summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp
blob: ba09fd77dffb30a912ded7404351cab7c1dc2607 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

#include "compiler/translator/EmulatePrecision.h"

#include <memory>

namespace sh
{

namespace
{

class RoundingHelperWriter : angle::NonCopyable
{
  public:
    static RoundingHelperWriter *createHelperWriter(const ShShaderOutput outputLanguage);

    void writeCommonRoundingHelpers(TInfoSinkBase &sink, const int shaderVersion);
    void writeCompoundAssignmentHelper(TInfoSinkBase &sink,
                                       const char *lType,
                                       const char *rType,
                                       const char *opStr,
                                       const char *opNameStr);

    virtual ~RoundingHelperWriter() {}

  protected:
    RoundingHelperWriter(const ShShaderOutput outputLanguage) : mOutputLanguage(outputLanguage) {}
    RoundingHelperWriter() = delete;

    const ShShaderOutput mOutputLanguage;

  private:
    virtual std::string getTypeString(const char *glslType)     = 0;
    virtual void writeFloatRoundingHelpers(TInfoSinkBase &sink) = 0;
    virtual void writeVectorRoundingHelpers(TInfoSinkBase &sink, const unsigned int size) = 0;
    virtual void writeMatrixRoundingHelper(TInfoSinkBase &sink,
                                           const unsigned int columns,
                                           const unsigned int rows,
                                           const char *functionName) = 0;
};

class RoundingHelperWriterGLSL : public RoundingHelperWriter
{
  public:
    RoundingHelperWriterGLSL(const ShShaderOutput outputLanguage)
        : RoundingHelperWriter(outputLanguage)
    {
    }

  private:
    std::string getTypeString(const char *glslType) override;
    void writeFloatRoundingHelpers(TInfoSinkBase &sink) override;
    void writeVectorRoundingHelpers(TInfoSinkBase &sink, const unsigned int size) override;
    void writeMatrixRoundingHelper(TInfoSinkBase &sink,
                                   const unsigned int columns,
                                   const unsigned int rows,
                                   const char *functionName) override;
};

class RoundingHelperWriterESSL : public RoundingHelperWriterGLSL
{
  public:
    RoundingHelperWriterESSL(const ShShaderOutput outputLanguage)
        : RoundingHelperWriterGLSL(outputLanguage)
    {
    }

  private:
    std::string getTypeString(const char *glslType) override;
};

class RoundingHelperWriterHLSL : public RoundingHelperWriter
{
  public:
    RoundingHelperWriterHLSL(const ShShaderOutput outputLanguage)
        : RoundingHelperWriter(outputLanguage)
    {
    }

  private:
    std::string getTypeString(const char *glslType) override;
    void writeFloatRoundingHelpers(TInfoSinkBase &sink) override;
    void writeVectorRoundingHelpers(TInfoSinkBase &sink, const unsigned int size) override;
    void writeMatrixRoundingHelper(TInfoSinkBase &sink,
                                   const unsigned int columns,
                                   const unsigned int rows,
                                   const char *functionName) override;
};

RoundingHelperWriter *RoundingHelperWriter::createHelperWriter(const ShShaderOutput outputLanguage)
{
    ASSERT(EmulatePrecision::SupportedInLanguage(outputLanguage));
    switch (outputLanguage)
    {
        case SH_HLSL_4_1_OUTPUT:
            return new RoundingHelperWriterHLSL(outputLanguage);
        case SH_ESSL_OUTPUT:
            return new RoundingHelperWriterESSL(outputLanguage);
        default:
            return new RoundingHelperWriterGLSL(outputLanguage);
    }
}

void RoundingHelperWriter::writeCommonRoundingHelpers(TInfoSinkBase &sink, const int shaderVersion)
{
    // Write the angle_frm functions that round floating point numbers to
    // half precision, and angle_frl functions that round them to minimum lowp
    // precision.

    writeFloatRoundingHelpers(sink);
    writeVectorRoundingHelpers(sink, 2);
    writeVectorRoundingHelpers(sink, 3);
    writeVectorRoundingHelpers(sink, 4);
    if (shaderVersion > 100)
    {
        for (unsigned int columns = 2; columns <= 4; ++columns)
        {
            for (unsigned int rows = 2; rows <= 4; ++rows)
            {
                writeMatrixRoundingHelper(sink, columns, rows, "angle_frm");
                writeMatrixRoundingHelper(sink, columns, rows, "angle_frl");
            }
        }
    }
    else
    {
        for (unsigned int size = 2; size <= 4; ++size)
        {
            writeMatrixRoundingHelper(sink, size, size, "angle_frm");
            writeMatrixRoundingHelper(sink, size, size, "angle_frl");
        }
    }
}

void RoundingHelperWriter::writeCompoundAssignmentHelper(TInfoSinkBase &sink,
                                                         const char *lType,
                                                         const char *rType,
                                                         const char *opStr,
                                                         const char *opNameStr)
{
    std::string lTypeStr = getTypeString(lType);
    std::string rTypeStr = getTypeString(rType);

    // Note that y should be passed through angle_frm at the function call site,
    // but x can't be passed through angle_frm there since it is an inout parameter.
    // So only pass x and the result through angle_frm here.
    // clang-format off
    sink <<
        lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
        "    x = angle_frm(angle_frm(x) " << opStr << " y);\n"
        "    return x;\n"
        "}\n";
    sink <<
        lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
        "    x = angle_frl(angle_frl(x) " << opStr << " y);\n"
        "    return x;\n"
        "}\n";
    // clang-format on
}

std::string RoundingHelperWriterGLSL::getTypeString(const char *glslType)
{
    return glslType;
}

std::string RoundingHelperWriterESSL::getTypeString(const char *glslType)
{
    std::stringstream typeStrStr;
    typeStrStr << "highp " << glslType;
    return typeStrStr.str();
}

void RoundingHelperWriterGLSL::writeFloatRoundingHelpers(TInfoSinkBase &sink)
{
    // Unoptimized version of angle_frm for single floats:
    //
    // int webgl_maxNormalExponent(in int exponentBits)
    // {
    //     int possibleExponents = int(exp2(float(exponentBits)));
    //     int exponentBias = possibleExponents / 2 - 1;
    //     int allExponentBitsOne = possibleExponents - 1;
    //     return (allExponentBitsOne - 1) - exponentBias;
    // }
    //
    // float angle_frm(in float x)
    // {
    //     int mantissaBits = 10;
    //     int exponentBits = 5;
    //     float possibleMantissas = exp2(float(mantissaBits));
    //     float mantissaMax = 2.0 - 1.0 / possibleMantissas;
    //     int maxNE = webgl_maxNormalExponent(exponentBits);
    //     float max = exp2(float(maxNE)) * mantissaMax;
    //     if (x > max)
    //     {
    //         return max;
    //     }
    //     if (x < -max)
    //     {
    //         return -max;
    //     }
    //     float exponent = floor(log2(abs(x)));
    //     if (abs(x) == 0.0 || exponent < -float(maxNE))
    //     {
    //         return 0.0 * sign(x)
    //     }
    //     x = x * exp2(-(exponent - float(mantissaBits)));
    //     x = sign(x) * floor(abs(x));
    //     return x * exp2(exponent - float(mantissaBits));
    // }

    // All numbers with a magnitude less than 2^-15 are subnormal, and are
    // flushed to zero.

    // Note the constant numbers below:
    // a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times
    //    2^15, the maximum normal exponent.
    // b) 10.0 is the number of mantissa bits.
    // c) -25.0 is the minimum normal half-float exponent -15.0 minus the number
    //    of mantissa bits.
    // d) + 1e-30 is to make sure the argument of log2() won't be zero. It can
    //    only affect the result of log2 on x where abs(x) < 1e-22. Since these
    //    numbers will be flushed to zero either way (2^-15 is the smallest
    //    normal positive number), this does not introduce any error.

    std::string floatType = getTypeString("float");

    // clang-format off
    sink <<
        floatType << " angle_frm(in " << floatType << " x) {\n"
        "    x = clamp(x, -65504.0, 65504.0);\n"
        "    " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n"
        "    bool isNonZero = (exponent >= -25.0);\n"
        "    x = x * exp2(-exponent);\n"
        "    x = sign(x) * floor(abs(x));\n"
        "    return x * exp2(exponent) * float(isNonZero);\n"
        "}\n";

    sink <<
        floatType << " angle_frl(in " << floatType << " x) {\n"
        "    x = clamp(x, -2.0, 2.0);\n"
        "    x = x * 256.0;\n"
        "    x = sign(x) * floor(abs(x));\n"
        "    return x * 0.00390625;\n"
        "}\n";
    // clang-format on
}

void RoundingHelperWriterGLSL::writeVectorRoundingHelpers(TInfoSinkBase &sink,
                                                          const unsigned int size)
{
    std::stringstream vecTypeStrStr;
    vecTypeStrStr << "vec" << size;
    std::string vecType = getTypeString(vecTypeStrStr.str().c_str());

    // clang-format off
    sink <<
        vecType << " angle_frm(in " << vecType << " v) {\n"
        "    v = clamp(v, -65504.0, 65504.0);\n"
        "    " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
        "    bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n"
        "    v = v * exp2(-exponent);\n"
        "    v = sign(v) * floor(abs(v));\n"
        "    return v * exp2(exponent) * vec" << size << "(isNonZero);\n"
        "}\n";

    sink <<
        vecType << " angle_frl(in " << vecType << " v) {\n"
        "    v = clamp(v, -2.0, 2.0);\n"
        "    v = v * 256.0;\n"
        "    v = sign(v) * floor(abs(v));\n"
        "    return v * 0.00390625;\n"
        "}\n";
    // clang-format on
}

void RoundingHelperWriterGLSL::writeMatrixRoundingHelper(TInfoSinkBase &sink,
                                                         const unsigned int columns,
                                                         const unsigned int rows,
                                                         const char *functionName)
{
    std::stringstream matTypeStrStr;
    matTypeStrStr << "mat" << columns;
    if (rows != columns)
    {
        matTypeStrStr << "x" << rows;
    }
    std::string matType = getTypeString(matTypeStrStr.str().c_str());

    sink << matType << " " << functionName << "(in " << matType << " m) {\n"
         << "    " << matType << " rounded;\n";

    for (unsigned int i = 0; i < columns; ++i)
    {
        sink << "    rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
    }

    sink << "    return rounded;\n"
            "}\n";
}

static const char *GetHLSLTypeStr(const char *floatTypeStr)
{
    if (strcmp(floatTypeStr, "float") == 0)
    {
        return "float";
    }
    if (strcmp(floatTypeStr, "vec2") == 0)
    {
        return "float2";
    }
    if (strcmp(floatTypeStr, "vec3") == 0)
    {
        return "float3";
    }
    if (strcmp(floatTypeStr, "vec4") == 0)
    {
        return "float4";
    }
    if (strcmp(floatTypeStr, "mat2") == 0)
    {
        return "float2x2";
    }
    if (strcmp(floatTypeStr, "mat3") == 0)
    {
        return "float3x3";
    }
    if (strcmp(floatTypeStr, "mat4") == 0)
    {
        return "float4x4";
    }
    if (strcmp(floatTypeStr, "mat2x3") == 0)
    {
        return "float2x3";
    }
    if (strcmp(floatTypeStr, "mat2x4") == 0)
    {
        return "float2x4";
    }
    if (strcmp(floatTypeStr, "mat3x2") == 0)
    {
        return "float3x2";
    }
    if (strcmp(floatTypeStr, "mat3x4") == 0)
    {
        return "float3x4";
    }
    if (strcmp(floatTypeStr, "mat4x2") == 0)
    {
        return "float4x2";
    }
    if (strcmp(floatTypeStr, "mat4x3") == 0)
    {
        return "float4x3";
    }
    UNREACHABLE();
    return nullptr;
}

std::string RoundingHelperWriterHLSL::getTypeString(const char *glslType)
{
    return GetHLSLTypeStr(glslType);
}

void RoundingHelperWriterHLSL::writeFloatRoundingHelpers(TInfoSinkBase &sink)
{
    // In HLSL scalars are the same as 1-vectors.
    writeVectorRoundingHelpers(sink, 1);
}

void RoundingHelperWriterHLSL::writeVectorRoundingHelpers(TInfoSinkBase &sink,
                                                          const unsigned int size)
{
    std::stringstream vecTypeStrStr;
    vecTypeStrStr << "float" << size;
    std::string vecType = vecTypeStrStr.str();

    // clang-format off
    sink <<
        vecType << " angle_frm(" << vecType << " v) {\n"
        "    v = clamp(v, -65504.0, 65504.0);\n"
        "    " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
        "    bool" << size << " isNonZero = exponent < -25.0;\n"
        "    v = v * exp2(-exponent);\n"
        "    v = sign(v) * floor(abs(v));\n"
        "    return v * exp2(exponent) * (float" << size << ")(isNonZero);\n"
        "}\n";

    sink <<
        vecType << " angle_frl(" << vecType << " v) {\n"
        "    v = clamp(v, -2.0, 2.0);\n"
        "    v = v * 256.0;\n"
        "    v = sign(v) * floor(abs(v));\n"
        "    return v * 0.00390625;\n"
        "}\n";
    // clang-format on
}

void RoundingHelperWriterHLSL::writeMatrixRoundingHelper(TInfoSinkBase &sink,
                                                         const unsigned int columns,
                                                         const unsigned int rows,
                                                         const char *functionName)
{
    std::stringstream matTypeStrStr;
    matTypeStrStr << "float" << columns << "x" << rows;
    std::string matType = matTypeStrStr.str();

    sink << matType << " " << functionName << "(" << matType << " m) {\n"
         << "    " << matType << " rounded;\n";

    for (unsigned int i = 0; i < columns; ++i)
    {
        sink << "    rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
    }

    sink << "    return rounded;\n"
            "}\n";
}

bool canRoundFloat(const TType &type)
{
    return type.getBasicType() == EbtFloat && !type.isArray() &&
           (type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium);
}

TIntermAggregate *createInternalFunctionCallNode(const TType &type,
                                                 TString name,
                                                 TIntermSequence *arguments)
{
    TName nameObj(name);
    nameObj.setInternal(true);
    TIntermAggregate *callNode =
        TIntermAggregate::Create(type, EOpCallInternalRawFunction, arguments);
    callNode->getFunctionSymbolInfo()->setNameObj(nameObj);
    return callNode;
}

TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild)
{
    TString roundFunctionName;
    if (roundedChild->getPrecision() == EbpMedium)
        roundFunctionName = "angle_frm";
    else
        roundFunctionName      = "angle_frl";
    TIntermSequence *arguments = new TIntermSequence();
    arguments->push_back(roundedChild);
    TIntermAggregate *callNode =
        createInternalFunctionCallNode(roundedChild->getType(), roundFunctionName, arguments);
    callNode->getFunctionSymbolInfo()->setKnownToNotHaveSideEffects(true);
    return callNode;
}

TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left,
                                                           TIntermTyped *right,
                                                           const char *opNameStr)
{
    std::stringstream strstr;
    if (left->getPrecision() == EbpMedium)
        strstr << "angle_compound_" << opNameStr << "_frm";
    else
        strstr << "angle_compound_" << opNameStr << "_frl";
    TString functionName       = strstr.str().c_str();
    TIntermSequence *arguments = new TIntermSequence();
    arguments->push_back(left);
    arguments->push_back(right);
    return createInternalFunctionCallNode(left->getType(), functionName, arguments);
}

bool ParentUsesResult(TIntermNode *parent, TIntermTyped *node)
{
    if (!parent)
    {
        return false;
    }

    TIntermBlock *blockParent = parent->getAsBlock();
    // If the parent is a block, the result is not assigned anywhere,
    // so rounding it is not needed. In particular, this can avoid a lot of
    // unnecessary rounding of unused return values of assignment.
    if (blockParent)
    {
        return false;
    }
    TIntermBinary *binaryParent = parent->getAsBinaryNode();
    if (binaryParent && binaryParent->getOp() == EOpComma && (binaryParent->getRight() != node))
    {
        return false;
    }
    return true;
}

bool ParentConstructorTakesCareOfRounding(TIntermNode *parent, TIntermTyped *node)
{
    if (!parent)
    {
        return false;
    }
    TIntermAggregate *parentConstructor = parent->getAsAggregate();
    if (!parentConstructor || parentConstructor->getOp() != EOpConstruct)
    {
        return false;
    }
    if (parentConstructor->getPrecision() != node->getPrecision())
    {
        return false;
    }
    return canRoundFloat(parentConstructor->getType());
}

}  // namespace anonymous

EmulatePrecision::EmulatePrecision(TSymbolTable *symbolTable, int shaderVersion)
    : TLValueTrackingTraverser(true, true, true, symbolTable, shaderVersion),
      mDeclaringVariables(false)
{
}

void EmulatePrecision::visitSymbol(TIntermSymbol *node)
{
    TIntermNode *parent = getParentNode();
    if (canRoundFloat(node->getType()) && ParentUsesResult(parent, node) &&
        !ParentConstructorTakesCareOfRounding(parent, node) && !mDeclaringVariables &&
        !isLValueRequiredHere())
    {
        TIntermNode *replacement = createRoundingFunctionCallNode(node);
        queueReplacement(replacement, OriginalNode::BECOMES_CHILD);
    }
}

bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node)
{
    bool visitChildren = true;

    TOperator op = node->getOp();

    // RHS of initialize is not being declared.
    if (op == EOpInitialize && visit == InVisit)
        mDeclaringVariables = false;

    if ((op == EOpIndexDirectStruct) && visit == InVisit)
        visitChildren = false;

    if (visit != PreVisit)
        return visitChildren;

    const TType &type = node->getType();
    bool roundFloat   = canRoundFloat(type);

    if (roundFloat)
    {
        switch (op)
        {
            // Math operators that can result in a float may need to apply rounding to the return
            // value. Note that in the case of assignment, the rounding is applied to its return
            // value here, not the value being assigned.
            case EOpAssign:
            case EOpAdd:
            case EOpSub:
            case EOpMul:
            case EOpDiv:
            case EOpVectorTimesScalar:
            case EOpVectorTimesMatrix:
            case EOpMatrixTimesVector:
            case EOpMatrixTimesScalar:
            case EOpMatrixTimesMatrix:
            {
                TIntermNode *parent = getParentNode();
                if (!ParentUsesResult(parent, node) ||
                    ParentConstructorTakesCareOfRounding(parent, node))
                {
                    break;
                }
                TIntermNode *replacement = createRoundingFunctionCallNode(node);
                queueReplacement(replacement, OriginalNode::BECOMES_CHILD);
                break;
            }

            // Compound assignment cases need to replace the operator with a function call.
            case EOpAddAssign:
            {
                mEmulateCompoundAdd.insert(
                    TypePair(type.getBuiltInTypeNameString(),
                             node->getRight()->getType().getBuiltInTypeNameString()));
                TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(
                    node->getLeft(), node->getRight(), "add");
                queueReplacement(replacement, OriginalNode::IS_DROPPED);
                break;
            }
            case EOpSubAssign:
            {
                mEmulateCompoundSub.insert(
                    TypePair(type.getBuiltInTypeNameString(),
                             node->getRight()->getType().getBuiltInTypeNameString()));
                TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(
                    node->getLeft(), node->getRight(), "sub");
                queueReplacement(replacement, OriginalNode::IS_DROPPED);
                break;
            }
            case EOpMulAssign:
            case EOpVectorTimesMatrixAssign:
            case EOpVectorTimesScalarAssign:
            case EOpMatrixTimesScalarAssign:
            case EOpMatrixTimesMatrixAssign:
            {
                mEmulateCompoundMul.insert(
                    TypePair(type.getBuiltInTypeNameString(),
                             node->getRight()->getType().getBuiltInTypeNameString()));
                TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(
                    node->getLeft(), node->getRight(), "mul");
                queueReplacement(replacement, OriginalNode::IS_DROPPED);
                break;
            }
            case EOpDivAssign:
            {
                mEmulateCompoundDiv.insert(
                    TypePair(type.getBuiltInTypeNameString(),
                             node->getRight()->getType().getBuiltInTypeNameString()));
                TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(
                    node->getLeft(), node->getRight(), "div");
                queueReplacement(replacement, OriginalNode::IS_DROPPED);
                break;
            }
            default:
                // The rest of the binary operations should not need precision emulation.
                break;
        }
    }
    return visitChildren;
}

bool EmulatePrecision::visitDeclaration(Visit visit, TIntermDeclaration *node)
{
    // Variable or interface block declaration.
    if (visit == PreVisit)
    {
        mDeclaringVariables = true;
    }
    else if (visit == InVisit)
    {
        mDeclaringVariables = true;
    }
    else
    {
        mDeclaringVariables = false;
    }
    return true;
}

bool EmulatePrecision::visitInvariantDeclaration(Visit visit, TIntermInvariantDeclaration *node)
{
    return false;
}

bool EmulatePrecision::visitFunctionPrototype(Visit visit, TIntermFunctionPrototype *node)
{
    return false;
}

bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node)
{
    if (visit != PreVisit)
        return true;
    switch (node->getOp())
    {
        case EOpCallInternalRawFunction:
        case EOpCallFunctionInAST:
            // User-defined function return values are not rounded. The calculations that produced
            // the value inside the function definition should have been rounded.
            break;
        case EOpConstruct:
            if (node->getBasicType() == EbtStruct)
            {
                break;
            }
        default:
            TIntermNode *parent = getParentNode();
            if (canRoundFloat(node->getType()) && ParentUsesResult(parent, node) &&
                !ParentConstructorTakesCareOfRounding(parent, node))
            {
                TIntermNode *replacement = createRoundingFunctionCallNode(node);
                queueReplacement(replacement, OriginalNode::BECOMES_CHILD);
            }
            break;
    }
    return true;
}

bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node)
{
    switch (node->getOp())
    {
        case EOpNegative:
        case EOpLogicalNot:
        case EOpPostIncrement:
        case EOpPostDecrement:
        case EOpPreIncrement:
        case EOpPreDecrement:
        case EOpLogicalNotComponentWise:
            break;
        default:
            if (canRoundFloat(node->getType()) && visit == PreVisit)
            {
                TIntermNode *replacement = createRoundingFunctionCallNode(node);
                queueReplacement(replacement, OriginalNode::BECOMES_CHILD);
            }
            break;
    }

    return true;
}

void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase &sink,
                                             const int shaderVersion,
                                             const ShShaderOutput outputLanguage)
{
    std::unique_ptr<RoundingHelperWriter> roundingHelperWriter(
        RoundingHelperWriter::createHelperWriter(outputLanguage));

    roundingHelperWriter->writeCommonRoundingHelpers(sink, shaderVersion);

    EmulationSet::const_iterator it;
    for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++)
        roundingHelperWriter->writeCompoundAssignmentHelper(sink, it->lType, it->rType, "+", "add");
    for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++)
        roundingHelperWriter->writeCompoundAssignmentHelper(sink, it->lType, it->rType, "-", "sub");
    for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++)
        roundingHelperWriter->writeCompoundAssignmentHelper(sink, it->lType, it->rType, "/", "div");
    for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++)
        roundingHelperWriter->writeCompoundAssignmentHelper(sink, it->lType, it->rType, "*", "mul");
}

// static
bool EmulatePrecision::SupportedInLanguage(const ShShaderOutput outputLanguage)
{
    switch (outputLanguage)
    {
        case SH_HLSL_4_1_OUTPUT:
        case SH_ESSL_OUTPUT:
            return true;
        default:
            // Other languages not yet supported
            return (outputLanguage == SH_GLSL_COMPATIBILITY_OUTPUT ||
                    sh::IsGLSL130OrNewer(outputLanguage));
    }
}

}  // namespace sh