getItems() list is wrapped into a single GroupItem element
            onGroupSetup(...),
            onGroupDone(...)
        };
    \endcode

    If you want to create a subtree, use \l {Tasking::Group} {Group} instead.

    \note Don't confuse this \c GroupItem with the \l {Tasking::Group} {Group} element, as
          \l {Tasking::Group} {Group} keeps its children nested
          after being parsed by the task tree, while this \c GroupItem does not.

    \sa {Tasking::Group} {Group}
*/

/*!
    \fn GroupItem::GroupItem(std::initializer_list<GroupItem> items)
    \overload
    \sa GroupItem(const QList<Tasking::GroupItem> &items)
*/

/*!
    \class Tasking::Group
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief Group represents the basic element for composing declarative recipes describing
           how to execute and handle a nested tree of asynchronous tasks.
    \reentrant

    Group is a container for other group items. It encloses child tasks into one unit,
    which is seen by the group's parent as a single, asynchronous task.
    Since Group is of the GroupItem type, it may also be a child of Group.

    Insert child tasks into the group by using aliased custom task names, such as,
    \c ConcurrentCallTask<ResultType> or \c NetworkQueryTask:

    \code
        const Group group {
            NetworkQueryTask(...),
            ConcurrentCallTask<int>(...)
        };
    \endcode

    The group's behavior may be customized by inserting the items returned by
    \l {Tasking::parallelLimit()} {parallelLimit()} or
    \l {Tasking::workflowPolicy()} {workflowPolicy()} functions:

    \code
        const Group group {
            parallel,
            continueOnError,
            NetworkQueryTask(...),
            NetworkQueryTask(...)
        };
    \endcode

    The group may contain nested groups:

    \code
        const Group group {
            finishAllAndSuccess,
            NetworkQueryTask(...),
            Group {
                NetworkQueryTask(...),
                Group {
                    parallel,
                    NetworkQueryTask(...),
                    NetworkQueryTask(...),
                }
                ConcurrentCallTask<QString>(...)
            }
        };
    \endcode

    The group may dynamically instantiate a custom storage structure, which may be used for
    inter-task data exchange:

    \code
        struct MyCustomStruct { QByteArray data; };

        Storage<MyCustomStruct> storage;

        const auto onFirstSetup = [](NetworkQuery &task) { ... };
        const auto onFirstDone = [storage](const NetworkQuery &task) {
            // storage-> gives a pointer to MyCustomStruct instance,
            // created dynamically by the running task tree.
            storage->data = task.reply()->readAll();
        };
        const auto onSecondSetup = [storage](ConcurrentCall<QImage> &task) {
            // storage-> gives a pointer to MyCustomStruct. Since the group is sequential,
            // the stored MyCustomStruct was already updated inside the onFirstDone handler.
            const QByteArray storedData = storage->data;
        };

        const Group group {
            // When the group is entered by a running task tree, it creates MyCustomStruct
            // instance dynamically. It is later accessible from all handlers via
            // the *storage or storage-> operators.
            sequential,
            storage,
            NetworkQueryTask(onFirstSetup, onFirstDone, CallDoneIf::Success),
            ConcurrentCallTask<QImage>(onSecondSetup)
        };
    \endcode
*/

/*!
    \fn Group::Group(const QList<GroupItem> &children)

    Constructs a group with a given list of \a children.

    This constructor is useful when the child items of the group are not known at compile time,
    but later, at runtime:

    \code
        const QStringList sourceList = ...;

        QList<GroupItem> groupItems { parallel };

        for (const QString &source : sourceList) {
            const NetworkQueryTask task(...); // use source for setup handler
            groupItems << task;
        }

        const Group group(groupItems);
    \endcode
*/

/*!
    \fn Group::Group(std::initializer_list<GroupItem> children)

    Constructs a group from \c std::initializer_list given by \a children.

    This constructor is useful when all child items of the group are known at compile time:

    \code
        const Group group {
            finishAllAndSuccess,
            NetworkQueryTask(...),
            Group {
                NetworkQueryTask(...),
                Group {
                    parallel,
                    NetworkQueryTask(...),
                    NetworkQueryTask(...),
                }
                ConcurrentCallTask<QString>(...)
            }
        };
    \endcode
*/

/*!
    \class Tasking::Sync
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief Synchronously executes a custom handler between other tasks.
    \reentrant

    \c Sync is useful when you want to execute an additional handler between other tasks.
    \c Sync is seen by its parent \l {Tasking::Group} {Group} as any other task.
    Avoid long-running execution of the \c Sync's handler body, since it is executed
    synchronously from the caller thread. If that is unavoidable, consider using
    \c ConcurrentCallTask instead.
*/

/*!
    \fn template <typename Handler> Sync::Sync(Handler &&handler)

    Constructs an element that executes a passed \a handler synchronously.
    The \c Handler is of the \c std::function<DoneResult()> type.
    The DoneResult value, returned by the \a handler, is considered during parent group's
    \l {workflowPolicy} {workflow policy} resolution.
    Optionally, the shortened form of \c std::function<void()> is also accepted.
    In this case, it's assumed that the return value is DoneResult::Success.

    The passed \a handler executes synchronously from the caller thread, so avoid a long-running
    execution of the handler body. Otherwise, consider using \c ConcurrentCallTask.

    \note The \c Sync element is not counted as a task when reporting task tree progress,
          and is not included in TaskTree::taskCount() or TaskTree::progressMaximum().
*/

/*!
    \class Tasking::CustomTask
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief A class template used for declaring custom task items and defining their setup
           and done handlers.
    \reentrant

    Describes custom task items within task tree recipes.

    Custom task names are aliased with unique names using the \c CustomTask template
    with a given TaskAdapter subclass as a template parameter.
    For example, \c ConcurrentCallTask<T> is an alias to the \c CustomTask that is defined
    to work with \c ConcurrentCall<T> as an associated task class.
    The following table contains example custom tasks and their associated task classes:

    \table
    \header
        \li Aliased Task Name (Tasking Namespace)
        \li Associated Task Class
        \li Brief Description
    \row
        \li ConcurrentCallTask<ReturnType>
        \li ConcurrentCall<ReturnType>
        \li Starts an asynchronous task. Runs in a separate thread.
    \row
        \li NetworkQueryTask
        \li NetworkQuery
        \li Sends a network query.
    \row
        \li TaskTreeTask
        \li TaskTree
        \li Starts a nested task tree.
    \row
        \li TimeoutTask
        \li \c std::chrono::milliseconds
        \li Starts a timer.
    \row
        \li WaitForBarrierTask
        \li MultiBarrier<Limit>
        \li Starts an asynchronous task waiting for the barrier to pass.
    \endtable
*/

/*!
    \typealias CustomTask::Task

    Type alias for the task type associated with the custom task's \c Adapter.
*/

/*!
    \typealias CustomTask::Deleter

    Type alias for the task's type deleter associated with the custom task's \c Adapter.
*/

/*!
    \typealias CustomTask::TaskSetupHandler

    Type alias for \c std::function<SetupResult(Task &)>.

    The \c TaskSetupHandler is an optional argument of a custom task element's constructor.
    Any function with the above signature, when passed as a task setup handler,
    will be called by the running task tree after the task is created and before it is started.

    Inside the body of the handler, you may configure the task according to your needs.
    The additional parameters, including storages, may be passed to the handler
    via the lambda capture.
    You can decide dynamically whether the task should be started or skipped with
    success or an error.

    \note Do not start the task inside the start handler by yourself. Leave it for TaskTree,
    otherwise the behavior is undefined.

    The return value of the handler instructs the running task tree on how to proceed
    after the handler's invocation is finished. The return value of SetupResult::Continue
    instructs the task tree to continue running, that is, to execute the associated \c Task.
    The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError
    instructs the task tree to skip the task's execution and finish it immediately with
    success or an error, respectively.

    When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError,
    the task's done handler (if provided) isn't called afterwards.

    The constructor of a custom task accepts also functions in the shortened form of
    \c std::function<void(Task &)>, that is, the return value is \c void.
    In this case, it's assumed that the return value is SetupResult::Continue.

    \sa CustomTask(), TaskDoneHandler, GroupSetupHandler
*/

/*!
    \typealias CustomTask::TaskDoneHandler

    Type alias for \c std::function<DoneResult(const Task &, DoneWith)>.

    The \c TaskDoneHandler is an optional argument of a custom task element's constructor.
    Any function with the above signature, when passed as a task done handler,
    will be called by the running task tree after the task execution finished and before
    the final result of the execution is reported back to the parent group.

    Inside the body of the handler you may retrieve the final data from the finished task.
    The additional parameters, including storages, may be passed to the handler
    via the lambda capture.
    It is also possible to decide dynamically whether the task should finish with its return
    value, or the final result should be tweaked.

    The DoneWith argument is optional and your done handler may omit it.
    When provided, it holds the info about the final result of a task that will be
    reported to its parent.

    If you do not plan to read any data from the finished task,
    you may omit the \c {const Task &} argument.

    The returned DoneResult value is optional and your handler may return \c void instead.
    In this case, the final result of the task will be equal to the value indicated by
    the DoneWith argument. When the handler returns the DoneResult value,
    the task's final result may be tweaked inside the done handler's body by the returned value.

    \sa CustomTask(), TaskSetupHandler, GroupDoneHandler
*/

/*!
    \fn template <typename Adapter> template <typename SetupHandler = TaskSetupHandler, typename DoneHandler = TaskDoneHandler> CustomTask<Adapter>::CustomTask(SetupHandler &&setup = TaskSetupHandler(), DoneHandler &&done = TaskDoneHandler(), CallDoneIf callDoneIf = CallDoneIf::SuccessOrError)

    Constructs a \c CustomTask instance and attaches the \a setup and \a done handlers to the task.
    When the running task tree is about to start the task,
    it instantiates the associated \l Task object, invokes \a setup handler with a \e reference
    to the created task, and starts it. When the running task finishes,
    the task tree invokes a \a done handler, with a \c const \e reference to the created task.

    The passed \a setup handler is of the \l TaskSetupHandler type. For example:

    \code
        static void parseAndLog(const QString &input);

        ...

        const QString input = ...;

        const auto onFirstSetup = [input](ConcurrentCall<void> &task) {
            if (input == "Skip")
                return SetupResult::StopWithSuccess; // This task won't start, the next one will
            if (input == "Error")
                return SetupResult::StopWithError; // This task and the next one won't start
            task.setConcurrentCallData(parseAndLog, input);
            // This task will start, and the next one will start after this one finished with success
            return SetupResult::Continue;
        };

        const auto onSecondSetup = [input](ConcurrentCall<void> &task) {
            task.setConcurrentCallData(parseAndLog, input);
        };

        const Group group {
            ConcurrentCallTask<void>(onFirstSetup),
            ConcurrentCallTask<void>(onSecondSetup)
        };
    \endcode

    The \a done handler is of the \l TaskDoneHandler type.
    By default, the \a done handler is invoked whenever the task finishes.
    Pass a non-default value for the \a callDoneIf argument when you want the handler to be called
    only on a successful or failed execution.

    \sa TaskSetupHandler, TaskDoneHandler
*/

/*!
    \enum Tasking::WorkflowPolicy

    This enum describes the possible behavior of the Group element when any group's child task
    finishes its execution. It's also used when the running Group is canceled.

    \value StopOnError
        Default. Corresponds to the stopOnError global element.
        If any child task finishes with an error, the group stops and finishes with an error.
        If all child tasks finished with success, the group finishes with success.
        If a group is empty, it finishes with success.
    \value ContinueOnError
        Corresponds to the continueOnError global element.
        Similar to stopOnError, but in case any child finishes with an error,
        the execution continues until all tasks finish, and the group reports an error
        afterwards, even when some other tasks in the group finished with success.
        If all child tasks finish successfully, the group finishes with success.
        If a group is empty, it finishes with success.
    \value StopOnSuccess
        Corresponds to the stopOnSuccess global element.
        If any child task finishes with success, the group stops and finishes with success.
        If all child tasks finished with an error, the group finishes with an error.
        If a group is empty, it finishes with an error.
    \value ContinueOnSuccess
        Corresponds to the continueOnSuccess global element.
        Similar to stopOnSuccess, but in case any child finishes successfully,
        the execution continues until all tasks finish, and the group reports success
        afterwards, even when some other tasks in the group finished with an error.
        If all child tasks finish with an error, the group finishes with an error.
        If a group is empty, it finishes with an error.
    \value StopOnSuccessOrError
        Corresponds to the stopOnSuccessOrError global element.
        The group starts as many tasks as it can. When any task finishes,
        the group stops and reports the task's result.
        Useful only in parallel mode.
        In sequential mode, only the first task is started, and when finished,
        the group finishes too, so the other tasks are always skipped.
        If a group is empty, it finishes with an error.
    \value FinishAllAndSuccess
        Corresponds to the finishAllAndSuccess global element.
        The group executes all tasks and ignores their return results. When all
        tasks finished, the group finishes with success.
        If a group is empty, it finishes with success.
    \value FinishAllAndError
        Corresponds to the finishAllAndError global element.
        The group executes all tasks and ignores their return results. When all
        tasks finished, the group finishes with an error.
        If a group is empty, it finishes with an error.

    Whenever a child task's result causes the Group to stop, that is,
    in case of StopOnError, StopOnSuccess, or StopOnSuccessOrError policies,
    the Group cancels the other running child tasks (if any - for example in parallel mode),
    and skips executing tasks it has not started yet (for example, in the sequential mode -
    those, that are placed after the failed task). Both canceling and skipping child tasks
    may happen when parallelLimit() is used.

    The table below summarizes the differences between various workflow policies:

    \table
    \header
        \li \l WorkflowPolicy
        \li Executes all child tasks
        \li Result
        \li Result when the group is empty
    \row
        \li StopOnError
        \li Stops when any child task finished with an error and reports an error
        \li An error when at least one child task failed, success otherwise
        \li Success
    \row
        \li ContinueOnError
        \li Yes
        \li An error when at least one child task failed, success otherwise
        \li Success
    \row
        \li StopOnSuccess
        \li Stops when any child task finished with success and reports success
        \li Success when at least one child task succeeded, an error otherwise
        \li An error
    \row
        \li ContinueOnSuccess
        \li Yes
        \li Success when at least one child task succeeded, an error otherwise
        \li An error
    \row
        \li StopOnSuccessOrError
        \li Stops when any child task finished and reports child task's result
        \li Success or an error, depending on the finished child task's result
        \li An error
    \row
        \li FinishAllAndSuccess
        \li Yes
        \li Success
        \li Success
    \row
        \li FinishAllAndError
        \li Yes
        \li An error
        \li An error
    \endtable

    If a child of a group is also a group, the child group runs its tasks according to its own
    workflow policy. When a parent group stops the running child group because
    of parent group's workflow policy, that is, when the StopOnError, StopOnSuccess,
    or StopOnSuccessOrError policy was used for the parent,
    the child group's result is reported according to the
    \b Result column and to the \b {child group's workflow policy} row in the table above.
*/

/*!
    \variable sequential
    A convenient global group's element describing the sequential execution mode.

    This is the default execution mode of the Group element.

    When a Group has no execution mode, it runs in the sequential mode.
    All the direct child tasks of a group are started in a chain, so that when one task finishes,
    the next one starts. This enables you to pass the results from the previous task
    as input to the next task before it starts. This mode guarantees that the next task
    is started only after the previous task finishes.

    \sa parallel, parallelLimit()
*/

/*!
    \variable parallel
    A convenient global group's element describing the parallel execution mode.

    All the direct child tasks of a group are started after the group is started,
    without waiting for the previous child tasks to finish.
    In this mode, all child tasks run simultaneously.

    \sa sequential, parallelLimit()
*/

/*!
    \variable parallelIdealThreadCountLimit
    A convenient global group's element describing the parallel execution mode with a limited
    number of tasks running simultanously. The limit is equal to the ideal number of threads
    excluding the calling thread.

    This is a shortcut to:
    \code
        parallelLimit(qMax(QThread::idealThreadCount() - 1, 1))
    \endcode

    \sa parallel, parallelLimit()
*/

/*!
    \variable stopOnError
    A convenient global group's element describing the StopOnError workflow policy.

    This is the default workflow policy of the Group element.
*/

/*!
    \variable continueOnError
    A convenient global group's element describing the ContinueOnError workflow policy.
*/

/*!
    \variable stopOnSuccess
    A convenient global group's element describing the StopOnSuccess workflow policy.
*/

/*!
    \variable continueOnSuccess
    A convenient global group's element describing the ContinueOnSuccess workflow policy.
*/

/*!
    \variable stopOnSuccessOrError
    A convenient global group's element describing the StopOnSuccessOrError workflow policy.
*/

/*!
    \variable finishAllAndSuccess
    A convenient global group's element describing the FinishAllAndSuccess workflow policy.
*/

/*!
    \variable finishAllAndError
    A convenient global group's element describing the FinishAllAndError workflow policy.
*/

/*!
    \enum Tasking::SetupResult

    This enum is optionally returned from the group's or task's setup handler function.
    It instructs the running task tree on how to proceed after the setup handler's execution
    finished.
    \value Continue
           Default. The group's or task's execution continues normally.
           When a group's or task's setup handler returns void, it's assumed that
           it returned Continue.
    \value StopWithSuccess
           The group's or task's execution stops immediately with success.
           When returned from the group's setup handler, all child tasks are skipped,
           and the group's onGroupDone() handler is invoked with DoneWith::Success.
           The group reports success to its parent. The group's workflow policy is ignored.
           When returned from the task's setup handler, the task isn't started,
           its done handler isn't invoked, and the task reports success to its parent.
    \value StopWithError
           The group's or task's execution stops immediately with an error.
           When returned from the group's setup handler, all child tasks are skipped,
           and the group's onGroupDone() handler is invoked with DoneWith::Error.
           The group reports an error to its parent. The group's workflow policy is ignored.
           When returned from the task's setup handler, the task isn't started,
           its error handler isn't invoked, and the task reports an error to its parent.
*/

/*!
    \enum Tasking::DoneResult

    This enum is optionally returned from the group's or task's done handler function.
    When the done handler doesn't return any value, that is, its return type is \c void,
    its final return value is automatically deduced by the running task tree and reported
    to its parent group.

    When the done handler returns the DoneResult, you can tweak the final return value
    inside the handler.

    When the DoneResult is returned by the group's done handler, the group's workflow policy
    is ignored.

    This enum is also used inside the TaskInterface::done() signal and it indicates whether
    the task finished with success or an error.

    \value Success
           The group's or task's execution ends with success.
    \value Error
           The group's or task's execution ends with an error.
*/

/*!
    \enum Tasking::DoneWith

    This enum is an optional argument for the group's or task's done handler.
    It indicates whether the group or task finished with success or an error, or it was canceled.

    It is also used as an argument inside the TaskTree::done() signal,
    indicating the final result of the TaskTree execution.

    \value Success
           The group's or task's execution ended with success.
    \value Error
           The group's or task's execution ended with an error.
    \value Cancel
           The group's or task's execution was canceled. This happens when the user calls
           TaskTree::cancel() for the running task tree or when the group's workflow policy
           results in canceling some of its running children.
           Tweaking the done handler's final result by returning Tasking::DoneResult from
           the handler is no-op when the group's or task's execution was canceled.
*/

/*!
    \enum Tasking::CallDoneIf

    This enum is an optional argument for the \l onGroupDone() element or custom task's constructor.
    It instructs the task tree on when the group's or task's done handler should be invoked.

    \value SuccessOrError
           The done handler is always invoked.
    \value Success
           The done handler is invoked only after successful execution,
           that is, when DoneWith::Success.
    \value Error
           The done handler is invoked only after failed execution,
           that is, when DoneWith::Error or when DoneWith::Cancel.
*/

/*!
    \typealias GroupItem::GroupSetupHandler

    Type alias for \c std::function<SetupResult()>.

    The \c GroupSetupHandler is an argument of the onGroupSetup() element.
    Any function with the above signature, when passed as a group setup handler,
    will be called by the running task tree when the group execution starts.

    The return value of the handler instructs the running group on how to proceed
    after the handler's invocation is finished. The default return value of SetupResult::Continue
    instructs the group to continue running, that is, to start executing its child tasks.
    The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError
    instructs the group to skip the child tasks' execution and finish immediately with
    success or an error, respectively.

    When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError,
    the group's done handler (if provided) is called synchronously immediately afterwards.

    \note Even if the group setup handler returns StopWithSuccess or StopWithError,
    the group's done handler is invoked. This behavior differs from that of task done handler
    and might change in the future.

    The onGroupSetup() element accepts also functions in the shortened form of
    \c std::function<void()>, that is, the return value is \c void.
    In this case, it's assumed that the return value is SetupResult::Continue.

    \sa onGroupSetup(), GroupDoneHandler, CustomTask::TaskSetupHandler
*/

/*!
    \typealias GroupItem::GroupDoneHandler

    Type alias for \c std::function<DoneResult(DoneWith)>.

    The \c GroupDoneHandler is an argument of the onGroupDone() element.
    Any function with the above signature, when passed as a group done handler,
    will be called by the running task tree when the group execution ends.

    The DoneWith argument is optional and your done handler may omit it.
    When provided, it holds the info about the final result of a group that will be
    reported to its parent.

    The returned DoneResult value is optional and your handler may return \c void instead.
    In this case, the final result of the group will be equal to the value indicated by
    the DoneWith argument. When the handler returns the DoneResult value,
    the group's final result may be tweaked inside the done handler's body by the returned value.

    \sa onGroupDone(), GroupSetupHandler, CustomTask::TaskDoneHandler
*/

/*!
    \fn template <typename Handler> GroupItem onGroupSetup(Handler &&handler)

    Constructs a group's element holding the group setup handler.
    The \a handler is invoked whenever the group starts.

    The passed \a handler is either of the \c std::function<SetupResult()> or the
    \c std::function<void()> type. For more information on a possible handler type, refer to
    \l {GroupItem::GroupSetupHandler}.

    When the \a handler is invoked, none of the group's child tasks are running yet.

    If a group contains the Storage elements, the \a handler is invoked
    after the storages are constructed, so that the \a handler may already
    perform some initial modifications to the active storages.

    \sa GroupItem::GroupSetupHandler, onGroupDone()
*/

/*!
    \fn template <typename Handler> GroupItem onGroupDone(Handler &&handler, CallDoneIf callDoneIf = CallDoneIf::SuccessOrError)

    Constructs a group's element holding the group done handler.
    By default, the \a handler is invoked whenever the group finishes.
    Pass a non-default value for the \a callDoneIf argument when you want the handler to be called
    only on a successful or failed execution.
    Depending on the group's workflow policy, this handler may also be called
    when the running group is canceled (e.g. when stopOnError element was used).

    The passed \a handler is of the \c std::function<DoneResult(DoneWith)> type.
    Optionally, each of the return DoneResult type or the argument DoneWith type may be omitted
    (that is, its return type may be \c void). For more information on a possible handler type,
    refer to \l {GroupItem::GroupDoneHandler}.

    When the \a handler is invoked, all of the group's child tasks are already finished.

    If a group contains the Storage elements, the \a handler is invoked
    before the storages are destructed, so that the \a handler may still
    perform a last read of the active storages' data.

    \sa GroupItem::GroupDoneHandler, onGroupSetup()
*/

/*!
    Constructs a group's element describing the \l{Execution Mode}{execution mode}.

    The execution mode element in a Group specifies how the direct child tasks of
    the Group are started.

    For convenience, when appropriate, the \l sequential or \l parallel global elements
    may be used instead.

    The \a limit defines the maximum number of direct child tasks running in parallel:

    \list
        \li When \a limit equals to 0, there is no limit, and all direct child tasks are started
        together, in the oder in which they appear in a group. This means the fully parallel
        execution, and the \l parallel element may be used instead.

        \li When \a limit equals to 1, it means that only one child task may run at the time.
        This means the sequential execution, and the \l sequential element may be used instead.
        In this case, child tasks run in chain, so the next child task starts after
        the previous child task has finished.

        \li When other positive number is passed as \a limit, the group's child tasks run
        in parallel, but with a limited number of tasks running simultanously.
        The \e limit defines the maximum number of tasks running in parallel in a group.
        When the group is started, the first batch of tasks is started
        (the number of tasks in a batch equals to the passed \a limit, at most),
        while the others are kept waiting. When any running task finishes,
        the group starts the next remaining one, so that the \e limit of simultaneously
        running tasks inside a group isn't exceeded. This repeats on every child task's
        finish until all child tasks are started. This enables you to limit the maximum
        number of tasks that run simultaneously, for example if running too many processes might
        block the machine for a long time.
    \endlist

    In all execution modes, a group starts tasks in the oder in which they appear.

    If a child of a group is also a group, the child group runs its tasks according
    to its own execution mode.

    \sa sequential, parallel
*/
GroupItem parallelLimit(int limit)
{
    return Group::parallelLimit(qMax(limit, 0));
}

/*!
    Constructs a group's \l {Workflow Policy} {workflow policy} element for a given \a policy.

    For convenience, global elements may be used instead.

    \sa stopOnError, continueOnError, stopOnSuccess, continueOnSuccess, stopOnSuccessOrError,
        finishAllAndSuccess, finishAllAndError, WorkflowPolicy
*/
GroupItem workflowPolicy(WorkflowPolicy policy)
{
    return Group::workflowPolicy(policy);
}

const GroupItem nullItem = GroupItem({});

const GroupItem sequential = parallelLimit(1);
const GroupItem parallel = parallelLimit(0);
const GroupItem parallelIdealThreadCountLimit = parallelLimit(qMax(QThread::idealThreadCount() - 1, 1));

const GroupItem stopOnError = workflowPolicy(WorkflowPolicy::StopOnError);
const GroupItem continueOnError = workflowPolicy(WorkflowPolicy::ContinueOnError);
const GroupItem stopOnSuccess = workflowPolicy(WorkflowPolicy::StopOnSuccess);
const GroupItem continueOnSuccess = workflowPolicy(WorkflowPolicy::ContinueOnSuccess);
const GroupItem stopOnSuccessOrError = workflowPolicy(WorkflowPolicy::StopOnSuccessOrError);
const GroupItem finishAllAndSuccess = workflowPolicy(WorkflowPolicy::FinishAllAndSuccess);
const GroupItem finishAllAndError = workflowPolicy(WorkflowPolicy::FinishAllAndError);

// Please note the thread_local keyword below guarantees a separate instance per thread.
// The s_activeTaskTrees is currently used internally only and is not exposed in the public API.
// It serves for withLog() implementation now. Add a note here when a new usage is introduced.
static thread_local QList<TaskTree *> s_activeTaskTrees = {};

static TaskTree *activeTaskTree()
{
    QT_ASSERT(s_activeTaskTrees.size(), return nullptr);
    return s_activeTaskTrees.back();
}

DoneResult toDoneResult(bool success)
{
    return success ? DoneResult::Success : DoneResult::Error;
}

static SetupResult toSetupResult(bool success)
{
    return success ? SetupResult::StopWithSuccess : SetupResult::StopWithError;
}

static DoneResult toDoneResult(DoneWith doneWith)
{
    return doneWith == DoneWith::Success ? DoneResult::Success : DoneResult::Error;
}

static DoneWith toDoneWith(DoneResult result)
{
    return result == DoneResult::Success ? DoneWith::Success : DoneWith::Error;
}

class LoopThreadData
{
    Q_DISABLE_COPY_MOVE(LoopThreadData)

public:
    LoopThreadData() = default;
    void pushIteration(int index)
    {
        m_activeLoopStack.push_back(index);
    }
    void popIteration()
    {
        QT_ASSERT(m_activeLoopStack.size(), return);
        m_activeLoopStack.pop_back();
    }
    int iteration() const
    {
        QT_ASSERT(m_activeLoopStack.size(), qWarning(
            "The referenced loop is not reachable in the running tree. "
            "A -1 will be returned which might lead to a crash in the calling code. "
            "It is possible that no loop was added to the tree, "
            "or the loop is not reachable from where it is referenced."); return -1);
        return m_activeLoopStack.last();
    }

private:
    QList<int> m_activeLoopStack;
};

class LoopData
{
public:
    LoopThreadData &threadData() {
        QMutexLocker lock(&m_threadDataMutex);
        return m_threadDataMap.try_emplace(QThread::currentThread()).first->second;
    }

    const std::optional<int> m_loopCount = {};
    const Loop::ValueGetter m_valueGetter = {};
    const Loop::Condition m_condition = {};
    QMutex m_threadDataMutex = {};
    // Use std::map on purpose, so that it doesn't invalidate references on modifications.
    // Don't optimize it by using std::unordered_map.
    std::map<QThread *, LoopThreadData> m_threadDataMap = {};
};

Loop::Loop()
    : m_loopData(new LoopData)
{}

Loop::Loop(int count, const ValueGetter &valueGetter)
    : m_loopData(new LoopData{count, valueGetter})
{}

Loop::Loop(const Condition &condition)
    : m_loopData(new LoopData{{}, {}, condition})
{}

int Loop::iteration() const
{
    return m_loopData->threadData().iteration();
}

const void *Loop::valuePtr() const
{
    return m_loopData->m_valueGetter(iteration());
}

using StoragePtr = void *;

class StorageThreadData
{
    Q_DISABLE_COPY_MOVE(StorageThreadData)

public:
    StorageThreadData() = default;
    void pushStorage(StoragePtr storagePtr)
    {
        m_activeStorageStack.push_back(storagePtr);
    }
    void popStorage()
    {
        QT_ASSERT(m_activeStorageStack.size(), return);
        m_activeStorageStack.pop_back();
    }
    StoragePtr activeStorage() const
    {
        QT_ASSERT(m_activeStorageStack.size(), qWarning(
            "The referenced storage is not reachable in the running tree. "
            "A nullptr will be returned which might lead to a crash in the calling code. "
            "It is possible that no storage was added to the tree, "
            "or the storage is not reachable from where it is referenced."); return nullptr);
        return m_activeStorageStack.last();
    }

private:
    QList<StoragePtr> m_activeStorageStack;
};

class StorageData
{
public:
    StorageThreadData &threadData() {
        QMutexLocker lock(&m_threadDataMutex);
        return m_threadDataMap.try_emplace(QThread::currentThread()).first->second;
    }

    const StorageBase::StorageConstructor m_constructor = {};
    const StorageBase::StorageDestructor m_destructor = {};
    QMutex m_threadDataMutex = {};
    // Use std::map on purpose, so that it doesn't invalidate references on modifications.
    // Don't optimize it by using std::unordered_map.
    std::map<QThread *, StorageThreadData> m_threadDataMap = {};
};

StorageBase::StorageBase(const StorageConstructor &ctor, const StorageDestructor &dtor)
    : m_storageData(new StorageData{ctor, dtor})
{}

void *StorageBase::activeStorageVoid() const
{
    return m_storageData->threadData().activeStorage();
}

void GroupItem::addChildren(const QList<GroupItem> &children)
{
    QT_ASSERT(m_type == Type::Group || m_type == Type::List,
              qWarning("Only Group or List may have children, skipping..."); return);
    if (m_type == Type::List) {
        m_children.append(children);
        return;
    }
    for (const GroupItem &child : children) {
        switch (child.m_type) {
        case Type::List:
            addChildren(child.m_children);
            break;
        case Type::Group:
            m_children.append(child);
            break;
        case Type::GroupData:
            if (child.m_groupData.m_groupHandler.m_setupHandler) {
                QT_ASSERT(!m_groupData.m_groupHandler.m_setupHandler,
                          qWarning("Group setup handler redefinition, overriding..."));
                m_groupData.m_groupHandler.m_setupHandler
                    = child.m_groupData.m_groupHandler.m_setupHandler;
            }
            if (child.m_groupData.m_groupHandler.m_doneHandler) {
                QT_ASSERT(!m_groupData.m_groupHandler.m_doneHandler,
                          qWarning("Group done handler redefinition, overriding..."));
                m_groupData.m_groupHandler.m_doneHandler
                    = child.m_groupData.m_groupHandler.m_doneHandler;
                m_groupData.m_groupHandler.m_callDoneIf
                    = child.m_groupData.m_groupHandler.m_callDoneIf;
            }
            if (child.m_groupData.m_parallelLimit) {
                QT_ASSERT(!m_groupData.m_parallelLimit,
                          qWarning("Group execution mode redefinition, overriding..."));
                m_groupData.m_parallelLimit = child.m_groupData.m_parallelLimit;
            }
            if (child.m_groupData.m_workflowPolicy) {
                QT_ASSERT(!m_groupData.m_workflowPolicy,
                          qWarning("Group workflow policy redefinition, overriding..."));
                m_groupData.m_workflowPolicy = child.m_groupData.m_workflowPolicy;
            }
            if (child.m_groupData.m_loop) {
                QT_ASSERT(!m_groupData.m_loop,
                          qWarning("Group loop redefinition, overriding..."));
                m_groupData.m_loop = child.m_groupData.m_loop;
            }
            break;
        case Type::TaskHandler:
            QT_ASSERT(child.m_taskHandler.m_createHandler,
                      qWarning("Task create handler can't be null, skipping..."); return);
            m_children.append(child);
            break;
        case Type::Storage:
            // Check for duplicates, as can't have the same storage twice on the same level.
            for (const StorageBase &storage : child.m_storageList) {
                if (m_storageList.contains(storage)) {
                    QT_ASSERT(false, qWarning("Can't add the same storage into one Group twice, "
                                              "skipping..."));
                    continue;
                }
                m_storageList.append(storage);
            }
            break;
        }
    }
}

/*!
    \class Tasking::ExecutableItem
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief Base class for executable task items.
    \reentrant

    \c ExecutableItem provides an additional interface for items containing executable tasks.
    Use withTimeout() to attach a timeout to a task.
    Use withLog() to include debugging information about the task startup and the execution result.
*/

/*!
    Attaches \c TimeoutTask to a copy of \c this ExecutableItem, elapsing after \a timeout
    in milliseconds, with an optionally provided timeout \a handler, and returns the coupled item.

    When the ExecutableItem finishes before \a timeout passes, the returned item finishes
    immediately with the task's result. Otherwise, \a handler is invoked (if provided),
    the task is canceled, and the returned item finishes with an error.
*/
ExecutableItem ExecutableItem::withTimeout(milliseconds timeout,
                                           const std::function<void()> &handler) const
{
    const auto onSetup = [timeout](milliseconds &timeoutData) { timeoutData = timeout; };
    return Group {
        parallel,
        stopOnSuccessOrError,
        Group {
            finishAllAndError,
            handler ? TimeoutTask(onSetup, [handler] { handler(); }, CallDoneIf::Success)
                    : TimeoutTask(onSetup)
        },
        *this
    };
}

static QString currentTime() { return QTime::currentTime().toString(Qt::ISODateWithMs); }

/*!
    Attaches a custom debug printout to a copy of \c this ExecutableItem,
    issued on task startup and after the task is finished, and returns the coupled item.

    The debug printout includes a timestamp of the event (start or finish)
    and \a logName to identify the specific task in the debug log.

    The finish printout contains the additional information whether the execution was
    synchronous or asynchronous, its result (the value described by the DoneWith enum),
    and the total execution time in milliseconds.
*/
ExecutableItem ExecutableItem::withLog(const QString &logName) const
{
    const auto header = [logName] {
        return QString("TASK TREE LOG [%1] \"%2\"").arg(currentTime(), logName);
    };
    struct LogStorage
    {
        time_point<system_clock, nanoseconds> start;
        int asyncCount = 0;
    };
    const Storage<LogStorage> storage;
    return Group {
        storage,
        onGroupSetup([storage, header] {
            storage->start = system_clock::now();
            storage->asyncCount = activeTaskTree()->asyncCount();
            qDebug().noquote() << header() << "started.";
        }),
        *this,
        onGroupDone([storage, header](DoneWith result) {
            const auto elapsed = duration_cast<milliseconds>(system_clock::now() - storage->start);
            const int asyncCountDiff = activeTaskTree()->asyncCount() - storage->asyncCount;
            QT_CHECK(asyncCountDiff >= 0);
            const QMetaEnum doneWithEnum = QMetaEnum::fromType<DoneWith>();
            const QString syncType = asyncCountDiff ? QString("asynchronously")
                                                    : QString("synchronously");
            qDebug().noquote().nospace() << header() << " finished " << syncType << " with "
                << doneWithEnum.valueToKey(int(result)) << " within " << elapsed.count() << "ms.";
        })
    };
}

ExecutableItem ExecutableItem::withCancelImpl(
    const std::function<void(QObject *, const std::function<void()> &)> &connectWrapper) const
{
    const auto onSetup = [connectWrapper](Barrier &barrier) {
        connectWrapper(&barrier, [barrierPtr = &barrier] { barrierPtr->advance(); });
    };
    return Group {
        parallel,
        stopOnSuccessOrError,
        Group {
            finishAllAndError,
            BarrierTask(onSetup)
        },
        *this
    };
}

class TaskTreePrivate;
class TaskNode;
class RuntimeContainer;
class RuntimeIteration;
class RuntimeTask;

class ExecutionContextActivator
{
public:
    ExecutionContextActivator(RuntimeIteration *iteration) {
        activateTaskTree(iteration);
        activateContext(iteration);
    }
    ExecutionContextActivator(RuntimeContainer *container) {
        activateTaskTree(container);
        activateContext(container);
    }
    ~ExecutionContextActivator() {
        for (int i = m_activeStorages.size() - 1; i >= 0; --i) // iterate in reverse order
            m_activeStorages[i].m_storageData->threadData().popStorage();
        for (int i = m_activeLoops.size() - 1; i >= 0; --i) // iterate in reverse order
            m_activeLoops[i].m_loopData->threadData().popIteration();
        QT_ASSERT(s_activeTaskTrees.size(), return);
        s_activeTaskTrees.pop_back();
    }

private:
    void activateTaskTree(RuntimeIteration *iteration);
    void activateTaskTree(RuntimeContainer *container);
    void activateContext(RuntimeIteration *iteration);
    void activateContext(RuntimeContainer *container);
    QList<Loop> m_activeLoops;
    QList<StorageBase> m_activeStorages;
};

class ContainerNode
{
    Q_DISABLE_COPY(ContainerNode)

public:
    ContainerNode(ContainerNode &&other) = default;
    ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task);

    TaskTreePrivate *const m_taskTreePrivate = nullptr;

    const GroupItem::GroupHandler m_groupHandler;
    const int m_parallelLimit = 1;
    const WorkflowPolicy m_workflowPolicy = WorkflowPolicy::StopOnError;
    const std::optional<Loop> m_loop;
    const QList<StorageBase> m_storageList;
    std::vector<TaskNode> m_children;
    const int m_taskCount = 0;
};

class TaskNode
{
    Q_DISABLE_COPY(TaskNode)

public:
    TaskNode(TaskNode &&other) = default;
    TaskNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task)
        : m_taskHandler(task.m_taskHandler)
        , m_container(taskTreePrivate, task)
    {}

    bool isTask() const { return bool(m_taskHandler.m_createHandler); }
    int taskCount() const { return isTask() ? 1 : m_container.m_taskCount; }

    const GroupItem::TaskHandler m_taskHandler;
    ContainerNode m_container;
};

class TaskTreePrivate
{
    Q_DISABLE_COPY_MOVE(TaskTreePrivate)

public:
    TaskTreePrivate(TaskTree *taskTree)
        : q(taskTree) {}

    void start();
    void stop();
    void bumpAsyncCount();
    void advanceProgress(int byValue);
    void emitDone(DoneWith result);
    void callSetupHandler(StorageBase storage, StoragePtr storagePtr) {
        callStorageHandler(storage, storagePtr, &StorageHandler::m_setupHandler);
    }
    void callDoneHandler(StorageBase storage, StoragePtr storagePtr) {
        callStorageHandler(storage, storagePtr, &StorageHandler::m_doneHandler);
    }
    struct StorageHandler {
        StorageBase::StorageHandler m_setupHandler = {};
        StorageBase::StorageHandler m_doneHandler = {};
    };
    typedef StorageBase::StorageHandler StorageHandler::*HandlerPtr; // ptr to class member
    void callStorageHandler(StorageBase storage, StoragePtr storagePtr, HandlerPtr ptr)
    {
        const auto it = m_storageHandlers.constFind(storage);
        if (it == m_storageHandlers.constEnd())
            return;
        const StorageHandler storageHandler = *it;
        if (storageHandler.*ptr) {
            GuardLocker locker(m_guard);
            (storageHandler.*ptr)(storagePtr);
        }
    }

    // Node related methods

    // If returned value != Continue, childDone() needs to be called in parent container (in caller)
    // in order to unwind properly.
    SetupResult start(RuntimeTask *node);
    void stop(RuntimeTask *node);
    bool invokeDoneHandler(RuntimeTask *node, DoneWith doneWith);

    // Container related methods

    SetupResult start(RuntimeContainer *container);
    SetupResult continueStart(RuntimeContainer *container, SetupResult startAction);
    SetupResult startChildren(RuntimeContainer *container);
    SetupResult childDone(RuntimeIteration *iteration, bool success);
    void stop(RuntimeContainer *container);
    bool invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith);
    bool invokeLoopHandler(RuntimeContainer *container);

    template <typename Container, typename Handler, typename ...Args,
              typename ReturnType = std::invoke_result_t<Handler, Args...>>
    ReturnType invokeHandler(Container *container, Handler &&handler, Args &&...args)
    {
        ExecutionContextActivator activator(container);
        GuardLocker locker(m_guard);
        return std::invoke(std::forward<Handler>(handler), std::forward<Args>(args)...);
    }

    static int effectiveLoopCount(const std::optional<Loop> &loop)
    {
        return loop && loop->m_loopData->m_loopCount ? *loop->m_loopData->m_loopCount : 1;
    }

    TaskTree *q = nullptr;
    Guard m_guard;
    int m_progressValue = 0;
    int m_asyncCount = 0;
    QSet<StorageBase> m_storages;
    QHash<StorageBase, StorageHandler> m_storageHandlers;
    std::optional<TaskNode> m_root;
    std::unique_ptr<RuntimeTask> m_runtimeRoot; // Keep me last in order to destruct first
};

static bool initialSuccessBit(WorkflowPolicy workflowPolicy)
{
    switch (workflowPolicy) {
    case WorkflowPolicy::StopOnError:
    case WorkflowPolicy::ContinueOnError:
    case WorkflowPolicy::FinishAllAndSuccess:
        return true;
    case WorkflowPolicy::StopOnSuccess:
    case WorkflowPolicy::ContinueOnSuccess:
    case WorkflowPolicy::StopOnSuccessOrError:
    case WorkflowPolicy::FinishAllAndError:
        return false;
    }
    QT_CHECK(false);
    return false;
}

static bool isProgressive(RuntimeContainer *container);

class RuntimeIteration
{
    Q_DISABLE_COPY(RuntimeIteration)

public:
    RuntimeIteration(int index, RuntimeContainer *container);
    std::optional<Loop> loop() const;
    void deleteChild(RuntimeTask *node);

    const int m_iterationIndex = 0;
    const bool m_isProgressive = true;
    RuntimeContainer *m_container = nullptr;
    int m_doneCount = 0;
    std::vector<std::unique_ptr<RuntimeTask>> m_children = {}; // Owning.
};

class RuntimeContainer
{
    Q_DISABLE_COPY(RuntimeContainer)

public:
    RuntimeContainer(const ContainerNode &taskContainer, RuntimeTask *parentTask)
        : m_containerNode(taskContainer)
        , m_parentTask(parentTask)
        , m_storages(createStorages(taskContainer))
        , m_successBit(initialSuccessBit(taskContainer.m_workflowPolicy))
        , m_shouldIterate(taskContainer.m_loop)
    {}

    ~RuntimeContainer()
    {
        for (int i = m_containerNode.m_storageList.size() - 1; i >= 0; --i) { // iterate in reverse order
            const StorageBase storage = m_containerNode.m_storageList[i];
            StoragePtr storagePtr = m_storages.value(i);
            if (m_callStorageDoneHandlersOnDestruction)
                m_containerNode.m_taskTreePrivate->callDoneHandler(storage, storagePtr);
            storage.m_storageData->m_destructor(storagePtr);
        }
    }

    static QList<StoragePtr> createStorages(const ContainerNode &container);
    bool isStarting() const { return m_startGuard.isLocked(); }
    RuntimeIteration *parentIteration() const;
    bool updateSuccessBit(bool success);
    void deleteFinishedIterations();
    int progressiveLoopCount() const
    {
        return m_containerNode.m_taskTreePrivate->effectiveLoopCount(m_containerNode.m_loop);
    }

    const ContainerNode &m_containerNode; // Not owning.
    RuntimeTask *m_parentTask = nullptr; // Not owning.
    const QList<StoragePtr> m_storages; // Owning.

    bool m_successBit = true;
    bool m_callStorageDoneHandlersOnDestruction = false;
    Guard m_startGuard;

    int m_iterationCount = 0;
    int m_nextToStart = 0;
    int m_runningChildren = 0;
    bool m_shouldIterate = true;
    std::vector<std::unique_ptr<RuntimeIteration>> m_iterations; // Owning.
};

class RuntimeTask
{
public:
    ~RuntimeTask()
    {
        if (m_task) {
            // Ensures the running task's d'tor doesn't emit done() signal. QTCREATORBUG-30204.
            QObject::disconnect(m_task.get(), &TaskInterface::done,
                                m_taskNode.m_container.m_taskTreePrivate->q, nullptr);
        }
    }

    const TaskNode &m_taskNode; // Not owning.
    RuntimeIteration *m_parentIteration = nullptr; // Not owning.
    std::optional<RuntimeContainer> m_container = {}; // Owning.
    std::unique_ptr<TaskInterface> m_task = {}; // Owning.
};

static bool isProgressive(RuntimeContainer *container)
{
    RuntimeIteration *iteration = container->m_parentTask->m_parentIteration;
    return iteration ? iteration->m_isProgressive : true;
}

void ExecutionContextActivator::activateTaskTree(RuntimeIteration *iteration)
{
    activateTaskTree(iteration->m_container);
}

void ExecutionContextActivator::activateTaskTree(RuntimeContainer *container)
{
    s_activeTaskTrees.push_back(container->m_containerNode.m_taskTreePrivate->q);
}

void ExecutionContextActivator::activateContext(RuntimeIteration *iteration)
{
    std::optional<Loop> loop = iteration->loop();
    if (loop) {
        loop->m_loopData->threadData().pushIteration(iteration->m_iterationIndex);
        m_activeLoops.append(*loop);
    }
    activateContext(iteration->m_container);
}

void ExecutionContextActivator::activateContext(RuntimeContainer *container)
{
    const ContainerNode &containerNode = container->m_containerNode;
    for (int i = 0; i < containerNode.m_storageList.size(); ++i) {
        const StorageBase &storage = containerNode.m_storageList[i];
        if (m_activeStorages.contains(storage))
            continue; // Storage shadowing: The storage is already active, skipping it...
        m_activeStorages.append(storage);
        storage.m_storageData->threadData().pushStorage(container->m_storages.value(i));
    }
    // Go to the parent after activating this storages so that storage shadowing works
    // in the direction from child to parent root.
    if (container->parentIteration())
        activateContext(container->parentIteration());
}

void TaskTreePrivate::start()
{
    QT_ASSERT(m_root, return);
    QT_ASSERT(!m_runtimeRoot, return);
    m_asyncCount = 0;
    m_progressValue = 0;
    {
        GuardLocker locker(m_guard);
        emit q->started();
        emit q->asyncCountChanged(m_asyncCount);
        emit q->progressValueChanged(m_progressValue);
    }
    // TODO: check storage handlers for not existing storages in tree
    for (auto it = m_storageHandlers.cbegin(); it != m_storageHandlers.cend(); ++it) {
        QT_ASSERT(m_storages.contains(it.key()), qWarning("The registered storage doesn't "
                  "exist in task tree. Its handlers will never be called."));
    }
    m_runtimeRoot.reset(new RuntimeTask{*m_root});
    start(m_runtimeRoot.get());
    bumpAsyncCount();
}

void TaskTreePrivate::stop()
{
    QT_ASSERT(m_root, return);
    if (!m_runtimeRoot)
        return;
    stop(m_runtimeRoot.get());
    m_runtimeRoot.reset();
    emitDone(DoneWith::Cancel);
}

void TaskTreePrivate::bumpAsyncCount()
{
    if (!m_runtimeRoot)
        return;
    ++m_asyncCount;
    GuardLocker locker(m_guard);
    emit q->asyncCountChanged(m_asyncCount);
}

void TaskTreePrivate::advanceProgress(int byValue)
{
    if (byValue == 0)
        return;
    QT_CHECK(byValue > 0);
    QT_CHECK(m_progressValue + byValue <= m_root->taskCount());
    m_progressValue += byValue;
    GuardLocker locker(m_guard);
    emit q->progressValueChanged(m_progressValue);
}

void TaskTreePrivate::emitDone(DoneWith result)
{
    QT_CHECK(m_progressValue == m_root->taskCount());
    GuardLocker locker(m_guard);
    emit q->done(result);
}

RuntimeIteration::RuntimeIteration(int index, RuntimeContainer *container)
    : m_iterationIndex(index)
    , m_isProgressive(index < container->progressiveLoopCount() && isProgressive(container))
    , m_container(container)
{}

std::optional<Loop> RuntimeIteration::loop() const
{
    return m_container->m_containerNode.m_loop;
}

void RuntimeIteration::deleteChild(RuntimeTask *task)
{
    const auto it = std::find_if(m_children.cbegin(), m_children.cend(), [task](const auto &ptr) {
        return ptr.get() == task;
    });
    if (it != m_children.cend())
        m_children.erase(it);
}

static std::vector<TaskNode> createChildren(TaskTreePrivate *taskTreePrivate,
                                            const QList<GroupItem> &children)
{
    std::vector<TaskNode> result;
    result.reserve(children.size());
    for (const GroupItem &child : children)
        result.emplace_back(taskTreePrivate, child);
    return result;
}

ContainerNode::ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task)
    : m_taskTreePrivate(taskTreePrivate)
    , m_groupHandler(task.m_groupData.m_groupHandler)
    , m_parallelLimit(task.m_groupData.m_parallelLimit.value_or(1))
    , m_workflowPolicy(task.m_groupData.m_workflowPolicy.value_or(WorkflowPolicy::StopOnError))
    , m_loop(task.m_groupData.m_loop)
    , m_storageList(task.m_storageList)
    , m_children(createChildren(taskTreePrivate, task.m_children))
    , m_taskCount(std::accumulate(m_children.cbegin(), m_children.cend(), 0,
                                  [](int r, const TaskNode &n) { return r + n.taskCount(); })
                  * taskTreePrivate->effectiveLoopCount(m_loop))
{
    for (const StorageBase &storage : m_storageList)
        m_taskTreePrivate->m_storages << storage;
}

QList<StoragePtr> RuntimeContainer::createStorages(const ContainerNode &container)
{
    QList<StoragePtr> storages;
    for (const StorageBase &storage : container.m_storageList) {
        StoragePtr storagePtr = storage.m_storageData->m_constructor();
        storages.append(storagePtr);
        container.m_taskTreePrivate->callSetupHandler(storage, storagePtr);
    }
    return storages;
}

RuntimeIteration *RuntimeContainer::parentIteration() const
{
    return m_parentTask->m_parentIteration;
}

bool RuntimeContainer::updateSuccessBit(bool success)
{
    if (m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndSuccess
        || m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndError
        || m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError) {
        if (m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError)
            m_successBit = success;
        return m_successBit;
    }

    const bool donePolicy = m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccess
                         || m_containerNode.m_workflowPolicy == WorkflowPolicy::ContinueOnSuccess;
    m_successBit = donePolicy ? (m_successBit || success) : (m_successBit && success);
    return m_successBit;
}

void RuntimeContainer::deleteFinishedIterations()
{
    for (auto it = m_iterations.cbegin(); it != m_iterations.cend(); ) {
        if (it->get()->m_doneCount == int(m_containerNode.m_children.size()))
            it = m_iterations.erase(it);
        else
            ++it;
    }
}

SetupResult TaskTreePrivate::start(RuntimeContainer *container)
{
    const ContainerNode &containerNode = container->m_containerNode;
    SetupResult startAction = SetupResult::Continue;
    if (containerNode.m_groupHandler.m_setupHandler) {
        startAction = invokeHandler(container, containerNode.m_groupHandler.m_setupHandler);
        if (startAction != SetupResult::Continue) {
            if (isProgressive(container))
                advanceProgress(containerNode.m_taskCount);
            // Non-Continue SetupResult takes precedence over the workflow policy.
            container->m_successBit = startAction == SetupResult::StopWithSuccess;
        }
    }
    if (startAction == SetupResult::Continue
        && (containerNode.m_children.empty()
            || (containerNode.m_loop && !invokeLoopHandler(container)))) {
        if (isProgressive(container))
            advanceProgress(containerNode.m_taskCount);
        startAction = toSetupResult(container->m_successBit);
    }
    return continueStart(container, startAction);
}

SetupResult TaskTreePrivate::continueStart(RuntimeContainer *container, SetupResult startAction)
{
    const SetupResult groupAction = startAction == SetupResult::Continue ? startChildren(container)
                                                                         : startAction;
    if (groupAction != SetupResult::Continue) {
        const bool bit = container->updateSuccessBit(groupAction == SetupResult::StopWithSuccess);
        RuntimeIteration *parentIteration = container->parentIteration();
        RuntimeTask *parentTask = container->m_parentTask;
        QT_CHECK(parentTask);
        const bool result = invokeDoneHandler(container, bit ? DoneWith::Success : DoneWith::Error);
        if (parentIteration) {
            parentIteration->deleteChild(parentTask);
            if (!parentIteration->m_container->isStarting())
                childDone(parentIteration, result);
        } else {
            QT_CHECK(m_runtimeRoot.get() == parentTask);
            m_runtimeRoot.reset();
            emitDone(result ? DoneWith::Success : DoneWith::Error);
        }
    }
    return groupAction;
}

SetupResult TaskTreePrivate::startChildren(RuntimeContainer *container)
{
    const ContainerNode &containerNode = container->m_containerNode;
    const int childCount = int(containerNode.m_children.size());

    if (container->m_iterationCount == 0) {
        container->m_iterations.emplace_back(
            std::make_unique<RuntimeIteration>(container->m_iterationCount, container));
        ++container->m_iterationCount;
    } else if (containerNode.m_parallelLimit == 0) {
        container->deleteFinishedIterations();
        if (container->m_iterations.empty())
            return toSetupResult(container->m_successBit);
        return SetupResult::Continue;
    }

    GuardLocker locker(container->m_startGuard);

    while (containerNode.m_parallelLimit == 0
           || container->m_runningChildren < containerNode.m_parallelLimit) {
        container->deleteFinishedIterations();
        if (container->m_nextToStart == childCount) {
            if (container->m_shouldIterate && invokeLoopHandler(container)) {
                container->m_nextToStart = 0;
                container->m_iterations.emplace_back(
                    std::make_unique<RuntimeIteration>(container->m_iterationCount, container));
                ++container->m_iterationCount;
            } else {
                if (container->m_iterations.empty())
                    return toSetupResult(container->m_successBit);
                return SetupResult::Continue;
            }
        }
        RuntimeIteration *iteration = container->m_iterations.back().get();
        RuntimeTask *newTask = new RuntimeTask{containerNode.m_children.at(container->m_nextToStart),
                                               iteration};
        iteration->m_children.emplace_back(newTask);
        ++container->m_runningChildren;
        ++container->m_nextToStart;

        const SetupResult startAction = start(newTask);
        if (startAction == SetupResult::Continue)
            continue;

        const SetupResult finalizeAction = childDone(iteration,
                                                     startAction == SetupResult::StopWithSuccess);
        if (finalizeAction != SetupResult::Continue)
            return finalizeAction;
    }
    return SetupResult::Continue;
}

SetupResult TaskTreePrivate::childDone(RuntimeIteration *iteration, bool success)
{
    RuntimeContainer *container = iteration->m_container;
    const WorkflowPolicy &workflowPolicy = container->m_containerNode.m_workflowPolicy;
    const bool shouldStop = workflowPolicy == WorkflowPolicy::StopOnSuccessOrError
                        || (workflowPolicy == WorkflowPolicy::StopOnSuccess && success)
                        || (workflowPolicy == WorkflowPolicy::StopOnError && !success);
    ++iteration->m_doneCount;
    --container->m_runningChildren;
    if (shouldStop)
        stop(container);

    const bool updatedSuccess = container->updateSuccessBit(success);
    const SetupResult startAction = shouldStop ? toSetupResult(updatedSuccess)
                                               : SetupResult::Continue;

    if (container->isStarting())
        return startAction;
    return continueStart(container, startAction);
}

void TaskTreePrivate::stop(RuntimeContainer *container)
{
    const ContainerNode &containerNode = container->m_containerNode;
    for (auto &iteration : container->m_iterations) {
        for (auto &child : iteration->m_children) {
            ++iteration->m_doneCount;
            stop(child.get());
        }

        if (iteration->m_isProgressive) {
            int skippedTaskCount = 0;
            for (int i = iteration->m_doneCount; i < int(containerNode.m_children.size()); ++i)
                skippedTaskCount += containerNode.m_children.at(i).taskCount();
            advanceProgress(skippedTaskCount);
        }
    }
    const int skippedIterations = container->progressiveLoopCount() - container->m_iterationCount;
    if (skippedIterations > 0) {
        advanceProgress(container->m_containerNode.m_taskCount / container->progressiveLoopCount()
                        * skippedIterations);
    }
}

static bool shouldCall(CallDoneIf callDoneIf, DoneWith result)
{
    if (result == DoneWith::Success)
        return callDoneIf != CallDoneIf::Error;
    return callDoneIf != CallDoneIf::Success;
}

bool TaskTreePrivate::invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith)
{
    DoneResult result = toDoneResult(doneWith);
    const GroupItem::GroupHandler &groupHandler = container->m_containerNode.m_groupHandler;
    if (groupHandler.m_doneHandler && shouldCall(groupHandler.m_callDoneIf, doneWith))
        result = invokeHandler(container, groupHandler.m_doneHandler, doneWith);
    container->m_callStorageDoneHandlersOnDestruction = true;
    // TODO: is it needed?
    container->m_parentTask->m_container.reset();
    return result == DoneResult::Success;
}

bool TaskTreePrivate::invokeLoopHandler(RuntimeContainer *container)
{
    if (container->m_shouldIterate) {
        const LoopData *loopData = container->m_containerNode.m_loop->m_loopData.get();
        if (loopData->m_loopCount) {
            container->m_shouldIterate = container->m_iterationCount < loopData->m_loopCount;
        } else if (loopData->m_condition) {
            container->m_shouldIterate = invokeHandler(container, loopData->m_condition,
                                                       container->m_iterationCount);
        }
    }
    return container->m_shouldIterate;
}

SetupResult TaskTreePrivate::start(RuntimeTask *node)
{
    if (!node->m_taskNode.isTask()) {
        node->m_container.emplace(node->m_taskNode.m_container, node);
        return start(&*node->m_container);
    }

    const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler;
    node->m_task.reset(handler.m_createHandler());
    const SetupResult startAction = handler.m_setupHandler
        ? invokeHandler(node->m_parentIteration, handler.m_setupHandler, *node->m_task.get())
        : SetupResult::Continue;
    if (startAction != SetupResult::Continue) {
        if (node->m_parentIteration->m_isProgressive)
            advanceProgress(1);
        node->m_parentIteration->deleteChild(node);
        return startAction;
    }
    const std::shared_ptr<SetupResult> unwindAction
        = std::make_shared<SetupResult>(SetupResult::Continue);
    QObject::connect(node->m_task.get(), &TaskInterface::done,
                     q, [this, node, unwindAction](DoneResult doneResult) {
        const bool result = invokeDoneHandler(node, toDoneWith(doneResult));
        QObject::disconnect(node->m_task.get(), &TaskInterface::done, q, nullptr);
        node->m_task.release()->deleteLater();
        RuntimeIteration *parentIteration = node->m_parentIteration;
        parentIteration->deleteChild(node);
        if (parentIteration->m_container->isStarting()) {
            *unwindAction = toSetupResult(result);
        } else {
            childDone(parentIteration, result);
            bumpAsyncCount();
        }
    });

    node->m_task->start();
    return *unwindAction;
}

void TaskTreePrivate::stop(RuntimeTask *node)
{
    if (!node->m_task) {
        if (!node->m_container)
            return;
        stop(&*node->m_container);
        node->m_container->updateSuccessBit(false);
        invokeDoneHandler(&*node->m_container, DoneWith::Cancel);
        return;
    }

    invokeDoneHandler(node, DoneWith::Cancel);
    node->m_task.reset();
}

bool TaskTreePrivate::invokeDoneHandler(RuntimeTask *node, DoneWith doneWith)
{
    DoneResult result = toDoneResult(doneWith);
    const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler;
    if (handler.m_doneHandler && shouldCall(handler.m_callDoneIf, doneWith)) {
        result = invokeHandler(node->m_parentIteration,
                               handler.m_doneHandler, *node->m_task.get(), doneWith);
    }
    if (node->m_parentIteration->m_isProgressive)
        advanceProgress(1);
    return result == DoneResult::Success;
}

/*!
    \class Tasking::TaskTree
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief The TaskTree class runs an async task tree structure defined in a declarative way.
    \reentrant

    Use the Tasking namespace to build extensible, declarative task tree
    structures that contain possibly asynchronous tasks, such as QProcess,
    NetworkQuery, or ConcurrentCall<ReturnType>. TaskTree structures enable you
    to create a sophisticated mixture of a parallel or sequential flow of tasks
    in the form of a tree and to run it any time later.

    \section1 Root Element and Tasks

    The TaskTree has a mandatory Group root element, which may contain
    any number of tasks of various types, such as QProcessTask, NetworkQueryTask,
    or ConcurrentCallTask<ReturnType>:

    \code
        using namespace Tasking;

        const Group root {
            QProcessTask(...),
            NetworkQueryTask(...),
            ConcurrentCallTask<int>(...)
        };

        TaskTree *taskTree = new TaskTree(root);
        connect(taskTree, &TaskTree::done, ...);  // finish handler
        taskTree->start();
    \endcode

    The task tree above has a top level element of the Group type that contains
    tasks of the QProcessTask, NetworkQueryTask, and ConcurrentCallTask<int> type.
    After taskTree->start() is called, the tasks are run in a chain, starting
    with QProcessTask. When the QProcessTask finishes successfully, the NetworkQueryTask
    task is started. Finally, when the network task finishes successfully, the
    ConcurrentCallTask<int> task is started.

    When the last running task finishes with success, the task tree is considered
    to have run successfully and the done() signal is emitted with DoneWith::Success.
    When a task finishes with an error, the execution of the task tree is stopped
    and the remaining tasks are skipped. The task tree finishes with an error and
    sends the TaskTree::done() signal with DoneWith::Error.

    \section1 Groups

    The parent of the Group sees it as a single task. Like other tasks,
    the group can be started and it can finish with success or an error.
    The Group elements can be nested to create a tree structure:

    \code
        const Group root {
            Group {
                parallel,
                QProcessTask(...),
                ConcurrentCallTask<int>(...)
            },
            NetworkQueryTask(...)
        };
    \endcode

    The example above differs from the first example in that the root element has
    a subgroup that contains the QProcessTask and ConcurrentCallTask<int>. The subgroup is a
    sibling element of the NetworkQueryTask in the root. The subgroup contains an
    additional \e parallel element that instructs its Group to execute its tasks
    in parallel.

    So, when the tree above is started, the QProcessTask and ConcurrentCallTask<int> start
    immediately and run in parallel. Since the root group doesn't contain a
    \e parallel element, its direct child tasks are run in sequence. Thus, the
    NetworkQueryTask starts when the whole subgroup finishes. The group is
    considered as finished when all its tasks have finished. The order in which
    the tasks finish is not relevant.

    So, depending on which task lasts longer (QProcessTask or ConcurrentCallTask<int>), the
    following scenarios can take place:

    \table
    \header
        \li Scenario 1
        \li Scenario 2
    \row
        \li Root Group starts
        \li Root Group starts
    \row
        \li Sub Group starts
        \li Sub Group starts
    \row
        \li QProcessTask starts
        \li QProcessTask starts
    \row
        \li ConcurrentCallTask<int> starts
        \li ConcurrentCallTask<int> starts
    \row
        \li ...
        \li ...
    \row
        \li \b {QProcessTask finishes}
        \li \b {ConcurrentCallTask<int> finishes}
    \row
        \li ...
        \li ...
    \row
        \li \b {ConcurrentCallTask<int> finishes}
        \li \b {QProcessTask finishes}
    \row
        \li Sub Group finishes
        \li Sub Group finishes
    \row
        \li NetworkQueryTask starts
        \li NetworkQueryTask starts
    \row
        \li ...
        \li ...
    \row
        \li NetworkQueryTask finishes
        \li NetworkQueryTask finishes
    \row
        \li Root Group finishes
        \li Root Group finishes
    \endtable

    The differences between the scenarios are marked with bold. Three dots mean
    that an unspecified amount of time passes between previous and next events
    (a task or tasks continue to run). No dots between events
    means that they occur synchronously.

    The presented scenarios assume that all tasks run successfully. If a task
    fails during execution, the task tree finishes with an error. In particular,
    when QProcessTask finishes with an error while ConcurrentCallTask<int> is still being executed,
    the ConcurrentCallTask<int> is automatically canceled, the subgroup finishes with an error,
    the NetworkQueryTask is skipped, and the tree finishes with an error.

    \section1 Task Types

    Each task type is associated with its corresponding task class that executes
    the task. For example, a QProcessTask inside a task tree is associated with
    the QProcess class that executes the process. The associated objects are
    automatically created, started, and destructed exclusively by the task tree
    at the appropriate time.

    If a root group consists of five sequential QProcessTask tasks, and the task tree
    executes the group, it creates an instance of QProcess for the first
    QProcessTask and starts it. If the QProcess instance finishes successfully,
    the task tree destructs it and creates a new QProcess instance for the
    second QProcessTask, and so on. If the first task finishes with an error, the task
    tree stops creating QProcess instances, and the root group finishes with an
    error.

    The following table shows examples of task types and their corresponding task
    classes:

    \table
    \header
        \li Task Type (Tasking Namespace)
        \li Associated Task Class
        \li Brief Description
    \row
        \li QProcessTask
        \li QProcess
        \li Starts process.
    \row
        \li ConcurrentCallTask<ReturnType>
        \li Tasking::ConcurrentCall<ReturnType>
        \li Starts asynchronous task, runs in separate thread.
    \row
        \li TaskTreeTask
        \li Tasking::TaskTree
        \li Starts nested task tree.
    \row
        \li NetworkQueryTask
        \li NetworkQuery
        \li Starts network download.
    \endtable

    \section1 Task Handlers

    Use Task handlers to set up a task for execution and to enable reading
    the output data from the task when it finishes with success or an error.

    \section2 Task's Start Handler

    When a corresponding task class object is created and before it's started,
    the task tree invokes an optionally user-provided setup handler. The setup
    handler should always take a \e reference to the associated task class object:

    \code
        const auto onSetup = [](QProcess &process) {
            process.setCommand({"sleep", {"3"}});
        };
        const Group root {
            QProcessTask(onSetup)
        };
    \endcode

    You can modify the passed QProcess in the setup handler, so that the task
    tree can start the process according to your configuration.
    You should not call \c {process.start();} in the setup handler,
    as the task tree calls it when needed. The setup handler is optional. When used,
    it must be the first argument of the task's constructor.

    Optionally, the setup handler may return a SetupResult. The returned
    SetupResult influences the further start behavior of a given task. The
    possible values are:

    \table
    \header
        \li SetupResult Value
        \li Brief Description
    \row
        \li Continue
        \li The task will be started normally. This is the default behavior when the
            setup handler doesn't return SetupResult (that is, its return type is
            void).
    \row
        \li StopWithSuccess
        \li The task won't be started and it will report success to its parent.
    \row
        \li StopWithError
        \li The task won't be started and it will report an error to its parent.
    \endtable

    This is useful for running a task only when a condition is met and the data
    needed to evaluate this condition is not known until previously started tasks
    finish. In this way, the setup handler dynamically decides whether to start the
    corresponding task normally or skip it and report success or an error.
    For more information about inter-task data exchange, see \l Storage.

    \section2 Task's Done Handler

    When a running task finishes, the task tree invokes an optionally provided done handler.
    The handler should always take a \c const \e reference to the associated task class object:

    \code
        const auto onSetup = [](QProcess &process) {
            process.setCommand({"sleep", {"3"}});
        };
        const auto onDone = [](const QProcess &process, DoneWith result) {
            if (result == DoneWith::Success)
                qDebug() << "Success" << process.cleanedStdOut();
            else
                qDebug() << "Failure" << process.cleanedStdErr();
        };
        const Group root {
            QProcessTask(onSetup, onDone)
        };
    \endcode

    The done handler may collect output data from QProcess, and store it
    for further processing or perform additional actions.

    \note If the task setup handler returns StopWithSuccess or StopWithError,
          the done handler is not invoked.

    \section1 Group Handlers

    Similarly to task handlers, group handlers enable you to set up a group to
    execute and to apply more actions when the whole group finishes with
    success or an error.

    \section2 Group's Start Handler

    The task tree invokes the group start handler before it starts the child
    tasks. The group handler doesn't take any arguments:

    \code
        const auto onSetup = [] {
            qDebug() << "Entering the group";
        };
        const Group root {
            onGroupSetup(onSetup),
            QProcessTask(...)
        };
    \endcode

    The group setup handler is optional. To define a group setup handler, add an
    onGroupSetup() element to a group. The argument of onGroupSetup() is a user
    handler. If you add more than one onGroupSetup() element to a group, an assert
    is triggered at runtime that includes an error message.

    Like the task's start handler, the group start handler may return SetupResult.
    The returned SetupResult value affects the start behavior of the
    whole group. If you do not specify a group start handler or its return type
    is void, the default group's action is SetupResult::Continue, so that all
    tasks are started normally. Otherwise, when the start handler returns
    SetupResult::StopWithSuccess or SetupResult::StopWithError, the tasks are not
    started (they are skipped) and the group itself reports success or failure,
    depending on the returned value, respectively.

    \code
        const Group root {
            onGroupSetup([] { qDebug() << "Root setup"; }),
            Group {
                onGroupSetup([] { qDebug() << "Group 1 setup"; return SetupResult::Continue; }),
                QProcessTask(...) // Process 1
            },
            Group {
                onGroupSetup([] { qDebug() << "Group 2 setup"; return SetupResult::StopWithSuccess; }),
                QProcessTask(...) // Process 2
            },
            Group {
                onGroupSetup([] { qDebug() << "Group 3 setup"; return SetupResult::StopWithError; }),
                QProcessTask(...) // Process 3
            },
            QProcessTask(...) // Process 4
        };
    \endcode

    In the above example, all subgroups of a root group define their setup handlers.
    The following scenario assumes that all started processes finish with success:

    \table
    \header
        \li Scenario
        \li Comment
    \row
        \li Root Group starts
        \li Doesn't return SetupResult, so its tasks are executed.
    \row
        \li Group 1 starts
        \li Returns Continue, so its tasks are executed.
    \row
        \li Process 1 starts
        \li
    \row
        \li ...
        \li ...
    \row
        \li Process 1 finishes (success)
        \li
    \row
        \li Group 1 finishes (success)
        \li
    \row
        \li Group 2 starts
        \li Returns StopWithSuccess, so Process 2 is skipped and Group 2 reports
            success.
    \row
        \li Group 2 finishes (success)
        \li
    \row
        \li Group 3 starts
        \li Returns StopWithError, so Process 3 is skipped and Group 3 reports
            an error.
    \row
        \li Group 3 finishes (error)
        \li
    \row
        \li Root Group finishes (error)
        \li Group 3, which is a direct child of the root group, finished with an
            error, so the root group stops executing, skips Process 4, which has
            not started yet, and reports an error.
    \endtable

    \section2 Groups's Done Handler

    A Group's done handler is executed after the successful or failed execution of its tasks.
    The final value reported by the group depends on its \l {Workflow Policy}.
    The handler can apply other necessary actions.
    The done handler is defined inside the onGroupDone() element of a group.
    It may take the optional DoneWith argument, indicating the successful or failed execution:

    \code
        const Group root {
            onGroupSetup([] { qDebug() << "Root setup"; }),
            QProcessTask(...),
            onGroupDone([](DoneWith result) {
                if (result == DoneWith::Success)
                    qDebug() << "Root finished with success";
                else
                    qDebug() << "Root finished with an error";
            })
        };
    \endcode

    The group done handler is optional. If you add more than one onGroupDone() to a group,
    an assert is triggered at runtime that includes an error message.

    \note Even if the group setup handler returns StopWithSuccess or StopWithError,
    the group's done handler is invoked. This behavior differs from that of task done handler
    and might change in the future.

    \section1 Other Group Elements

    A group can contain other elements that describe the processing flow, such as
    the execution mode or workflow policy. It can also contain storage elements
    that are responsible for collecting and sharing custom common data gathered
    during group execution.

    \section2 Execution Mode

    The execution mode element in a Group specifies how the direct child tasks of
    the Group are started. The most common execution modes are \l sequential and
    \l parallel. It's also possible to specify the limit of tasks running
    in parallel by using the parallelLimit() function.

    In all execution modes, a group starts tasks in the oder in which they appear.

    If a child of a group is also a group, the child group runs its tasks
    according to its own execution mode.

    \section2 Workflow Policy

    The workflow policy element in a Group specifies how the group should behave
    when any of its \e direct child's tasks finish. For a detailed description of possible
    policies, refer to WorkflowPolicy.

    If a child of a group is also a group, the child group runs its tasks
    according to its own workflow policy.

    \section2 Storage

    Use the \l {Tasking::Storage} {Storage} element to exchange information between tasks.
    Especially, in the sequential execution mode, when a task needs data from another,
    already finished task, before it can start. For example, a task tree that copies data by reading
    it from a source and writing it to a destination might look as follows:

    \code
        static QByteArray load(const QString &fileName) { ... }
        static void save(const QString &fileName, const QByteArray &array) { ... }

        static Group copyRecipe(const QString &source, const QString &destination)
        {
            struct CopyStorage { // [1] custom inter-task struct
                QByteArray content; // [2] custom inter-task data
            };

            // [3] instance of custom inter-task struct manageable by task tree
            const Storage<CopyStorage> storage;

            const auto onLoaderSetup = [source](ConcurrentCall<QByteArray> &async) {
                async.setConcurrentCallData(&load, source);
            };
            // [4] runtime: task tree activates the instance from [7] before invoking handler
            const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &async) {
                storage->content = async.result(); // [5] loader stores the result in storage
            };

            // [4] runtime: task tree activates the instance from [7] before invoking handler
            const auto onSaverSetup = [storage, destination](ConcurrentCall<void> &async) {
                const QByteArray content = storage->content; // [6] saver takes data from storage
                async.setConcurrentCallData(&save, destination, content);
            };
            const auto onSaverDone = [](const ConcurrentCall<void> &async) {
                qDebug() << "Save done successfully";
            };

            const Group root {
                // [7] runtime: task tree creates an instance of CopyStorage when root is entered
                storage,
                ConcurrentCallTask<QByteArray>(onLoaderSetup, onLoaderDone, CallDoneIf::Success),
                ConcurrentCallTask<void>(onSaverSetup, onSaverDone, CallDoneIf::Success)
            };
            return root;
        }

        const QString source = ...;
        const QString destination = ...;
        TaskTree taskTree(copyRecipe(source, destination));
        connect(&taskTree, &TaskTree::done,
                &taskTree, [](DoneWith result) {
            if (result == DoneWith::Success)
                qDebug() << "The copying finished successfully.";
        });
        tasktree.start();
    \endcode

    In the example above, the inter-task data consists of a QByteArray content
    variable [2] enclosed in a \c CopyStorage custom struct [1]. If the loader
    finishes successfully, it stores the data in a \c CopyStorage::content
    variable [5]. The saver then uses the variable to configure the saving task [6].

    To enable a task tree to manage the \c CopyStorage struct, an instance of
    \l {Tasking::Storage} {Storage}<\c CopyStorage> is created [3]. If a copy of this object is
    inserted as the group's child item [7], an instance of the \c CopyStorage struct is
    created dynamically when the task tree enters this group. When the task
    tree leaves this group, the existing instance of the \c CopyStorage struct is
    destructed as it's no longer needed.

    If several task trees holding a copy of the common
    \l {Tasking::Storage} {Storage}<\c CopyStorage> instance run simultaneously
    (including the case when the task trees are run in different threads),
    each task tree contains its own copy of the \c CopyStorage struct.

    You can access \c CopyStorage from any handler in the group with a storage object.
    This includes all handlers of all descendant tasks of the group with
    a storage object. To access the custom struct in a handler, pass the
    copy of the \l {Tasking::Storage} {Storage}<\c CopyStorage> object to the handler
    (for example, in a lambda capture) [4].

    When the task tree invokes a handler in a subtree containing the storage [7],
    the task tree activates its own \c CopyStorage instance inside the
    \l {Tasking::Storage} {Storage}<\c CopyStorage> object. Therefore, the \c CopyStorage struct
    may be accessed only from within the handler body. To access the currently active
    \c CopyStorage from within \l {Tasking::Storage} {Storage}<\c CopyStorage>, use the
    \l {Tasking::Storage::operator->()} {Storage::operator->()},
    \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method.

    The following list summarizes how to employ a Storage object into the task
    tree:
    \list 1
        \li Define the custom structure \c MyStorage with custom data [1], [2]
        \li Create an instance of the \l {Tasking::Storage} {Storage}<\c MyStorage> storage [3]
        \li Pass the \l {Tasking::Storage} {Storage}<\c MyStorage> instance to handlers [4]
        \li Access the \c MyStorage instance in handlers [5], [6]
        \li Insert the \l {Tasking::Storage} {Storage}<\c MyStorage> instance into a group [7]
    \endlist

    \section1 TaskTree class

    TaskTree executes the tree structure of asynchronous tasks according to the
    recipe described by the Group root element.

    As TaskTree is also an asynchronous task, it can be a part of another TaskTree.
    To place a nested TaskTree inside another TaskTree, insert the TaskTreeTask
    element into another Group element.

    TaskTree reports progress of completed tasks when running. The progress value
    is increased when a task finishes or is skipped or canceled.
    When TaskTree is finished and the TaskTree::done() signal is emitted,
    the current value of the progress equals the maximum progress value.
    Maximum progress equals the total number of asynchronous tasks in a tree.
    A nested TaskTree is counted as a single task, and its child tasks are not
    counted in the top level tree. Groups themselves are not counted as tasks,
    but their tasks are counted. \l {Tasking::Sync} {Sync} tasks are not asynchronous,
    so they are not counted as tasks.

    To set additional initial data for the running tree, modify the storage
    instances in a tree when it creates them by installing a storage setup
    handler:

    \code
        Storage<CopyStorage> storage;
        const Group root = ...; // storage placed inside root's group and inside handlers
        TaskTree taskTree(root);
        auto initStorage = [](CopyStorage &storage) {
            storage.content = "initial content";
        };
        taskTree.onStorageSetup(storage, initStorage);
        taskTree.start();
    \endcode

    When the running task tree creates a \c CopyStorage instance, and before any
    handler inside a tree is called, the task tree calls the initStorage handler,
    to enable setting up initial data of the storage, unique to this particular
    run of taskTree.

    Similarly, to collect some additional result data from the running tree,
    read it from storage instances in the tree when they are about to be
    destroyed. To do this, install a storage done handler:

    \code
        Storage<CopyStorage> storage;
        const Group root = ...; // storage placed inside root's group and inside handlers
        TaskTree taskTree(root);
        auto collectStorage = [](const CopyStorage &storage) {
            qDebug() << "final content" << storage.content;
        };
        taskTree.onStorageDone(storage, collectStorage);
        taskTree.start();
    \endcode

    When the running task tree is about to destroy a \c CopyStorage instance, the
    task tree calls the collectStorage handler, to enable reading the final data
    from the storage, unique to this particular run of taskTree.

    \section1 Task Adapters

    To extend a TaskTree with a new task type, implement a simple adapter class
    derived from the TaskAdapter class template. The following class is an
    adapter for a single shot timer, which may be considered as a new asynchronous task:

    \code
        class TimerTaskAdapter : public TaskAdapter<QTimer>
        {
        public:
            TimerTaskAdapter() {
                task()->setSingleShot(true);
                task()->setInterval(1000);
                connect(task(), &QTimer::timeout, this, [this] { emit done(DoneResult::Success); });
            }
        private:
            void start() final { task()->start(); }
        };

        using TimerTask = CustomTask<TimerTaskAdapter>;
    \endcode

    You must derive the custom adapter from the TaskAdapter class template
    instantiated with a template parameter of the class implementing a running
    task. The code above uses QTimer to run the task. This class appears
    later as an argument to the task's handlers. The instance of this class
    parameter automatically becomes a member of the TaskAdapter template, and is
    accessible through the TaskAdapter::task() method. The constructor
    of \c TimerTaskAdapter initially configures the QTimer object and connects
    to the QTimer::timeout() signal. When the signal is triggered, \c TimerTaskAdapter
    emits the TaskInterface::done(DoneResult::Success) signal to inform the task tree that
    the task finished successfully. If it emits TaskInterface::done(DoneResult::Error),
    the task finished with an error.
    The TaskAdapter::start() method starts the timer.

    To make QTimer accessible inside TaskTree under the \c TimerTask name,
    define \c TimerTask to be an alias to the CustomTask<\c TimerTaskAdapter>.
    \c TimerTask becomes a new custom task type, using \c TimerTaskAdapter.

    The new task type is now registered, and you can use it in TaskTree:

    \code
        const auto onSetup = [](QTimer &task) { task.setInterval(2000); };
        const auto onDone = [] { qDebug() << "timer triggered"; };
        const Group root {
            TimerTask(onSetup, onDone)
        };
    \endcode

    When a task tree containing the root from the above example is started, it
    prints a debug message within two seconds and then finishes successfully.

    \note The class implementing the running task should have a default constructor,
    and objects of this class should be freely destructible. It should be allowed
    to destroy a running object, preferably without waiting for the running task
    to finish (that is, safe non-blocking destructor of a running task).
    To achieve a non-blocking destruction of a task that has a blocking destructor,
    consider using the optional \c Deleter template parameter of the TaskAdapter.
*/

/*!
    Constructs an empty task tree. Use setRecipe() to pass a declarative description
    on how the task tree should execute the tasks and how it should handle the finished tasks.

    Starting an empty task tree is no-op and the relevant warning message is issued.

    \sa setRecipe(), start()
*/
TaskTree::TaskTree()
    : d(new TaskTreePrivate(this))
{}

/*!
    \overload

    Constructs a task tree with a given \a recipe. After the task tree is started,
    it executes the tasks contained inside the \a recipe and
    handles finished tasks according to the passed description.

    \sa setRecipe(), start()
*/
TaskTree::TaskTree(const Group &recipe) : TaskTree()
{
    setRecipe(recipe);
}

/*!
    Destroys the task tree.

    When the task tree is running while being destructed, it cancels all the running tasks
    immediately. In this case, no handlers are called, not even the groups' and
    tasks' done handlers or onStorageDone() handlers. The task tree also doesn't emit any
    signals from the destructor, not even done() or progressValueChanged() signals.
    This behavior may always be relied on.
    It is completely safe to destruct the running task tree.

    It's a usual pattern to destruct the running task tree.
    It's guaranteed that the destruction will run quickly, without having to wait for
    the currently running tasks to finish, provided that the used tasks implement
    their destructors in a non-blocking way.

    \note Do not call the destructor directly from any of the running task's handlers
          or task tree's signals. In these cases, use \l deleteLater() instead.

    \sa cancel()
*/
TaskTree::~TaskTree()
{
    QT_ASSERT(!d->m_guard.isLocked(), qWarning("Deleting TaskTree instance directly from "
              "one of its handlers will lead to a crash!"));
    // TODO: delete storages explicitly here?
    delete d;
}

/*!
    Sets a given \a recipe for the task tree. After the task tree is started,
    it executes the tasks contained inside the \a recipe and
    handles finished tasks according to the passed description.

    \note When called for a running task tree, the call is ignored.

    \sa TaskTree(const Tasking::Group &recipe), start()
*/
void TaskTree::setRecipe(const Group &recipe)
{
    QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..."); return);
    QT_ASSERT(!d->m_guard.isLocked(), qWarning("The setRecipe() is called from one of the"
                                               "TaskTree handlers, ignoring..."); return);
    // TODO: Should we clear the m_storageHandlers, too?
    d->m_storages.clear();
    d->m_root.emplace(d, recipe);
}

/*!
    Starts the task tree.

    Use setRecipe() or the constructor to set the declarative description according to which
    the task tree will execute the contained tasks and handle finished tasks.

    When the task tree is empty, that is, constructed with a default constructor,
    a call to \c start() is no-op and the relevant warning message is issued.

    Otherwise, when the task tree is already running, a call to \e start() is ignored and the
    relevant warning message is issued.

    Otherwise, the task tree is started.

    The started task tree may finish synchronously,
    for example when the main group's start handler returns SetupResult::StopWithError.
    For this reason, the connection to the done signal should be established before calling
    \c start(). Use isRunning() in order to detect whether the task tree is still running
    after a call to \c start().

    The task tree implementation relies on the running event loop.
    Make sure you have a QEventLoop or QCoreApplication or one of its
    subclasses running (or about to be run) when calling this method.

    \sa TaskTree(const Tasking::Group &), setRecipe(), isRunning(), cancel()
*/
void TaskTree::start()
{
    QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..."); return);
    QT_ASSERT(!d->m_guard.isLocked(), qWarning("The start() is called from one of the"
                                               "TaskTree handlers, ignoring..."); return);
    d->start();
}

/*!
    \fn void TaskTree::started()

    This signal is emitted when the task tree is started. The emission of this signal is
    followed synchronously by the progressValueChanged() signal with an initial \c 0 value.

    \sa start(), done()
*/

/*!
    \fn void TaskTree::done(DoneWith result)

    This signal is emitted when the task tree finished, passing the final \a result
    of the execution. The task tree neither calls any handler,
    nor emits any signal anymore after this signal was emitted.

    \note Do not delete the task tree directly from this signal's handler.
          Use deleteLater() instead.

    \sa started()
*/

/*!
    Cancels the execution of the running task tree.

    Cancels all the running tasks immediately.
    All running tasks finish with an error, invoking their error handlers.
    All running groups dispatch their handlers according to their workflow policies,
    invoking their done handlers. The storages' onStorageDone() handlers are invoked, too.
    The progressValueChanged() signals are also being sent.
    This behavior may always be relied on.

    The \c cancel() function is executed synchronously, so that after a call to \c cancel()
    all running tasks are finished and the tree is already canceled.
    It's guaranteed that \c cancel() will run quickly, without any blocking wait for
    the currently running tasks to finish, provided the used tasks implement their destructors
    in a non-blocking way.

    When the task tree is empty, that is, constructed with a default constructor,
    a call to \c cancel() is no-op and the relevant warning message is issued.

    Otherwise, when the task tree wasn't started, a call to \c cancel() is ignored.

    \note Do not call this function directly from any of the running task's handlers
          or task tree's signals.

    \sa ~TaskTree()
*/
void TaskTree::cancel()
{
    QT_ASSERT(!d->m_guard.isLocked(), qWarning("The cancel() is called from one of the"
                                               "TaskTree handlers, ignoring..."); return);
    d->stop();
}

/*!
    Returns \c true if the task tree is currently running; otherwise returns \c false.

    \sa start(), cancel()
*/
bool TaskTree::isRunning() const
{
    return bool(d->m_runtimeRoot);
}

/*!
    Executes a local event loop with QEventLoop::ExcludeUserInputEvents and starts the task tree.

    Returns DoneWith::Success if the task tree finished successfully;
    otherwise returns DoneWith::Error.

    \note Avoid using this method from the main thread. Use asynchronous start() instead.
          This method is to be used in non-main threads or in auto tests.

    \sa start()
*/
DoneWith TaskTree::runBlocking()
{
    QPromise<void> dummy;
    dummy.start();
    return runBlocking(dummy.future());
}

/*!
    \overload runBlocking()

    The passed \a future is used for listening to the cancel event.
    When the task tree is canceled, this method cancels the passed \a future.
*/
DoneWith TaskTree::runBlocking(const QFuture<void> &future)
{
    if (future.isCanceled())
        return DoneWith::Cancel;

    DoneWith doneWith = DoneWith::Cancel;
    QEventLoop loop;
    connect(this, &TaskTree::done, &loop, [&loop, &doneWith](DoneWith result) {
        doneWith = result;
        // Otherwise, the tasks from inside the running tree that were deleteLater()
        // will be leaked. Refer to the QObject::deleteLater() docs.
        QMetaObject::invokeMethod(&loop, [&loop] { loop.quit(); }, Qt::QueuedConnection);
    });
    QFutureWatcher<void> watcher;
    connect(&watcher, &QFutureWatcherBase::canceled, this, &TaskTree::cancel);
    watcher.setFuture(future);

    QTimer::singleShot(0, this, &TaskTree::start);

    loop.exec(QEventLoop::ExcludeUserInputEvents);
    if (doneWith == DoneWith::Cancel) {
        auto nonConstFuture = future;
        nonConstFuture.cancel();
    }
    return doneWith;
}

/*!
    Constructs a temporary task tree using the passed \a recipe and runs it blocking.

    The optionally provided \a timeout is used to cancel the tree automatically after
    \a timeout milliseconds have passed.

    Returns DoneWith::Success if the task tree finished successfully;
    otherwise returns DoneWith::Error.

    \note Avoid using this method from the main thread. Use asynchronous start() instead.
          This method is to be used in non-main threads or in auto tests.

    \sa start()
*/
DoneWith TaskTree::runBlocking(const Group &recipe, milliseconds timeout)
{
    QPromise<void> dummy;
    dummy.start();
    return TaskTree::runBlocking(recipe, dummy.future(), timeout);
}

/*!
    \overload runBlocking(const Group &recipe, milliseconds timeout)

    The passed \a future is used for listening to the cancel event.
    When the task tree is canceled, this method cancels the passed \a future.
*/
DoneWith TaskTree::runBlocking(const Group &recipe, const QFuture<void> &future, milliseconds timeout)
{
    const Group root = timeout == milliseconds::max() ? recipe
                                                      : Group { recipe.withTimeout(timeout) };
    TaskTree taskTree(root);
    return taskTree.runBlocking(future);
}

/*!
    Returns the current real count of asynchronous chains of invocations.

    The returned value indicates how many times the control returns to the caller's
    event loop while the task tree is running. Initially, this value is 0.
    If the execution of the task tree finishes fully synchronously, this value remains 0.
    If the task tree contains any asynchronous tasks that are successfully started during
    a call to start(), this value is bumped to 1 just before the call to start() finishes.
    Later, when any asynchronous task finishes and any possible continuations are started,
    this value is bumped again. The bumping continues until the task tree finishes.
    When the task tree emits the done() signal, the bumping stops.
    The asyncCountChanged() signal is emitted on every bump of this value.

    \sa asyncCountChanged()
*/
int TaskTree::asyncCount() const
{
    return d->m_asyncCount;
}

/*!
    \fn void TaskTree::asyncCountChanged(int count)

    This signal is emitted when the running task tree is about to return control to the caller's
    event loop. When the task tree is started, this signal is emitted with \a count value of 0,
    and emitted later on every asyncCount() value bump with an updated \a count value.
    Every signal sent (except the initial one with the value of 0) guarantees that the task tree
    is still running asynchronously after the emission.

    \sa asyncCount()
*/

/*!
    Returns the number of asynchronous tasks contained in the stored recipe.

    \note The returned number doesn't include \l {Tasking::Sync} {Sync} tasks.
    \note Any task or group that was set up using withTimeout() increases the total number of
          tasks by \c 1.

    \sa setRecipe(), progressMaximum()
*/
int TaskTree::taskCount() const
{
    return d->m_root ? d->m_root->taskCount() : 0;
}

/*!
    \fn void TaskTree::progressValueChanged(int value)

    This signal is emitted when the running task tree finished, canceled, or skipped some tasks.
    The \a value gives the current total number of finished, canceled or skipped tasks.
    When the task tree is started, and after the started() signal was emitted,
    this signal is emitted with an initial \a value of \c 0.
    When the task tree is about to finish, and before the done() signal is emitted,
    this signal is emitted with the final \a value of progressMaximum().

    \sa progressValue(), progressMaximum()
*/

/*!
    \fn int TaskTree::progressMaximum() const

    Returns the maximum progressValue().

    \note Currently, it's the same as taskCount(). This might change in the future.

    \sa progressValue()
*/

/*!
    Returns the current progress value, which is between the \c 0 and progressMaximum().

    The returned number indicates how many tasks have been already finished, canceled, or skipped
    while the task tree is running.
    When the task tree is started, this number is set to \c 0.
    When the task tree is finished, this number always equals progressMaximum().

    \sa progressMaximum(), progressValueChanged()
*/
int TaskTree::progressValue() const
{
    return d->m_progressValue;
}

/*!
    \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageSetup(const Storage<StorageStruct> &storage, Handler &&handler)

    Installs a storage setup \a handler for the \a storage to pass the initial data
    dynamically to the running task tree.

    The \c StorageHandler takes a \e reference to the \c StorageStruct instance:

    \code
        static void save(const QString &fileName, const QByteArray &array) { ... }

        Storage<QByteArray> storage;

        const auto onSaverSetup = [storage](ConcurrentCall<QByteArray> &concurrent) {
            concurrent.setConcurrentCallData(&save, "foo.txt", *storage);
        };

        const Group root {
            storage,
            ConcurrentCallTask(onSaverSetup)
        };

        TaskTree taskTree(root);
        auto initStorage = [](QByteArray &storage){
            storage = "initial content";
        };
        taskTree.onStorageSetup(storage, initStorage);
        taskTree.start();
    \endcode

    When the running task tree enters a Group where the \a storage is placed in,
    it creates a \c StorageStruct instance, ready to be used inside this group.
    Just after the \c StorageStruct instance is created, and before any handler of this group
    is called, the task tree invokes the passed \a handler. This enables setting up
    initial content for the given storage dynamically. Later, when any group's handler is invoked,
    the task tree activates the created and initialized storage, so that it's available inside
    any group's handler.

    \sa onStorageDone()
*/

/*!
    \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageDone(const Storage<StorageStruct> &storage, Handler &&handler)

    Installs a storage done \a handler for the \a storage to retrieve the final data
    dynamically from the running task tree.

    The \c StorageHandler takes a \c const \e reference to the \c StorageStruct instance:

    \code
        static QByteArray load(const QString &fileName) { ... }

        Storage<QByteArray> storage;

        const auto onLoaderSetup = [](ConcurrentCall<QByteArray> &concurrent) {
            concurrent.setConcurrentCallData(&load, "foo.txt");
        };
        const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &concurrent) {
            *storage = concurrent.result();
        };

        const Group root {
            storage,
            ConcurrentCallTask(onLoaderSetup, onLoaderDone, CallDoneIf::Success)
        };

        TaskTree taskTree(root);
        auto collectStorage = [](const QByteArray &storage){
            qDebug() << "final content" << storage;
        };
        taskTree.onStorageDone(storage, collectStorage);
        taskTree.start();
    \endcode

    When the running task tree is about to leave a Group where the \a storage is placed in,
    it destructs a \c StorageStruct instance.
    Just before the \c StorageStruct instance is destructed, and after all possible handlers from
    this group were called, the task tree invokes the passed \a handler. This enables reading
    the final content of the given storage dynamically and processing it further outside of
    the task tree.

    This handler is called also when the running tree is canceled. However, it's not called
    when the running tree is destructed.

    \sa onStorageSetup()
*/

void TaskTree::setupStorageHandler(const StorageBase &storage,
                                   StorageBase::StorageHandler setupHandler,
                                   StorageBase::StorageHandler doneHandler)
{
    auto it = d->m_storageHandlers.find(storage);
    if (it == d->m_storageHandlers.end()) {
        d->m_storageHandlers.insert(storage, {setupHandler, doneHandler});
        return;
    }
    if (setupHandler) {
        QT_ASSERT(!it->m_setupHandler,
                  qWarning("The storage has its setup handler defined, overriding..."));
        it->m_setupHandler = setupHandler;
    }
    if (doneHandler) {
        QT_ASSERT(!it->m_doneHandler,
                  qWarning("The storage has its done handler defined, overriding..."));
        it->m_doneHandler = doneHandler;
    }
}

TaskTreeTaskAdapter::TaskTreeTaskAdapter()
{
    connect(task(), &TaskTree::done, this,
            [this](DoneWith result) { emit done(toDoneResult(result)); });
}

void TaskTreeTaskAdapter::start()
{
    task()->start();
}

using TimeoutCallback = std::function<void()>;

struct TimerData
{
    system_clock::time_point m_deadline;
    QPointer<QObject> m_context;
    TimeoutCallback m_callback;
};

struct TimerThreadData
{
    Q_DISABLE_COPY_MOVE(TimerThreadData)

    TimerThreadData() = default; // defult constructor is required for initializing with {} since C++20 by Mingw 11.20
    QHash<int, TimerData> m_timerIdToTimerData = {};
    QMap<system_clock::time_point, QList<int>> m_deadlineToTimerId = {};
    int m_timerIdCounter = 0;
};

// Please note the thread_local keyword below guarantees a separate instance per thread.
static thread_local TimerThreadData s_threadTimerData = {};

static void removeTimerId(int timerId)
{
    const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(timerId);
    QT_ASSERT(it != s_threadTimerData.m_timerIdToTimerData.cend(),
              qWarning("Removing active timerId failed."); return);

    const system_clock::time_point deadline = it->m_deadline;
    s_threadTimerData.m_timerIdToTimerData.erase(it);

    QList<int> &ids = s_threadTimerData.m_deadlineToTimerId[deadline];
    const int removedCount = ids.removeAll(timerId);
    QT_ASSERT(removedCount == 1, qWarning("Removing active timerId failed."); return);
    if (ids.isEmpty())
        s_threadTimerData.m_deadlineToTimerId.remove(deadline);
}

static void handleTimeout(int timerId)
{
    const auto itData = s_threadTimerData.m_timerIdToTimerData.constFind(timerId);
    if (itData == s_threadTimerData.m_timerIdToTimerData.cend())
        return; // The timer was already activated.

    const auto deadline = itData->m_deadline;
    while (true) {
        auto itMap = s_threadTimerData.m_deadlineToTimerId.begin();
        if (itMap == s_threadTimerData.m_deadlineToTimerId.end())
            return;

        if (itMap.key() > deadline)
            return;

        std::optional<TimerData> timerData;
        QList<int> &idList = *itMap;
        if (!idList.isEmpty()) {
            const int first = idList.first();
            idList.removeFirst();

            const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(first);
            if (it != s_threadTimerData.m_timerIdToTimerData.cend()) {
                timerData = it.value();
                s_threadTimerData.m_timerIdToTimerData.erase(it);
            } else {
                QT_CHECK(false);
            }
        } else {
            QT_CHECK(false);
        }

        if (idList.isEmpty())
            s_threadTimerData.m_deadlineToTimerId.erase(itMap);
        if (timerData && timerData->m_context)
            timerData->m_callback();
    }
}

static int scheduleTimeout(milliseconds timeout, QObject *context, const TimeoutCallback &callback)
{
    const int timerId = ++s_threadTimerData.m_timerIdCounter;
    const system_clock::time_point deadline = system_clock::now() + timeout;
    QTimer::singleShot(timeout, context, [timerId] { handleTimeout(timerId); });
    s_threadTimerData.m_timerIdToTimerData.emplace(timerId, TimerData{deadline, context, callback});
    s_threadTimerData.m_deadlineToTimerId[deadline].append(timerId);
    return timerId;
}

TimeoutTaskAdapter::TimeoutTaskAdapter()
{
    *task() = milliseconds::zero();
}

TimeoutTaskAdapter::~TimeoutTaskAdapter()
{
    if (m_timerId)
        removeTimerId(*m_timerId);
}

void TimeoutTaskAdapter::start()
{
    m_timerId = scheduleTimeout(*task(), this, [this] {
        m_timerId = {};
        emit done(DoneResult::Success);
    });
}

/*!
    \typealias TaskTreeTask

    Type alias for the CustomTask, to be used inside recipes, associated with the TaskTree task.
*/

/*!
    \typealias TimeoutTask

    Type alias for the CustomTask, to be used inside recipes, associated with the
    \c std::chrono::milliseconds type. \c std::chrono::milliseconds is used to set up the
    timeout duration. The default timeout is \c std::chrono::milliseconds::zero(), that is,
    the TimeoutTask finishes as soon as the control returns to the running event loop.

    Example usage:

    \code
        using namespace std::chrono;
        using namespace std::chrono_literals;

        const auto onSetup = [](milliseconds &timeout) { timeout = 1000ms; }
        const auto onDone = [] { qDebug() << "Timed out."; }

        const Group root {
            Timeout(onSetup, onDone)
        };
    \endcode
*/

} // namespace Tasking