summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--src/corelib/global/qnumeric.cpp136
-rw-r--r--src/corelib/global/qnumeric.h3
-rw-r--r--tests/auto/corelib/global/qnumeric/tst_qnumeric.cpp93
3 files changed, 232 insertions, 0 deletions
diff --git a/src/corelib/global/qnumeric.cpp b/src/corelib/global/qnumeric.cpp
index 5e71753c8a..83ccb7075d 100644
--- a/src/corelib/global/qnumeric.cpp
+++ b/src/corelib/global/qnumeric.cpp
@@ -41,6 +41,7 @@
#include "qnumeric.h"
#include "qnumeric_p.h"
+#include <string.h>
QT_BEGIN_NAMESPACE
@@ -99,4 +100,139 @@ Q_CORE_EXPORT double qQNaN() { return qt_qnan(); }
Q_CORE_EXPORT double qInf() { return qt_inf(); }
+
+/*!
+ \internal
+ */
+static inline quint32 f2i(float f)
+{
+ quint32 i;
+ memcpy(&i, &f, sizeof(f));
+ return i;
+}
+
+/*!
+ Returns the number of representable floating-point numbers between \a a and \a b.
+
+ This function provides an alternative way of doing approximated comparisons of floating-point
+ numbers similar to qFuzzyCompare(). However, it returns the distance between two numbers, which
+ gives the caller a possibility to choose the accepted error. Errors are relative, so for
+ instance the distance between 1.0E-5 and 1.00001E-5 will give 110, while the distance between
+ 1.0E36 and 1.00001E36 will give 127.
+
+ This function is useful if a floating point comparison requires a certain precision.
+ Therefore, if \a a and \a b are equal it will return 0. The maximum value it will return for 32-bit
+ floating point numbers is 4,278,190,078. This is the distance between \c{-FLT_MAX} and
+ \c{+FLT_MAX}.
+
+ The function does not give meaningful results if any of the arguments are \c Infinite or \c NaN.
+ You can check for this by calling qIsFinite().
+
+ The return value can be considered as the "error", so if you for instance want to compare
+ two 32-bit floating point numbers and all you need is an approximated 24-bit precision, you can
+ use this function like this:
+
+ \code
+ if (qFloatDistance(a, b) < (1 << 7)) { // The last 7 bits are not
+ // significant
+ // precise enough
+ }
+ \endcode
+
+ \sa qFuzzyCompare()
+ \relates <QtGlobal>
+*/
+Q_CORE_EXPORT quint32 qFloatDistance(float a, float b)
+{
+ static const quint32 smallestPositiveFloatAsBits = 0x00000001; // denormalized, (SMALLEST), (1.4E-45)
+ /* Assumes:
+ * IEE754 format.
+ * Integers and floats have the same endian
+ */
+ Q_STATIC_ASSERT(sizeof(quint32) == sizeof(float));
+ Q_ASSERT(qIsFinite(a) && qIsFinite(b));
+ if (a == b)
+ return 0;
+ if ((a < 0) != (b < 0)) {
+ // if they have different signs
+ if (a < 0)
+ a = -a;
+ else /*if (b < 0)*/
+ b = -b;
+ return qFloatDistance(0.0F, a) + qFloatDistance(0.0F, b);
+ }
+ if (a < 0) {
+ a = -a;
+ b = -b;
+ }
+ // at this point a and b should not be negative
+
+ // 0 is special
+ if (!a)
+ return f2i(b) - smallestPositiveFloatAsBits + 1;
+ if (!b)
+ return f2i(a) - smallestPositiveFloatAsBits + 1;
+
+ // finally do the common integer subtraction
+ return a > b ? f2i(a) - f2i(b) : f2i(b) - f2i(a);
+}
+
+
+/*!
+ \internal
+ */
+static inline quint64 d2i(double d)
+{
+ quint64 i;
+ memcpy(&i, &d, sizeof(d));
+ return i;
+}
+
+/*!
+ Returns the number of representable floating-point numbers between \a a and \a b.
+
+ This function serves the same purpose as \c{qFloatDistance(float, float)}, but
+ returns the distance between two \c double numbers. Since the range is larger
+ than for two \c float numbers (\c{[-DBL_MAX,DBL_MAX]}), the return type is quint64.
+
+
+ \sa qFuzzyCompare()
+ \relates <QtGlobal>
+*/
+Q_CORE_EXPORT quint64 qFloatDistance(double a, double b)
+{
+ static const quint64 smallestPositiveFloatAsBits = 0x1; // denormalized, (SMALLEST)
+ /* Assumes:
+ * IEE754 format double precision
+ * Integers and floats have the same endian
+ */
+ Q_STATIC_ASSERT(sizeof(quint64) == sizeof(double));
+ Q_ASSERT(qIsFinite(a) && qIsFinite(b));
+ if (a == b)
+ return 0;
+ if ((a < 0) != (b < 0)) {
+ // if they have different signs
+ if (a < 0)
+ a = -a;
+ else /*if (b < 0)*/
+ b = -b;
+ return qFloatDistance(0.0, a) + qFloatDistance(0.0, b);
+ }
+ if (a < 0) {
+ a = -a;
+ b = -b;
+ }
+ // at this point a and b should not be negative
+
+ // 0 is special
+ if (!a)
+ return d2i(b) - smallestPositiveFloatAsBits + 1;
+ if (!b)
+ return d2i(a) - smallestPositiveFloatAsBits + 1;
+
+ // finally do the common integer subtraction
+ return a > b ? d2i(a) - d2i(b) : d2i(b) - d2i(a);
+}
+
+
QT_END_NAMESPACE
diff --git a/src/corelib/global/qnumeric.h b/src/corelib/global/qnumeric.h
index 25db5443eb..633486dff1 100644
--- a/src/corelib/global/qnumeric.h
+++ b/src/corelib/global/qnumeric.h
@@ -57,6 +57,9 @@ Q_CORE_EXPORT double qSNaN();
Q_CORE_EXPORT double qQNaN();
Q_CORE_EXPORT double qInf();
+Q_CORE_EXPORT quint32 qFloatDistance(float a, float b);
+Q_CORE_EXPORT quint64 qFloatDistance(double a, double b);
+
#define Q_INFINITY (QT_PREPEND_NAMESPACE(qInf)())
#define Q_SNAN (QT_PREPEND_NAMESPACE(qSNaN)())
#define Q_QNAN (QT_PREPEND_NAMESPACE(qQNaN)())
diff --git a/tests/auto/corelib/global/qnumeric/tst_qnumeric.cpp b/tests/auto/corelib/global/qnumeric/tst_qnumeric.cpp
index 20f99e9191..36e01a0ccd 100644
--- a/tests/auto/corelib/global/qnumeric/tst_qnumeric.cpp
+++ b/tests/auto/corelib/global/qnumeric/tst_qnumeric.cpp
@@ -44,6 +44,7 @@
#include <QtGlobal>
#include <math.h>
+#include <float.h>
class tst_QNumeric: public QObject
{
@@ -53,6 +54,10 @@ private slots:
void fuzzyCompare_data();
void fuzzyCompare();
void qNan();
+ void floatDistance_data();
+ void floatDistance();
+ void floatDistance_double_data();
+ void floatDistance_double();
};
void tst_QNumeric::fuzzyCompare_data()
@@ -121,5 +126,93 @@ void tst_QNumeric::qNan()
QVERIFY(qFuzzyCompare(1/inf, 0.0));
}
+void tst_QNumeric::floatDistance_data()
+{
+ QTest::addColumn<float>("val1");
+ QTest::addColumn<float>("val2");
+ QTest::addColumn<quint32>("expectedDistance");
+
+ // exponent: 8 bits
+ // mantissa: 23 bits
+ const quint32 number_of_denormals = (1 << 23) - 1; // Set to 0 if denormals are not included
+
+ quint32 _0_to_1 = quint32((1 << 23) * 126 + 1 + number_of_denormals); // We need +1 to include the 0
+ quint32 _1_to_2 = quint32(1 << 23);
+
+ // We don't need +1 because FLT_MAX has all bits set in the mantissa. (Thus mantissa
+ // have not wrapped back to 0, which would be the case for 1 in _0_to_1
+ quint32 _0_to_FLT_MAX = quint32((1 << 23) * 254) + number_of_denormals;
+
+ quint32 _0_to_FLT_MIN = 1 + number_of_denormals;
+ QTest::newRow("[0,FLT_MIN]") << 0.F << FLT_MIN << _0_to_FLT_MIN;
+ QTest::newRow("[0,FLT_MAX]") << 0.F << FLT_MAX << _0_to_FLT_MAX;
+ QTest::newRow("[1,1.5]") << 1.0F << 1.5F << quint32(1 << 22);
+ QTest::newRow("[0,1]") << 0.F << 1.0F << _0_to_1;
+ QTest::newRow("[0.5,1]") << 0.5F << 1.0F << quint32(1 << 23);
+ QTest::newRow("[1,2]") << 1.F << 2.0F << _1_to_2;
+ QTest::newRow("[-1,+1]") << -1.F << +1.0F << 2 * _0_to_1;
+ QTest::newRow("[-1,0]") << -1.F << 0.0F << _0_to_1;
+ QTest::newRow("[-1,FLT_MAX]") << -1.F << FLT_MAX << _0_to_1 + _0_to_FLT_MAX;
+ QTest::newRow("[-2,-1") << -2.F << -1.F << _1_to_2;
+ QTest::newRow("[-1,-2") << -1.F << -2.F << _1_to_2;
+ QTest::newRow("[FLT_MIN,FLT_MAX]") << FLT_MIN << FLT_MAX << _0_to_FLT_MAX - _0_to_FLT_MIN;
+ QTest::newRow("[-FLT_MAX,FLT_MAX]") << -FLT_MAX << FLT_MAX << (2*_0_to_FLT_MAX);
+ float denormal = FLT_MIN;
+ denormal/=2.0F;
+ QTest::newRow("denormal") << 0.F << denormal << _0_to_FLT_MIN/2;
+}
+
+void tst_QNumeric::floatDistance()
+{
+ QFETCH(float, val1);
+ QFETCH(float, val2);
+ QFETCH(quint32, expectedDistance);
+ QCOMPARE(qFloatDistance(val1, val2), expectedDistance);
+}
+
+void tst_QNumeric::floatDistance_double_data()
+{
+ QTest::addColumn<double>("val1");
+ QTest::addColumn<double>("val2");
+ QTest::addColumn<quint64>("expectedDistance");
+
+ // exponent: 11 bits
+ // mantissa: 52 bits
+ const quint64 number_of_denormals = (Q_UINT64_C(1) << 52) - 1; // Set to 0 if denormals are not included
+
+ quint64 _0_to_1 = (Q_UINT64_C(1) << 52) * ((1 << (11-1)) - 2) + 1 + number_of_denormals; // We need +1 to include the 0
+ quint64 _1_to_2 = Q_UINT64_C(1) << 52;
+
+ // We don't need +1 because DBL_MAX has all bits set in the mantissa. (Thus mantissa
+ // have not wrapped back to 0, which would be the case for 1 in _0_to_1
+ quint64 _0_to_DBL_MAX = quint64((Q_UINT64_C(1) << 52) * ((1 << 11) - 2)) + number_of_denormals;
+
+ quint64 _0_to_DBL_MIN = 1 + number_of_denormals;
+ QTest::newRow("[0,DBL_MIN]") << 0.0 << DBL_MIN << _0_to_DBL_MIN;
+ QTest::newRow("[0,DBL_MAX]") << 0.0 << DBL_MAX << _0_to_DBL_MAX;
+ QTest::newRow("[1,1.5]") << 1.0 << 1.5 << (Q_UINT64_C(1) << 51);
+ QTest::newRow("[0,1]") << 0.0 << 1.0 << _0_to_1;
+ QTest::newRow("[0.5,1]") << 0.5 << 1.0 << (Q_UINT64_C(1) << 52);
+ QTest::newRow("[1,2]") << 1.0 << 2.0 << _1_to_2;
+ QTest::newRow("[-1,+1]") << -1.0 << +1.0 << 2 * _0_to_1;
+ QTest::newRow("[-1,0]") << -1.0 << 0.0 << _0_to_1;
+ QTest::newRow("[-1,DBL_MAX]") << -1.0 << DBL_MAX << _0_to_1 + _0_to_DBL_MAX;
+ QTest::newRow("[-2,-1") << -2.0 << -1.0 << _1_to_2;
+ QTest::newRow("[-1,-2") << -1.0 << -2.0 << _1_to_2;
+ QTest::newRow("[DBL_MIN,DBL_MAX]") << DBL_MIN << DBL_MAX << _0_to_DBL_MAX - _0_to_DBL_MIN;
+ QTest::newRow("[-DBL_MAX,DBL_MAX]") << -DBL_MAX << DBL_MAX << (2*_0_to_DBL_MAX);
+ double denormal = DBL_MIN;
+ denormal/=2.0;
+ QTest::newRow("denormal") << 0.0 << denormal << _0_to_DBL_MIN/2;
+}
+
+void tst_QNumeric::floatDistance_double()
+{
+ QFETCH(double, val1);
+ QFETCH(double, val2);
+ QFETCH(quint64, expectedDistance);
+ QCOMPARE(qFloatDistance(val1, val2), expectedDistance);
+}
+
QTEST_APPLESS_MAIN(tst_QNumeric)
#include "tst_qnumeric.moc"