summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h904
1 files changed, 904 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
new file mode 100644
index 000000000..14692365f
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -0,0 +1,904 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
+#define EIGEN_SELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen {
+
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver;
+
+namespace internal {
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
+
+template<typename MatrixType, typename DiagType, typename SubDiagType>
+EIGEN_DEVICE_FUNC
+ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class SelfAdjointEigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template.
+ *
+ * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
+ * matrices, this means that the matrix is symmetric: it equals its
+ * transpose. This class computes the eigenvalues and eigenvectors of a
+ * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
+ * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
+ * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
+ * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
+ * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
+ * eigendecomposition.
+ *
+ * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
+ * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
+ * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
+ * equal to its transpose, \f$ V^{-1} = V^T \f$.
+ *
+ * The algorithm exploits the fact that the matrix is selfadjoint, making it
+ * faster and more accurate than the general purpose eigenvalue algorithms
+ * implemented in EigenSolver and ComplexEigenSolver.
+ *
+ * Only the \b lower \b triangular \b part of the input matrix is referenced.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
+ * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
+ * and eigenvectors are computed, they can be retrieved with the eigenvalues()
+ * and eigenvectors() functions.
+ *
+ * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
+ * contains an example of the typical use of this class.
+ *
+ * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
+ * the likes, see the class GeneralizedSelfAdjointEigenSolver.
+ *
+ * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType> class SelfAdjointEigenSolver
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ enum {
+ Size = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type \p _MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Real scalar type for \p _MatrixType.
+ *
+ * This is just \c Scalar if #Scalar is real (e.g., \c float or
+ * \c double), and the type of the real part of \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #RealScalar.
+ * The length of the vector is the size of \p _MatrixType.
+ */
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
+ typedef Tridiagonalization<MatrixType> TridiagonalizationType;
+ typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
+
+ /** \brief Default constructor for fixed-size matrices.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). This constructor
+ * can only be used if \p _MatrixType is a fixed-size matrix; use
+ * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
+ */
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver()
+ : m_eivec(),
+ m_eivalues(),
+ m_subdiag(),
+ m_hcoeffs(),
+ m_info(InvalidInput),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ { }
+
+ /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+ *
+ * \param [in] size Positive integer, size of the matrix whose
+ * eigenvalues and eigenvectors will be computed.
+ *
+ * This constructor is useful for dynamic-size matrices, when the user
+ * intends to perform decompositions via compute(). The \p size
+ * parameter is only used as a hint. It is not an error to give a wrong
+ * \p size, but it may impair performance.
+ *
+ * \sa compute() for an example
+ */
+ EIGEN_DEVICE_FUNC
+ explicit SelfAdjointEigenSolver(Index size)
+ : m_eivec(size, size),
+ m_eivalues(size),
+ m_subdiag(size > 1 ? size - 1 : 1),
+ m_hcoeffs(size > 1 ? size - 1 : 1),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ {}
+
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed. Only the lower triangular part of the matrix is referenced.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ *
+ * This constructor calls compute(const MatrixType&, int) to compute the
+ * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
+ *
+ * \sa compute(const MatrixType&, int)
+ */
+ template<typename InputType>
+ EIGEN_DEVICE_FUNC
+ explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
+ m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ {
+ compute(matrix.derived(), options);
+ }
+
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed. Only the lower triangular part of the matrix is referenced.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of \p matrix. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ * This implementation uses a symmetric QR algorithm. The matrix is first
+ * reduced to tridiagonal form using the Tridiagonalization class. The
+ * tridiagonal matrix is then brought to diagonal form with implicit
+ * symmetric QR steps with Wilkinson shift. Details can be found in
+ * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
+ *
+ * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
+ * are required and \f$ 4n^3/3 \f$ if they are not required.
+ *
+ * This method reuses the memory in the SelfAdjointEigenSolver object that
+ * was allocated when the object was constructed, if the size of the
+ * matrix does not change.
+ *
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
+ *
+ * \sa SelfAdjointEigenSolver(const MatrixType&, int)
+ */
+ template<typename InputType>
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
+
+ /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
+ *
+ * This is a variant of compute(const MatrixType&, int options) which
+ * directly solves the underlying polynomial equation.
+ *
+ * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
+ *
+ * This method is usually significantly faster than the QR iterative algorithm
+ * but it might also be less accurate. It is also worth noting that
+ * for 3x3 matrices it involves trigonometric operations which are
+ * not necessarily available for all scalar types.
+ *
+ * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
+ * - double: 1e-8
+ * - float: 1e-3
+ *
+ * \sa compute(const MatrixType&, int options)
+ */
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
+
+ /**
+ *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
+ *
+ * \param[in] diag The vector containing the diagonal of the matrix.
+ * \param[in] subdiag The subdiagonal of the matrix.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \returns Reference to \c *this
+ *
+ * This function assumes that the matrix has been reduced to tridiagonal form.
+ *
+ * \sa compute(const MatrixType&, int) for more information
+ */
+ SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
+ *
+ * \pre The eigenvectors have been computed before.
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+ * this object was used to solve the eigenproblem for the selfadjoint
+ * matrix \f$ A \f$, then the matrix returned by this function is the
+ * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
+ *
+ * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
+ * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
+ * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
+ * equal to its transpose, \f$ V^{-1} = V^T \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues()
+ */
+ EIGEN_DEVICE_FUNC
+ const EigenvectorsType& eigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre The eigenvalues have been computed before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are sorted in increasing order.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), MatrixBase::eigenvalues()
+ */
+ EIGEN_DEVICE_FUNC
+ const RealVectorType& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes the positive-definite square root of the matrix.
+ *
+ * \returns the positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * The square root of a positive-definite matrix \f$ A \f$ is the
+ * positive-definite matrix whose square equals \f$ A \f$. This function
+ * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+ * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+ *
+ * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
+ */
+ EIGEN_DEVICE_FUNC
+ MatrixType operatorSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Computes the inverse square root of the matrix.
+ *
+ * \returns the inverse positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+ * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+ * cheaper than first computing the square root with operatorSqrt() and
+ * then its inverse with MatrixBase::inverse().
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+ *
+ * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
+ */
+ EIGEN_DEVICE_FUNC
+ MatrixType operatorInverseSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ EIGEN_DEVICE_FUNC
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Maximum number of iterations.
+ *
+ * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
+ * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
+ */
+ static const int m_maxIterations = 30;
+
+ protected:
+ static EIGEN_DEVICE_FUNC
+ void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ EigenvectorsType m_eivec;
+ RealVectorType m_eivalues;
+ typename TridiagonalizationType::SubDiagonalType m_subdiag;
+ typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+};
+
+namespace internal {
+/** \internal
+ *
+ * \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ * Performs a QR step on a tridiagonal symmetric matrix represented as a
+ * pair of two vectors \a diag and \a subdiag.
+ *
+ * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
+ * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
+ * \param start starting index of the submatrix to work on
+ * \param end last+1 index of the submatrix to work on
+ * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
+ * \param n size of the input matrix
+ *
+ * For compilation efficiency reasons, this procedure does not use eigen expression
+ * for its arguments.
+ *
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
+ * "implicit symmetric QR step with Wilkinson shift"
+ */
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+EIGEN_DEVICE_FUNC
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
+}
+
+template<typename MatrixType>
+template<typename InputType>
+EIGEN_DEVICE_FUNC
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::compute(const EigenBase<InputType>& a_matrix, int options)
+{
+ check_template_parameters();
+
+ const InputType &matrix(a_matrix.derived());
+
+ EIGEN_USING_STD(abs);
+ eigen_assert(matrix.cols() == matrix.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+ Index n = matrix.cols();
+ m_eivalues.resize(n,1);
+
+ if(n==1)
+ {
+ m_eivec = matrix;
+ m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
+ if(computeEigenvectors)
+ m_eivec.setOnes(n,n);
+ m_info = Success;
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+ }
+
+ // declare some aliases
+ RealVectorType& diag = m_eivalues;
+ EigenvectorsType& mat = m_eivec;
+
+ // map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ mat = matrix.template triangularView<Lower>();
+ RealScalar scale = mat.cwiseAbs().maxCoeff();
+ if(scale==RealScalar(0)) scale = RealScalar(1);
+ mat.template triangularView<Lower>() /= scale;
+ m_subdiag.resize(n-1);
+ m_hcoeffs.resize(n-1);
+ internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
+
+ m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
+
+ // scale back the eigen values
+ m_eivalues *= scale;
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+}
+
+template<typename MatrixType>
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
+{
+ //TODO : Add an option to scale the values beforehand
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ m_eivalues = diag;
+ m_subdiag = subdiag;
+ if (computeEigenvectors)
+ {
+ m_eivec.setIdentity(diag.size(), diag.size());
+ }
+ m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+}
+
+namespace internal {
+/**
+ * \internal
+ * \brief Compute the eigendecomposition from a tridiagonal matrix
+ *
+ * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
+ * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
+ * \param[in] maxIterations : the maximum number of iterations
+ * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
+ * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
+ * \returns \c Success or \c NoConvergence
+ */
+template<typename MatrixType, typename DiagType, typename SubDiagType>
+EIGEN_DEVICE_FUNC
+ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
+{
+ ComputationInfo info;
+ typedef typename MatrixType::Scalar Scalar;
+
+ Index n = diag.size();
+ Index end = n-1;
+ Index start = 0;
+ Index iter = 0; // total number of iterations
+
+ typedef typename DiagType::RealScalar RealScalar;
+ const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
+ const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
+ while (end>0)
+ {
+ for (Index i = start; i<end; ++i) {
+ if (numext::abs(subdiag[i]) < considerAsZero) {
+ subdiag[i] = RealScalar(0);
+ } else {
+ // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
+ // Scaled to prevent underflows.
+ const RealScalar scaled_subdiag = precision_inv * subdiag[i];
+ if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
+ subdiag[i] = RealScalar(0);
+ }
+ }
+ }
+
+ // find the largest unreduced block at the end of the matrix.
+ while (end>0 && subdiag[end-1]==RealScalar(0))
+ {
+ end--;
+ }
+ if (end<=0)
+ break;
+
+ // if we spent too many iterations, we give up
+ iter++;
+ if(iter > maxIterations * n) break;
+
+ start = end - 1;
+ while (start>0 && subdiag[start-1]!=0)
+ start--;
+
+ internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
+ }
+ if (iter <= maxIterations * n)
+ info = Success;
+ else
+ info = NoConvergence;
+
+ // Sort eigenvalues and corresponding vectors.
+ // TODO make the sort optional ?
+ // TODO use a better sort algorithm !!
+ if (info == Success)
+ {
+ for (Index i = 0; i < n-1; ++i)
+ {
+ Index k;
+ diag.segment(i,n-i).minCoeff(&k);
+ if (k > 0)
+ {
+ numext::swap(diag[i], diag[k+i]);
+ if(computeEigenvectors)
+ eivec.col(i).swap(eivec.col(k+i));
+ }
+ }
+ }
+ return info;
+}
+
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
+{
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
+ { eig.compute(A,options); }
+};
+
+template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
+{
+ typedef typename SolverType::MatrixType MatrixType;
+ typedef typename SolverType::RealVectorType VectorType;
+ typedef typename SolverType::Scalar Scalar;
+ typedef typename SolverType::EigenvectorsType EigenvectorsType;
+
+
+ /** \internal
+ * Computes the roots of the characteristic polynomial of \a m.
+ * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
+ */
+ EIGEN_DEVICE_FUNC
+ static inline void computeRoots(const MatrixType& m, VectorType& roots)
+ {
+ EIGEN_USING_STD(sqrt)
+ EIGEN_USING_STD(atan2)
+ EIGEN_USING_STD(cos)
+ EIGEN_USING_STD(sin)
+ const Scalar s_inv3 = Scalar(1)/Scalar(3);
+ const Scalar s_sqrt3 = sqrt(Scalar(3));
+
+ // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
+ // eigenvalues are the roots to this equation, all guaranteed to be
+ // real-valued, because the matrix is symmetric.
+ Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
+ Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
+ Scalar c2 = m(0,0) + m(1,1) + m(2,2);
+
+ // Construct the parameters used in classifying the roots of the equation
+ // and in solving the equation for the roots in closed form.
+ Scalar c2_over_3 = c2*s_inv3;
+ Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
+ a_over_3 = numext::maxi(a_over_3, Scalar(0));
+
+ Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
+
+ Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
+ q = numext::maxi(q, Scalar(0));
+
+ // Compute the eigenvalues by solving for the roots of the polynomial.
+ Scalar rho = sqrt(a_over_3);
+ Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
+ Scalar cos_theta = cos(theta);
+ Scalar sin_theta = sin(theta);
+ // roots are already sorted, since cos is monotonically decreasing on [0, pi]
+ roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
+ roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
+ roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
+ {
+ EIGEN_USING_STD(abs);
+ EIGEN_USING_STD(sqrt);
+ Index i0;
+ // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
+ mat.diagonal().cwiseAbs().maxCoeff(&i0);
+ // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
+ // so let's save it:
+ representative = mat.col(i0);
+ Scalar n0, n1;
+ VectorType c0, c1;
+ n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
+ n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
+ if(n0>n1) res = c0/sqrt(n0);
+ else res = c1/sqrt(n1);
+
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& solver, const MatrixType& mat, int options)
+ {
+ eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ EigenvectorsType& eivecs = solver.m_eivec;
+ VectorType& eivals = solver.m_eivalues;
+
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(3);
+ // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
+ MatrixType scaledMat = mat.template selfadjointView<Lower>();
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
+
+ // compute the eigenvalues
+ computeRoots(scaledMat,eivals);
+
+ // compute the eigenvectors
+ if(computeEigenvectors)
+ {
+ if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
+ {
+ // All three eigenvalues are numerically the same
+ eivecs.setIdentity();
+ }
+ else
+ {
+ MatrixType tmp;
+ tmp = scaledMat;
+
+ // Compute the eigenvector of the most distinct eigenvalue
+ Scalar d0 = eivals(2) - eivals(1);
+ Scalar d1 = eivals(1) - eivals(0);
+ Index k(0), l(2);
+ if(d0 > d1)
+ {
+ numext::swap(k,l);
+ d0 = d1;
+ }
+
+ // Compute the eigenvector of index k
+ {
+ tmp.diagonal().array () -= eivals(k);
+ // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
+ extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
+ }
+
+ // Compute eigenvector of index l
+ if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
+ {
+ // If d0 is too small, then the two other eigenvalues are numerically the same,
+ // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
+ eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
+ eivecs.col(l).normalize();
+ }
+ else
+ {
+ tmp = scaledMat;
+ tmp.diagonal().array () -= eivals(l);
+
+ VectorType dummy;
+ extract_kernel(tmp, eivecs.col(l), dummy);
+ }
+
+ // Compute last eigenvector from the other two
+ eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
+ }
+ }
+
+ // Rescale back to the original size.
+ eivals *= scale;
+ eivals.array() += shift;
+
+ solver.m_info = Success;
+ solver.m_isInitialized = true;
+ solver.m_eigenvectorsOk = computeEigenvectors;
+ }
+};
+
+// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
+template<typename SolverType>
+struct direct_selfadjoint_eigenvalues<SolverType,2,false>
+{
+ typedef typename SolverType::MatrixType MatrixType;
+ typedef typename SolverType::RealVectorType VectorType;
+ typedef typename SolverType::Scalar Scalar;
+ typedef typename SolverType::EigenvectorsType EigenvectorsType;
+
+ EIGEN_DEVICE_FUNC
+ static inline void computeRoots(const MatrixType& m, VectorType& roots)
+ {
+ EIGEN_USING_STD(sqrt);
+ const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
+ const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
+ roots(0) = t1 - t0;
+ roots(1) = t1 + t0;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& solver, const MatrixType& mat, int options)
+ {
+ EIGEN_USING_STD(sqrt);
+ EIGEN_USING_STD(abs);
+
+ eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ EigenvectorsType& eivecs = solver.m_eivec;
+ VectorType& eivals = solver.m_eivalues;
+
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(2);
+ MatrixType scaledMat = mat;
+ scaledMat.coeffRef(0,1) = mat.coeff(1,0);
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > Scalar(0))
+ scaledMat /= scale;
+
+ // Compute the eigenvalues
+ computeRoots(scaledMat,eivals);
+
+ // compute the eigen vectors
+ if(computeEigenvectors)
+ {
+ if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
+ {
+ eivecs.setIdentity();
+ }
+ else
+ {
+ scaledMat.diagonal().array () -= eivals(1);
+ Scalar a2 = numext::abs2(scaledMat(0,0));
+ Scalar c2 = numext::abs2(scaledMat(1,1));
+ Scalar b2 = numext::abs2(scaledMat(1,0));
+ if(a2>c2)
+ {
+ eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
+ eivecs.col(1) /= sqrt(a2+b2);
+ }
+ else
+ {
+ eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
+ eivecs.col(1) /= sqrt(c2+b2);
+ }
+
+ eivecs.col(0) << eivecs.col(1).unitOrthogonal();
+ }
+ }
+
+ // Rescale back to the original size.
+ eivals *= scale;
+ eivals.array() += shift;
+
+ solver.m_info = Success;
+ solver.m_isInitialized = true;
+ solver.m_eigenvectorsOk = computeEigenvectors;
+ }
+};
+
+}
+
+template<typename MatrixType>
+EIGEN_DEVICE_FUNC
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::computeDirect(const MatrixType& matrix, int options)
+{
+ internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
+ return *this;
+}
+
+namespace internal {
+
+// Francis implicit QR step.
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+EIGEN_DEVICE_FUNC
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
+{
+ // Wilkinson Shift.
+ RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
+ RealScalar e = subdiag[end-1];
+ // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
+ // underflow thus leading to inf/NaN values when using the following commented code:
+ // RealScalar e2 = numext::abs2(subdiag[end-1]);
+ // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
+ // This explain the following, somewhat more complicated, version:
+ RealScalar mu = diag[end];
+ if(td==RealScalar(0)) {
+ mu -= numext::abs(e);
+ } else if (e != RealScalar(0)) {
+ const RealScalar e2 = numext::abs2(e);
+ const RealScalar h = numext::hypot(td,e);
+ if(e2 == RealScalar(0)) {
+ mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
+ } else {
+ mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
+ }
+ }
+
+ RealScalar x = diag[start] - mu;
+ RealScalar z = subdiag[start];
+ // If z ever becomes zero, the Givens rotation will be the identity and
+ // z will stay zero for all future iterations.
+ for (Index k = start; k < end && z != RealScalar(0); ++k)
+ {
+ JacobiRotation<RealScalar> rot;
+ rot.makeGivens(x, z);
+
+ // do T = G' T G
+ RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
+ RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
+
+ diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
+ diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
+ subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
+
+ if (k > start)
+ subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
+
+ // "Chasing the bulge" to return to triangular form.
+ x = subdiag[k];
+ if (k < end - 1)
+ {
+ z = -rot.s() * subdiag[k+1];
+ subdiag[k + 1] = rot.c() * subdiag[k+1];
+ }
+
+ // apply the givens rotation to the unit matrix Q = Q * G
+ if (matrixQ)
+ {
+ // FIXME if StorageOrder == RowMajor this operation is not very efficient
+ Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
+ q.applyOnTheRight(k,k+1,rot);
+ }
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SELFADJOINTEIGENSOLVER_H