summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/ParseContext.cpp
diff options
context:
space:
mode:
authorAndrew Knight <andrew.knight@digia.com>2014-02-24 11:18:33 +0200
committerThe Qt Project <gerrit-noreply@qt-project.org>2014-02-26 07:56:50 +0100
commita7d093e740b1e20874b5ebeb37b5c5d76ae19e42 (patch)
tree573b63025dbaa090392e468e1a90de8104054578 /src/3rdparty/angle/src/compiler/translator/ParseContext.cpp
parent45e17d0cc74d3444e23c18f73d6ac155659cec55 (diff)
Upgrade ANGLE to 1.3.5bb7ec572d0a
This brings Qt's copy of ANGLE up to ANGLE master, which contains a number of bugfixes as well as restructuring for the upcoming ES 3.0 support. This version brings considerable stability improvements to the D3D11 renderer. The static translator project files have been merged to align with the ANGLE source tree. Two new patches have been applied to fix errors in upstream ANGLE: - 0011-ANGLE-Fix-compilation-error-on-MinGW-caused-by-trace.patch The event trace header in ANGLE's third_party directory has an unused template which causes a compilation error on MinGW. Disable this part of the code. - 0012-ANGLE-fix-semantic-index-lookup.patch The sorted semantic index table was returning a direct mapping to the new indices, instead of the old indices. This caused a mismatch in the GL type lookup for the translated attribute. All other patches have been rebased, removed if no longer needed, and renamed to clear up the application order: - 0001-Fix-compilation-for-MSVC-2008-and-std-tuple.patch No changes. - 0001-Fix-compilation-with-MinGW-mingw-tdm64-gcc-4.8.1.patch No changes. Renamed to 0002. - 0001-Fix-compilation-with-MinGW-gcc-64-bit.patch No changes. Renamed to 0003. - 0001-Make-it-possible-to-link-ANGLE-statically-for-single.patch Modified patch to adapt to new DLL loading structure. Renamed to 0004. - 0005-Fix-build-when-SSE2-is-not-available.patch No changes. - 0011-Fix-compilation-of-libGLESv2-with-older-MinGW-w64-he.patch No changes. Renamed to 0006. - 0006-Make-DX9-DX11-mutually-exclusive.patch Made the patch less invasive by allowing D3D9 code to run unless explicitly disabled (e.g. on WinRT, where it doesn't compile). This makes the patch smaller and allows Desktop Windows to compile both D3D9 and D3D11 codepaths. Renamed to 0007. - 0015-ANGLE-Dynamically-load-D3D-compiler-from-a-list-of-k.patch No changes. Renamed to 0008. - 0012-ANGLE-Support-WinRT.patch Made D3D11_level9 initialization only possible if D3D9 is disabled. This makes sure Desktop PCs use the old D3D9 codepath instead of the less-tested D3D11_level9 codepath. Renamed to 0009. - 0013-Enable-D3D11-for-feature-level-9-cards.patch Conveniently smaller patch due to buffer implementation improvements upstream. Renamed to 0010. - 0014-ANGLE-D3D11-Alwayls-execute-QueryInterface.patch This was a fix for patch 0009, so was integrated there. Removed. - 0016-ANGLE-D3D11-Fix-build-on-desktop-Windows.patch This was a fix for patch 0009, so it was integrated there. Removed. - 0001-ANGLE-Fix-compilation-with-MSVC2013.patch Fixed upstream. Removed. - 0007-ANGLE-Fix-typedefs-for-Win64.patch Fixed upstream. Removed. - 0004-Fix-black-screen-after-minimizing-OpenGL-window-with.patch The issue has been fixed in Qt itself. Removed. - 0008-DX11-Prevent-assert-when-view-is-minimized-or-.patch The cause of the problem was the same as patch 0004, but for the D3D11 codepath. Removed. Change-Id: Id69484ab3a3e013050741c462fb1b06dfb0fd112 Reviewed-by: Friedemann Kleint <Friedemann.Kleint@digia.com> Reviewed-by: Kai Koehne <kai.koehne@digia.com> Reviewed-by: Oliver Wolff <oliver.wolff@digia.com>
Diffstat (limited to 'src/3rdparty/angle/src/compiler/translator/ParseContext.cpp')
-rw-r--r--src/3rdparty/angle/src/compiler/translator/ParseContext.cpp1602
1 files changed, 1602 insertions, 0 deletions
diff --git a/src/3rdparty/angle/src/compiler/translator/ParseContext.cpp b/src/3rdparty/angle/src/compiler/translator/ParseContext.cpp
new file mode 100644
index 0000000000..1a1e0d140c
--- /dev/null
+++ b/src/3rdparty/angle/src/compiler/translator/ParseContext.cpp
@@ -0,0 +1,1602 @@
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/ParseContext.h"
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "compiler/translator/glslang.h"
+#include "compiler/preprocessor/SourceLocation.h"
+
+///////////////////////////////////////////////////////////////////////
+//
+// Sub- vector and matrix fields
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a vector.
+//
+bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
+{
+ fields.num = (int) compString.size();
+ if (fields.num > 4) {
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+
+ enum {
+ exyzw,
+ ergba,
+ estpq
+ } fieldSet[4];
+
+ for (int i = 0; i < fields.num; ++i) {
+ switch (compString[i]) {
+ case 'x':
+ fields.offsets[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ fields.offsets[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ fields.offsets[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ fields.offsets[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ fields.offsets[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ fields.offsets[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ fields.offsets[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ fields.offsets[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ fields.offsets[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ fields.offsets[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ fields.offsets[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ fields.offsets[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+ }
+
+ for (int i = 0; i < fields.num; ++i) {
+ if (fields.offsets[i] >= vecSize) {
+ error(line, "vector field selection out of range", compString.c_str());
+ return false;
+ }
+
+ if (i > 0) {
+ if (fieldSet[i] != fieldSet[i-1]) {
+ error(line, "illegal - vector component fields not from the same set", compString.c_str());
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a matrix.
+//
+bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, const TSourceLoc& line)
+{
+ fields.wholeRow = false;
+ fields.wholeCol = false;
+ fields.row = -1;
+ fields.col = -1;
+
+ if (compString.size() != 2) {
+ error(line, "illegal length of matrix field selection", compString.c_str());
+ return false;
+ }
+
+ if (compString[0] == '_') {
+ if (compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeCol = true;
+ fields.col = compString[1] - '0';
+ } else if (compString[1] == '_') {
+ if (compString[0] < '0' || compString[0] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeRow = true;
+ fields.row = compString[0] - '0';
+ } else {
+ if (compString[0] < '0' || compString[0] > '3' ||
+ compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.row = compString[0] - '0';
+ fields.col = compString[1] - '0';
+ }
+
+ if (fields.row >= matSize || fields.col >= matSize) {
+ error(line, "matrix field selection out of range", compString.c_str());
+ return false;
+ }
+
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////
+//
+// Errors
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Track whether errors have occurred.
+//
+void TParseContext::recover()
+{
+}
+
+//
+// Used by flex/bison to output all syntax and parsing errors.
+//
+void TParseContext::error(const TSourceLoc& loc,
+ const char* reason, const char* token,
+ const char* extraInfo)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
+ srcLoc, reason, token, extraInfo);
+
+}
+
+void TParseContext::warning(const TSourceLoc& loc,
+ const char* reason, const char* token,
+ const char* extraInfo) {
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
+ srcLoc, reason, token, extraInfo);
+}
+
+void TParseContext::trace(const char* str)
+{
+ diagnostics.writeDebug(str);
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
+ << " (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand type", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
+ << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand types ", op, extraInfo.c_str());
+}
+
+bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
+ if (!checksPrecisionErrors)
+ return false;
+ switch( type ){
+ case EbtFloat:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified for (float)", "" );
+ return true;
+ }
+ break;
+ case EbtInt:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified (int)", "" );
+ return true;
+ }
+ break;
+ default:
+ return false;
+ }
+ return false;
+}
+
+//
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
+{
+ TIntermSymbol* symNode = node->getAsSymbolNode();
+ TIntermBinary* binaryNode = node->getAsBinaryNode();
+
+ if (binaryNode) {
+ bool errorReturn;
+
+ switch(binaryNode->getOp()) {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ return lValueErrorCheck(line, op, binaryNode->getLeft());
+ case EOpVectorSwizzle:
+ errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
+ if (!errorReturn) {
+ int offset[4] = {0,0,0,0};
+
+ TIntermTyped* rightNode = binaryNode->getRight();
+ TIntermAggregate *aggrNode = rightNode->getAsAggregate();
+
+ for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
+ p != aggrNode->getSequence().end(); p++) {
+ int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
+ offset[value]++;
+ if (offset[value] > 1) {
+ error(line, " l-value of swizzle cannot have duplicate components", op);
+
+ return true;
+ }
+ }
+ }
+
+ return errorReturn;
+ default:
+ break;
+ }
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ const char* symbol = 0;
+ if (symNode != 0)
+ symbol = symNode->getSymbol().c_str();
+
+ const char* message = 0;
+ switch (node->getQualifier()) {
+ case EvqConst: message = "can't modify a const"; break;
+ case EvqConstReadOnly: message = "can't modify a const"; break;
+ case EvqAttribute: message = "can't modify an attribute"; break;
+ case EvqUniform: message = "can't modify a uniform"; break;
+ case EvqVaryingIn: message = "can't modify a varying"; break;
+ case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
+ case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
+ case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
+ default:
+
+ //
+ // Type that can't be written to?
+ //
+ switch (node->getBasicType()) {
+ case EbtSampler2D:
+ case EbtSamplerCube:
+ message = "can't modify a sampler";
+ break;
+ case EbtVoid:
+ message = "can't modify void";
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (message == 0 && binaryNode == 0 && symNode == 0) {
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ //
+ // Everything else is okay, no error.
+ //
+ if (message == 0)
+ return false;
+
+ //
+ // If we get here, we have an error and a message.
+ //
+ if (symNode) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "\"" << symbol << "\" (" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+ else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "(" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::constErrorCheck(TIntermTyped* node)
+{
+ if (node->getQualifier() == EvqConst)
+ return false;
+
+ error(node->getLine(), "constant expression required", "");
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
+{
+ if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
+ return false;
+
+ error(node->getLine(), "integer expression required", token);
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
+{
+ if (global)
+ return false;
+
+ error(line, "only allowed at global scope", token);
+
+ return true;
+}
+
+//
+// For now, keep it simple: if it starts "gl_", it's reserved, independent
+// of scope. Except, if the symbol table is at the built-in push-level,
+// which is when we are parsing built-ins.
+// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
+// webgl shader.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
+{
+ static const char* reservedErrMsg = "reserved built-in name";
+ if (!symbolTable.atBuiltInLevel()) {
+ if (identifier.compare(0, 3, "gl_") == 0) {
+ error(line, reservedErrMsg, "gl_");
+ return true;
+ }
+ if (isWebGLBasedSpec(shaderSpec)) {
+ if (identifier.compare(0, 6, "webgl_") == 0) {
+ error(line, reservedErrMsg, "webgl_");
+ return true;
+ }
+ if (identifier.compare(0, 7, "_webgl_") == 0) {
+ error(line, reservedErrMsg, "_webgl_");
+ return true;
+ }
+ if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
+ error(line, reservedErrMsg, "css_");
+ return true;
+ }
+ }
+ if (identifier.find("__") != TString::npos) {
+ error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Make sure there is enough data provided to the constructor to build
+// something of the type of the constructor. Also returns the type of
+// the constructor.
+//
+// Returns true if there was an error in construction.
+//
+bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
+{
+ *type = function.getReturnType();
+
+ bool constructingMatrix = false;
+ switch(op) {
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Note: It's okay to have too many components available, but not okay to have unused
+ // arguments. 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument, so 'overfull' will become true.
+ //
+
+ size_t size = 0;
+ bool constType = true;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (size_t i = 0; i < function.getParamCount(); ++i) {
+ const TParameter& param = function.getParam(i);
+ size += param.type->getObjectSize();
+
+ if (constructingMatrix && param.type->isMatrix())
+ matrixInMatrix = true;
+ if (full)
+ overFull = true;
+ if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
+ full = true;
+ if (param.type->getQualifier() != EvqConst)
+ constType = false;
+ if (param.type->isArray())
+ arrayArg = true;
+ }
+
+ if (constType)
+ type->setQualifier(EvqConst);
+
+ if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
+ error(line, "array constructor needs one argument per array element", "constructor");
+ return true;
+ }
+
+ if (arrayArg && op != EOpConstructStruct) {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return true;
+ }
+
+ if (matrixInMatrix && !type->isArray()) {
+ if (function.getParamCount() != 1) {
+ error(line, "constructing matrix from matrix can only take one argument", "constructor");
+ return true;
+ }
+ }
+
+ if (overFull) {
+ error(line, "too many arguments", "constructor");
+ return true;
+ }
+
+ if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
+ error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
+ return true;
+ }
+
+ if (!type->isMatrix() || !matrixInMatrix) {
+ if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
+ (op == EOpConstructStruct && size < type->getObjectSize())) {
+ error(line, "not enough data provided for construction", "constructor");
+ return true;
+ }
+ }
+
+ TIntermTyped *typed = node ? node->getAsTyped() : 0;
+ if (typed == 0) {
+ error(line, "constructor argument does not have a type", "constructor");
+ return true;
+ }
+ if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
+ error(line, "cannot convert a sampler", "constructor");
+ return true;
+ }
+ if (typed->getBasicType() == EbtVoid) {
+ error(line, "cannot convert a void", "constructor");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if a void variable has been declared and raise an error message for such a case
+//
+// returns true in case of an error
+//
+bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
+{
+ if (pubType.type == EbtVoid) {
+ error(line, "illegal use of type 'void'", identifier.c_str());
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
+{
+ if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
+{
+ if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
+{
+ if (pType.type == EbtStruct) {
+ if (containsSampler(*pType.userDef)) {
+ error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
+
+ return true;
+ }
+
+ return false;
+ } else if (IsSampler(pType.type)) {
+ error(line, reason, getBasicString(pType.type));
+
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
+{
+ if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
+ pType.type == EbtStruct) {
+ error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
+
+ return true;
+ }
+
+ if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
+{
+ if ((qualifier == EvqOut || qualifier == EvqInOut) &&
+ type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
+ error(line, "samplers cannot be output parameters", type.getBasicString());
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::containsSampler(TType& type)
+{
+ if (IsSampler(type.getBasicType()))
+ return true;
+
+ if (type.getBasicType() == EbtStruct) {
+ const TFieldList& fields = type.getStruct()->fields();
+ for (unsigned int i = 0; i < fields.size(); ++i) {
+ if (containsSampler(*fields[i]->type()))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Do size checking for an array type's size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
+{
+ TIntermConstantUnion* constant = expr->getAsConstantUnion();
+ if (constant == 0 || constant->getBasicType() != EbtInt) {
+ error(line, "array size must be a constant integer expression", "");
+ return true;
+ }
+
+ size = constant->getIConst(0);
+
+ if (size <= 0) {
+ error(line, "array size must be a positive integer", "");
+ size = 1;
+ return true;
+ }
+
+ return false;
+}
+
+//
+// See if this qualifier can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
+{
+ if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
+ error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// See if this type can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
+{
+ //
+ // Can the type be an array?
+ //
+ if (type.array) {
+ error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do all the semantic checking for declaring an array, with and
+// without a size, and make the right changes to the symbol table.
+//
+// size == 0 means no specified size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arrayErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType type, TVariable*& variable)
+{
+ //
+ // Don't check for reserved word use until after we know it's not in the symbol table,
+ // because reserved arrays can be redeclared.
+ //
+
+ bool builtIn = false;
+ bool sameScope = false;
+ TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
+ if (symbol == 0 || !sameScope) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+
+ if (! symbolTable.insert(*variable)) {
+ delete variable;
+ error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
+ return true;
+ }
+ } else {
+ if (! symbol->isVariable()) {
+ error(line, "variable expected", identifier.c_str());
+ return true;
+ }
+
+ variable = static_cast<TVariable*>(symbol);
+ if (! variable->getType().isArray()) {
+ error(line, "redeclaring non-array as array", identifier.c_str());
+ return true;
+ }
+ if (variable->getType().getArraySize() > 0) {
+ error(line, "redeclaration of array with size", identifier.c_str());
+ return true;
+ }
+
+ if (! variable->getType().sameElementType(TType(type))) {
+ error(line, "redeclaration of array with a different type", identifier.c_str());
+ return true;
+ }
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+//
+// Enforce non-initializer type/qualifier rules.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, bool array)
+{
+ if (type.qualifier == EvqConst)
+ {
+ // Make the qualifier make sense.
+ type.qualifier = EvqTemporary;
+
+ if (array)
+ {
+ error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else if (type.isStructureContainingArrays())
+ {
+ error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else
+ {
+ error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do semantic checking for a variable declaration that has no initializer,
+// and update the symbol table.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, TVariable*& variable)
+{
+ if (reservedErrorCheck(line, identifier))
+ recover();
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (! symbolTable.insert(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ delete variable;
+ variable = 0;
+ return true;
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
+{
+ if (qualifier != EvqConst && qualifier != EvqTemporary) {
+ error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
+ return true;
+ }
+ if (qualifier == EvqConst && paramQualifier != EvqIn) {
+ error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
+ return true;
+ }
+
+ if (qualifier == EvqConst)
+ type->setQualifier(EvqConstReadOnly);
+ else
+ type->setQualifier(paramQualifier);
+
+ return false;
+}
+
+bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
+{
+ const TExtensionBehavior& extBehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
+ if (iter == extBehavior.end()) {
+ error(line, "extension", extension.c_str(), "is not supported");
+ return true;
+ }
+ // In GLSL ES, an extension's default behavior is "disable".
+ if (iter->second == EBhDisable || iter->second == EBhUndefined) {
+ error(line, "extension", extension.c_str(), "is disabled");
+ return true;
+ }
+ if (iter->second == EBhWarn) {
+ warning(line, "extension", extension.c_str(), "is being used");
+ return false;
+ }
+
+ return false;
+}
+
+bool TParseContext::supportsExtension(const char* extension)
+{
+ const TExtensionBehavior& extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+ return (iter != extbehavior.end());
+}
+
+bool TParseContext::isExtensionEnabled(const char* extension) const
+{
+ const TExtensionBehavior& extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+
+ if (iter == extbehavior.end())
+ {
+ return false;
+ }
+
+ return (iter->second == EBhEnable || iter->second == EBhRequire);
+}
+
+/////////////////////////////////////////////////////////////////////////////////
+//
+// Non-Errors.
+//
+/////////////////////////////////////////////////////////////////////////////////
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// Return the function symbol if found, otherwise 0.
+//
+const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, bool *builtIn)
+{
+ // First find by unmangled name to check whether the function name has been
+ // hidden by a variable name or struct typename.
+ // If a function is found, check for one with a matching argument list.
+ const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
+ if (symbol == 0 || symbol->isFunction()) {
+ symbol = symbolTable.find(call->getMangledName(), builtIn);
+ }
+
+ if (symbol == 0) {
+ error(line, "no matching overloaded function found", call->getName().c_str());
+ return 0;
+ }
+
+ if (!symbol->isFunction()) {
+ error(line, "function name expected", call->getName().c_str());
+ return 0;
+ }
+
+ return static_cast<const TFunction*>(symbol);
+}
+
+//
+// Initializers show up in several places in the grammar. Have one set of
+// code to handle them here.
+//
+bool TParseContext::executeInitializer(const TSourceLoc& line, TString& identifier, TPublicType& pType,
+ TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
+{
+ TType type = TType(pType);
+
+ if (variable == 0) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ if (voidErrorCheck(line, identifier, pType))
+ return true;
+
+ //
+ // add variable to symbol table
+ //
+ variable = new TVariable(&identifier, type);
+ if (! symbolTable.insert(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ return true;
+ // don't delete variable, it's used by error recovery, and the pool
+ // pop will take care of the memory
+ }
+ }
+
+ //
+ // identifier must be of type constant, a global, or a temporary
+ //
+ TQualifier qualifier = variable->getType().getQualifier();
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
+ error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
+ return true;
+ }
+ //
+ // test for and propagate constant
+ //
+
+ if (qualifier == EvqConst) {
+ if (qualifier != initializer->getType().getQualifier()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " assigning non-constant to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (type != initializer->getType()) {
+ error(line, " non-matching types for const initializer ",
+ variable->getType().getQualifierString());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (initializer->getAsConstantUnion()) {
+ variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
+ } else if (initializer->getAsSymbolNode()) {
+ const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
+ const TVariable* tVar = static_cast<const TVariable*>(symbol);
+
+ ConstantUnion* constArray = tVar->getConstPointer();
+ variable->shareConstPointer(constArray);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " cannot assign to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ }
+
+ if (qualifier != EvqConst) {
+ TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
+ intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
+ if (intermNode == 0) {
+ assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+ return true;
+ }
+ } else
+ intermNode = 0;
+
+ return false;
+}
+
+bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
+{
+ ASSERT(aggrNode != NULL);
+ if (!aggrNode->isConstructor())
+ return false;
+
+ bool allConstant = true;
+
+ // check if all the child nodes are constants so that they can be inserted into
+ // the parent node
+ TIntermSequence &sequence = aggrNode->getSequence() ;
+ for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
+ if (!(*p)->getAsTyped()->getAsConstantUnion())
+ return false;
+ }
+
+ return allConstant;
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right datatype if it is allowed and required.
+//
+// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc& line)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggrNode = node->getAsAggregate();
+
+ TFieldList::const_iterator memberFields;
+ if (op == EOpConstructStruct)
+ memberFields = type->getStruct()->fields().begin();
+
+ TType elementType = *type;
+ if (type->isArray())
+ elementType.clearArrayness();
+
+ bool singleArg;
+ if (aggrNode) {
+ if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
+ singleArg = true;
+ else
+ singleArg = false;
+ } else
+ singleArg = true;
+
+ TIntermTyped *newNode;
+ if (singleArg) {
+ // If structure constructor or array constructor is being called
+ // for only one parameter inside the structure, we need to call constructStruct function once.
+ if (type->isArray())
+ newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(node, (*memberFields)->type(), 1, node->getLine(), false);
+ else
+ newNode = constructBuiltIn(type, op, node, node->getLine(), false);
+
+ if (newNode && newNode->getAsAggregate()) {
+ TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+ }
+
+ return newNode;
+ }
+
+ //
+ // Handle list of arguments.
+ //
+ TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
+ // if the structure constructor contains more than one parameter, then construct
+ // each parameter
+
+ int paramCount = 0; // keeps a track of the constructor parameter number being checked
+
+ // for each parameter to the constructor call, check to see if the right type is passed or convert them
+ // to the right type if possible (and allowed).
+ // for structure constructors, just check if the right type is passed, no conversion is allowed.
+
+ for (TIntermSequence::iterator p = sequenceVector.begin();
+ p != sequenceVector.end(); p++, paramCount++) {
+ if (type->isArray())
+ newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(*p, memberFields[paramCount]->type(), paramCount+1, node->getLine(), true);
+ else
+ newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
+
+ if (newNode) {
+ *p = newNode;
+ }
+ }
+
+ TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
+ TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+
+ return constructor;
+}
+
+TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
+{
+ bool canBeFolded = areAllChildConst(aggrNode);
+ aggrNode->setType(type);
+ if (canBeFolded) {
+ bool returnVal = false;
+ ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
+ if (aggrNode->getSequence().size() == 1) {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true);
+ }
+ else {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type);
+ }
+ if (returnVal)
+ return 0;
+
+ return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
+ }
+
+ return 0;
+}
+
+// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
+// for the parameter to the constructor (passed to this function). Essentially, it converts
+// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
+// float, then float is converted to int.
+//
+// Returns 0 for an error or the constructed node.
+//
+TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, const TSourceLoc& line, bool subset)
+{
+ TIntermTyped* newNode;
+ TOperator basicOp;
+
+ //
+ // First, convert types as needed.
+ //
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ case EOpConstructFloat:
+ basicOp = EOpConstructFloat;
+ break;
+
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ basicOp = EOpConstructInt;
+ break;
+
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ basicOp = EOpConstructBool;
+ break;
+
+ default:
+ error(line, "unsupported construction", "");
+ recover();
+
+ return 0;
+ }
+ newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
+ if (newNode == 0) {
+ error(line, "can't convert", "constructor");
+ return 0;
+ }
+
+ //
+ // Now, if there still isn't an operation to do the construction, and we need one, add one.
+ //
+
+ // Otherwise, skip out early.
+ if (subset || (newNode != node && newNode->getType() == *type))
+ return newNode;
+
+ // setAggregateOperator will insert a new node for the constructor, as needed.
+ return intermediate.setAggregateOperator(newNode, op, line);
+}
+
+// This function tests for the type of the parameters to the structures constructors. Raises
+// an error message if the expected type does not match the parameter passed to the constructor.
+//
+// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
+//
+TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, const TSourceLoc& line, bool subset)
+{
+ if (*type == node->getAsTyped()->getType()) {
+ if (subset)
+ return node->getAsTyped();
+ else
+ return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert parameter " << paramCount
+ << " from '" << node->getAsTyped()->getType().getBasicString()
+ << "' to '" << type->getBasicString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "constructor", extraInfo.c_str());
+ recover();
+ }
+
+ return 0;
+}
+
+//
+// This function returns the tree representation for the vector field(s) being accessed from contant vector.
+// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
+// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
+// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
+// a constant matrix.
+//
+TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ ConstantUnion *unionArray;
+ if (tempConstantNode) {
+ unionArray = tempConstantNode->getUnionArrayPointer();
+
+ if (!unionArray) {
+ return node;
+ }
+ } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
+ error(line, "Cannot offset into the vector", "Error");
+ recover();
+
+ return 0;
+ }
+
+ ConstantUnion* constArray = new ConstantUnion[fields.num];
+
+ for (int i = 0; i < fields.num; i++) {
+ if (fields.offsets[i] >= node->getType().getNominalSize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ fields.offsets[i] = 0;
+ }
+
+ constArray[i] = unionArray[fields.offsets[i]];
+
+ }
+ typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
+ return typedNode;
+}
+
+//
+// This function returns the column being accessed from a constant matrix. The values are retrieved from
+// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
+// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
+// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ if (index >= node->getType().getNominalSize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "matrix field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ if (tempConstantNode) {
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ int size = tempConstantNode->getType().getNominalSize();
+ typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the matrix", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns an element of an array accessed from a constant array. The values are retrieved from
+// the symbol table and parse-tree is built for the type of the element. The input
+// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
+// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+ TType arrayElementType = node->getType();
+ arrayElementType.clearArrayness();
+
+ if (index >= node->getType().getArraySize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "array field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ if (tempConstantNode) {
+ size_t arrayElementSize = arrayElementType.getObjectSize();
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the array", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns the value of a particular field inside a constant structure from the symbol table.
+// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
+// function and returns the parse-tree with the values of the embedded/nested struct.
+//
+TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, const TSourceLoc& line)
+{
+ const TFieldList& fields = node->getType().getStruct()->fields();
+
+ size_t instanceSize = 0;
+ for (size_t index = 0; index < fields.size(); ++index) {
+ if (fields[index]->name() == identifier) {
+ break;
+ } else {
+ instanceSize += fields[index]->type()->getObjectSize();
+ }
+ }
+
+ TIntermTyped* typedNode = 0;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+ if (tempConstantNode) {
+ ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
+
+ typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
+ } else {
+ error(line, "Cannot offset into the structure", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
+{
+ ++structNestingLevel;
+
+ // Embedded structure definitions are not supported per GLSL ES spec.
+ // They aren't allowed in GLSL either, but we need to detect this here
+ // so we don't rely on the GLSL compiler to catch it.
+ if (structNestingLevel > 1) {
+ error(line, "", "Embedded struct definitions are not allowed");
+ return true;
+ }
+
+ return false;
+}
+
+void TParseContext::exitStructDeclaration()
+{
+ --structNestingLevel;
+}
+
+namespace {
+
+const int kWebGLMaxStructNesting = 4;
+
+} // namespace
+
+bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
+{
+ if (!isWebGLBasedSpec(shaderSpec)) {
+ return false;
+ }
+
+ if (field.type()->getBasicType() != EbtStruct) {
+ return false;
+ }
+
+ // We're already inside a structure definition at this point, so add
+ // one to the field's struct nesting.
+ if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
+ std::stringstream reasonStream;
+ reasonStream << "Reference of struct type "
+ << field.type()->getStruct()->name().c_str()
+ << " exceeds maximum allowed nesting level of "
+ << kWebGLMaxStructNesting;
+ std::string reason = reasonStream.str();
+ error(line, reason.c_str(), field.name().c_str(), "");
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Parse an array index expression
+//
+TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
+{
+ TIntermTyped *indexedExpression = NULL;
+
+ if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
+ {
+ if (baseExpression->getAsSymbolNode())
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
+ }
+ else
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
+ }
+ recover();
+ }
+
+ if (indexExpression->getQualifier() == EvqConst)
+ {
+ int index = indexExpression->getAsConstantUnion()->getIConst(0);
+ if (index < 0)
+ {
+ std::stringstream infoStream;
+ infoStream << index;
+ std::string info = infoStream.str();
+ error(location, "negative index", info.c_str());
+ recover();
+ index = 0;
+ }
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ if (baseExpression->isArray())
+ {
+ // constant folding for arrays
+ indexedExpression = addConstArrayNode(index, baseExpression, location);
+ }
+ else if (baseExpression->isVector())
+ {
+ // constant folding for vectors
+ TVectorFields fields;
+ fields.num = 1;
+ fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
+ indexedExpression = addConstVectorNode(fields, baseExpression, location);
+ }
+ else if (baseExpression->isMatrix())
+ {
+ // constant folding for matrices
+ indexedExpression = addConstMatrixNode(index, baseExpression, location);
+ }
+ }
+ else
+ {
+ if (baseExpression->isArray())
+ {
+ if (index >= baseExpression->getType().getArraySize())
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "array index out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(location, "", "[", extraInfo.c_str());
+ recover();
+ index = baseExpression->getType().getArraySize() - 1;
+ }
+ else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
+ {
+ error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
+ recover();
+ index = 0;
+ }
+ }
+ else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(location, "", "[", extraInfo.c_str());
+ recover();
+ index = baseExpression->getType().getNominalSize() - 1;
+ }
+
+ indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
+ indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
+ }
+ }
+ else
+ {
+ indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
+ }
+
+ if (indexedExpression == 0)
+ {
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setFConst(0.0f);
+ indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
+ }
+ else if (baseExpression->isArray())
+ {
+ const TType &baseType = baseExpression->getType();
+ if (baseType.getStruct())
+ {
+ TType copyOfType(baseType.getStruct());
+ indexedExpression->setType(copyOfType);
+ }
+ else
+ {
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->isMatrix()));
+ }
+
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ indexedExpression->getTypePointer()->setQualifier(EvqConst);
+ }
+ }
+ else if (baseExpression->isMatrix())
+ {
+ TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getNominalSize()));
+ }
+ else if (baseExpression->isVector())
+ {
+ TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
+ }
+ else
+ {
+ indexedExpression->setType(baseExpression->getType());
+ }
+
+ return indexedExpression;
+}
+
+//
+// Parse an array of strings using yyparse.
+//
+// Returns 0 for success.
+//
+int PaParseStrings(size_t count, const char* const string[], const int length[],
+ TParseContext* context) {
+ if ((count == 0) || (string == NULL))
+ return 1;
+
+ if (glslang_initialize(context))
+ return 1;
+
+ int error = glslang_scan(count, string, length, context);
+ if (!error)
+ error = glslang_parse(context);
+
+ glslang_finalize(context);
+
+ return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+}
+
+
+