summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/eigen/Eigen/src/Eigenvalues
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/eigen/Eigen/src/Eigenvalues')
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h346
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur.h462
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h91
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/EigenSolver.h622
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h418
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h226
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h374
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h158
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h657
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur.h558
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h77
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h904
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h87
-rw-r--r--src/3rdparty/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h561
14 files changed, 5541 insertions, 0 deletions
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h
new file mode 100644
index 000000000..081e918f1
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h
@@ -0,0 +1,346 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Claire Maurice
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
+#define EIGEN_COMPLEX_EIGEN_SOLVER_H
+
+#include "./ComplexSchur.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class ComplexEigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of general complex matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are
+ * computing the eigendecomposition; this is expected to be an
+ * instantiation of the Matrix class template.
+ *
+ * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
+ * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
+ * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
+ * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
+ * almost always invertible, in which case we have \f$ A = V D V^{-1}
+ * \f$. This is called the eigendecomposition.
+ *
+ * The main function in this class is compute(), which computes the
+ * eigenvalues and eigenvectors of a given function. The
+ * documentation for that function contains an example showing the
+ * main features of the class.
+ *
+ * \sa class EigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class ComplexEigenSolver
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ /** \brief Complex scalar type for #MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #ComplexScalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
+
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute().
+ */
+ ComplexEigenSolver()
+ : m_eivec(),
+ m_eivalues(),
+ m_schur(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_matX()
+ {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa ComplexEigenSolver()
+ */
+ explicit ComplexEigenSolver(Index size)
+ : m_eivec(size, size),
+ m_eivalues(size),
+ m_schur(size),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_matX(size, size)
+ {}
+
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ *
+ * This constructor calls compute() to compute the eigendecomposition.
+ */
+ template<typename InputType>
+ explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
+ : m_eivec(matrix.rows(),matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_schur(matrix.rows()),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_matX(matrix.rows(),matrix.cols())
+ {
+ compute(matrix.derived(), computeEigenvectors);
+ }
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
+ *
+ * \pre Either the constructor
+ * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
+ * function compute(const MatrixType& matrix, bool) has been called before
+ * to compute the eigendecomposition of a matrix, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * This function returns a matrix whose columns are the eigenvectors. Column
+ * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
+ * \f$ as returned by eigenvalues(). The eigenvectors are normalized to
+ * have (Euclidean) norm equal to one. The matrix returned by this
+ * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
+ * V^{-1} \f$, if it exists.
+ *
+ * Example: \include ComplexEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
+ */
+ const EigenvectorType& eigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre Either the constructor
+ * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
+ * function compute(const MatrixType& matrix, bool) has been called before
+ * to compute the eigendecomposition of a matrix.
+ *
+ * This function returns a column vector containing the
+ * eigenvalues. Eigenvalues are repeated according to their
+ * algebraic multiplicity, so there are as many eigenvalues as
+ * rows in the matrix. The eigenvalues are not sorted in any particular
+ * order.
+ *
+ * Example: \include ComplexEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
+ */
+ const EigenvalueType& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of the complex matrix \p matrix.
+ * The eigenvalues() function can be used to retrieve them. If
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
+ * and can be retrieved by calling eigenvectors().
+ *
+ * The matrix is first reduced to Schur form using the
+ * ComplexSchur class. The Schur decomposition is then used to
+ * compute the eigenvalues and eigenvectors.
+ *
+ * The cost of the computation is dominated by the cost of the
+ * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
+ * is the size of the matrix.
+ *
+ * Example: \include ComplexEigenSolver_compute.cpp
+ * Output: \verbinclude ComplexEigenSolver_compute.out
+ */
+ template<typename InputType>
+ ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+ return m_schur.info();
+ }
+
+ /** \brief Sets the maximum number of iterations allowed. */
+ ComplexEigenSolver& setMaxIterations(Index maxIters)
+ {
+ m_schur.setMaxIterations(maxIters);
+ return *this;
+ }
+
+ /** \brief Returns the maximum number of iterations. */
+ Index getMaxIterations()
+ {
+ return m_schur.getMaxIterations();
+ }
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ EigenvectorType m_eivec;
+ EigenvalueType m_eivalues;
+ ComplexSchur<MatrixType> m_schur;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+ EigenvectorType m_matX;
+
+ private:
+ void doComputeEigenvectors(RealScalar matrixnorm);
+ void sortEigenvalues(bool computeEigenvectors);
+};
+
+
+template<typename MatrixType>
+template<typename InputType>
+ComplexEigenSolver<MatrixType>&
+ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
+{
+ check_template_parameters();
+
+ // this code is inspired from Jampack
+ eigen_assert(matrix.cols() == matrix.rows());
+
+ // Do a complex Schur decomposition, A = U T U^*
+ // The eigenvalues are on the diagonal of T.
+ m_schur.compute(matrix.derived(), computeEigenvectors);
+
+ if(m_schur.info() == Success)
+ {
+ m_eivalues = m_schur.matrixT().diagonal();
+ if(computeEigenvectors)
+ doComputeEigenvectors(m_schur.matrixT().norm());
+ sortEigenvalues(computeEigenvectors);
+ }
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+}
+
+
+template<typename MatrixType>
+void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm)
+{
+ const Index n = m_eivalues.size();
+
+ matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits<RealScalar>::min)());
+
+ // Compute X such that T = X D X^(-1), where D is the diagonal of T.
+ // The matrix X is unit triangular.
+ m_matX = EigenvectorType::Zero(n, n);
+ for(Index k=n-1 ; k>=0 ; k--)
+ {
+ m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
+ // Compute X(i,k) using the (i,k) entry of the equation X T = D X
+ for(Index i=k-1 ; i>=0 ; i--)
+ {
+ m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
+ if(k-i-1>0)
+ m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
+ ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
+ if(z==ComplexScalar(0))
+ {
+ // If the i-th and k-th eigenvalue are equal, then z equals 0.
+ // Use a small value instead, to prevent division by zero.
+ numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
+ }
+ m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
+ }
+ }
+
+ // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
+ m_eivec.noalias() = m_schur.matrixU() * m_matX;
+ // .. and normalize the eigenvectors
+ for(Index k=0 ; k<n ; k++)
+ {
+ m_eivec.col(k).normalize();
+ }
+}
+
+
+template<typename MatrixType>
+void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
+{
+ const Index n = m_eivalues.size();
+ for (Index i=0; i<n; i++)
+ {
+ Index k;
+ m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
+ if (k != 0)
+ {
+ k += i;
+ std::swap(m_eivalues[k],m_eivalues[i]);
+ if(computeEigenvectors)
+ m_eivec.col(i).swap(m_eivec.col(k));
+ }
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur.h
new file mode 100644
index 000000000..fc71468f8
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur.h
@@ -0,0 +1,462 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Claire Maurice
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_SCHUR_H
+#define EIGEN_COMPLEX_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+namespace Eigen {
+
+namespace internal {
+template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class ComplexSchur
+ *
+ * \brief Performs a complex Schur decomposition of a real or complex square matrix
+ *
+ * \tparam _MatrixType the type of the matrix of which we are
+ * computing the Schur decomposition; this is expected to be an
+ * instantiation of the Matrix class template.
+ *
+ * Given a real or complex square matrix A, this class computes the
+ * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
+ * complex matrix, and T is a complex upper triangular matrix. The
+ * diagonal of the matrix T corresponds to the eigenvalues of the
+ * matrix A.
+ *
+ * Call the function compute() to compute the Schur decomposition of
+ * a given matrix. Alternatively, you can use the
+ * ComplexSchur(const MatrixType&, bool) constructor which computes
+ * the Schur decomposition at construction time. Once the
+ * decomposition is computed, you can use the matrixU() and matrixT()
+ * functions to retrieve the matrices U and V in the decomposition.
+ *
+ * \note This code is inspired from Jampack
+ *
+ * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType> class ComplexSchur
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type \p _MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ /** \brief Complex scalar type for \p _MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for the matrices in the Schur decomposition.
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of \p _MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
+
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user
+ * intends to perform decompositions via compute(). The \p size
+ * parameter is only used as a hint. It is not an error to give a
+ * wrong \p size, but it may impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
+ : m_matT(size,size),
+ m_matU(size,size),
+ m_hess(size),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ {}
+
+ /** \brief Constructor; computes Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+ *
+ * This constructor calls compute() to compute the Schur decomposition.
+ *
+ * \sa matrixT() and matrixU() for examples.
+ */
+ template<typename InputType>
+ explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
+ : m_matT(matrix.rows(),matrix.cols()),
+ m_matU(matrix.rows(),matrix.cols()),
+ m_hess(matrix.rows()),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ {
+ compute(matrix.derived(), computeU);
+ }
+
+ /** \brief Returns the unitary matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix U.
+ *
+ * It is assumed that either the constructor
+ * ComplexSchur(const MatrixType& matrix, bool computeU) or the
+ * member function compute(const MatrixType& matrix, bool computeU)
+ * has been called before to compute the Schur decomposition of a
+ * matrix, and that \p computeU was set to true (the default
+ * value).
+ *
+ * Example: \include ComplexSchur_matrixU.cpp
+ * Output: \verbinclude ComplexSchur_matrixU.out
+ */
+ const ComplexMatrixType& matrixU() const
+ {
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+ eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
+ return m_matU;
+ }
+
+ /** \brief Returns the triangular matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix T.
+ *
+ * It is assumed that either the constructor
+ * ComplexSchur(const MatrixType& matrix, bool computeU) or the
+ * member function compute(const MatrixType& matrix, bool computeU)
+ * has been called before to compute the Schur decomposition of a
+ * matrix.
+ *
+ * Note that this function returns a plain square matrix. If you want to reference
+ * only the upper triangular part, use:
+ * \code schur.matrixT().triangularView<Upper>() \endcode
+ *
+ * Example: \include ComplexSchur_matrixT.cpp
+ * Output: \verbinclude ComplexSchur_matrixT.out
+ */
+ const ComplexMatrixType& matrixT() const
+ {
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+ return m_matT;
+ }
+
+ /** \brief Computes Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+
+ * \returns Reference to \c *this
+ *
+ * The Schur decomposition is computed by first reducing the
+ * matrix to Hessenberg form using the class
+ * HessenbergDecomposition. The Hessenberg matrix is then reduced
+ * to triangular form by performing QR iterations with a single
+ * shift. The cost of computing the Schur decomposition depends
+ * on the number of iterations; as a rough guide, it may be taken
+ * on the number of iterations; as a rough guide, it may be taken
+ * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
+ * if \a computeU is false.
+ *
+ * Example: \include ComplexSchur_compute.cpp
+ * Output: \verbinclude ComplexSchur_compute.out
+ *
+ * \sa compute(const MatrixType&, bool, Index)
+ */
+ template<typename InputType>
+ ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
+
+ /** \brief Compute Schur decomposition from a given Hessenberg matrix
+ * \param[in] matrixH Matrix in Hessenberg form H
+ * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
+ * \param computeU Computes the matriX U of the Schur vectors
+ * \return Reference to \c *this
+ *
+ * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
+ * using either the class HessenbergDecomposition or another mean.
+ * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
+ * When computeU is true, this routine computes the matrix U such that
+ * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
+ *
+ * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
+ * is not available, the user should give an identity matrix (Q.setIdentity())
+ *
+ * \sa compute(const MatrixType&, bool)
+ */
+ template<typename HessMatrixType, typename OrthMatrixType>
+ ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Sets the maximum number of iterations allowed.
+ *
+ * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
+ * of the matrix.
+ */
+ ComplexSchur& setMaxIterations(Index maxIters)
+ {
+ m_maxIters = maxIters;
+ return *this;
+ }
+
+ /** \brief Returns the maximum number of iterations. */
+ Index getMaxIterations()
+ {
+ return m_maxIters;
+ }
+
+ /** \brief Maximum number of iterations per row.
+ *
+ * If not otherwise specified, the maximum number of iterations is this number times the size of the
+ * matrix. It is currently set to 30.
+ */
+ static const int m_maxIterationsPerRow = 30;
+
+ protected:
+ ComplexMatrixType m_matT, m_matU;
+ HessenbergDecomposition<MatrixType> m_hess;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_matUisUptodate;
+ Index m_maxIters;
+
+ private:
+ bool subdiagonalEntryIsNeglegible(Index i);
+ ComplexScalar computeShift(Index iu, Index iter);
+ void reduceToTriangularForm(bool computeU);
+ friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
+};
+
+/** If m_matT(i+1,i) is neglegible in floating point arithmetic
+ * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
+ * return true, else return false. */
+template<typename MatrixType>
+inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
+{
+ RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
+ RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
+ if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
+ {
+ m_matT.coeffRef(i+1,i) = ComplexScalar(0);
+ return true;
+ }
+ return false;
+}
+
+
+/** Compute the shift in the current QR iteration. */
+template<typename MatrixType>
+typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
+{
+ using std::abs;
+ if (iter == 10 || iter == 20)
+ {
+ // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
+ return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
+ }
+
+ // compute the shift as one of the eigenvalues of t, the 2x2
+ // diagonal block on the bottom of the active submatrix
+ Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
+ RealScalar normt = t.cwiseAbs().sum();
+ t /= normt; // the normalization by sf is to avoid under/overflow
+
+ ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
+ ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
+ ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
+ ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
+ ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
+ ComplexScalar eival1 = (trace + disc) / RealScalar(2);
+ ComplexScalar eival2 = (trace - disc) / RealScalar(2);
+ RealScalar eival1_norm = numext::norm1(eival1);
+ RealScalar eival2_norm = numext::norm1(eival2);
+ // A division by zero can only occur if eival1==eival2==0.
+ // In this case, det==0, and all we have to do is checking that eival2_norm!=0
+ if(eival1_norm > eival2_norm)
+ eival2 = det / eival1;
+ else if(eival2_norm!=RealScalar(0))
+ eival1 = det / eival2;
+
+ // choose the eigenvalue closest to the bottom entry of the diagonal
+ if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
+ return normt * eival1;
+ else
+ return normt * eival2;
+}
+
+
+template<typename MatrixType>
+template<typename InputType>
+ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
+{
+ m_matUisUptodate = false;
+ eigen_assert(matrix.cols() == matrix.rows());
+
+ if(matrix.cols() == 1)
+ {
+ m_matT = matrix.derived().template cast<ComplexScalar>();
+ if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
+ m_info = Success;
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+ return *this;
+ }
+
+ internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
+ computeFromHessenberg(m_matT, m_matU, computeU);
+ return *this;
+}
+
+template<typename MatrixType>
+template<typename HessMatrixType, typename OrthMatrixType>
+ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
+{
+ m_matT = matrixH;
+ if(computeU)
+ m_matU = matrixQ;
+ reduceToTriangularForm(computeU);
+ return *this;
+}
+namespace internal {
+
+/* Reduce given matrix to Hessenberg form */
+template<typename MatrixType, bool IsComplex>
+struct complex_schur_reduce_to_hessenberg
+{
+ // this is the implementation for the case IsComplex = true
+ static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
+ {
+ _this.m_hess.compute(matrix);
+ _this.m_matT = _this.m_hess.matrixH();
+ if(computeU) _this.m_matU = _this.m_hess.matrixQ();
+ }
+};
+
+template<typename MatrixType>
+struct complex_schur_reduce_to_hessenberg<MatrixType, false>
+{
+ static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
+ {
+ typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
+
+ // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
+ _this.m_hess.compute(matrix);
+ _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
+ if(computeU)
+ {
+ // This may cause an allocation which seems to be avoidable
+ MatrixType Q = _this.m_hess.matrixQ();
+ _this.m_matU = Q.template cast<ComplexScalar>();
+ }
+ }
+};
+
+} // end namespace internal
+
+// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
+template<typename MatrixType>
+void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
+{
+ Index maxIters = m_maxIters;
+ if (maxIters == -1)
+ maxIters = m_maxIterationsPerRow * m_matT.rows();
+
+ // The matrix m_matT is divided in three parts.
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
+ // Rows il,...,iu is the part we are working on (the active submatrix).
+ // Rows iu+1,...,end are already brought in triangular form.
+ Index iu = m_matT.cols() - 1;
+ Index il;
+ Index iter = 0; // number of iterations we are working on the (iu,iu) element
+ Index totalIter = 0; // number of iterations for whole matrix
+
+ while(true)
+ {
+ // find iu, the bottom row of the active submatrix
+ while(iu > 0)
+ {
+ if(!subdiagonalEntryIsNeglegible(iu-1)) break;
+ iter = 0;
+ --iu;
+ }
+
+ // if iu is zero then we are done; the whole matrix is triangularized
+ if(iu==0) break;
+
+ // if we spent too many iterations, we give up
+ iter++;
+ totalIter++;
+ if(totalIter > maxIters) break;
+
+ // find il, the top row of the active submatrix
+ il = iu-1;
+ while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
+ {
+ --il;
+ }
+
+ /* perform the QR step using Givens rotations. The first rotation
+ creates a bulge; the (il+2,il) element becomes nonzero. This
+ bulge is chased down to the bottom of the active submatrix. */
+
+ ComplexScalar shift = computeShift(iu, iter);
+ JacobiRotation<ComplexScalar> rot;
+ rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
+ m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
+ m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
+ if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
+
+ for(Index i=il+1 ; i<iu ; i++)
+ {
+ rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
+ m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
+ m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
+ m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
+ if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
+ }
+ }
+
+ if(totalIter <= maxIters)
+ m_info = Success;
+ else
+ m_info = NoConvergence;
+
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_SCHUR_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h
new file mode 100644
index 000000000..4980a3ede
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h
@@ -0,0 +1,91 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+ be used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ * Content : Eigen bindings to LAPACKe
+ * Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_COMPLEX_SCHUR_LAPACKE_H
+#define EIGEN_COMPLEX_SCHUR_LAPACKE_H
+
+namespace Eigen {
+
+/** \internal Specialization for the data types supported by LAPACKe */
+
+#define EIGEN_LAPACKE_SCHUR_COMPLEX(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
+template<> template<typename InputType> inline \
+ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
+{ \
+ typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
+ typedef MatrixType::RealScalar RealScalar; \
+ typedef std::complex<RealScalar> ComplexScalar; \
+\
+ eigen_assert(matrix.cols() == matrix.rows()); \
+\
+ m_matUisUptodate = false; \
+ if(matrix.cols() == 1) \
+ { \
+ m_matT = matrix.derived().template cast<ComplexScalar>(); \
+ if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \
+ m_info = Success; \
+ m_isInitialized = true; \
+ m_matUisUptodate = computeU; \
+ return *this; \
+ } \
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
+ lapack_int matrix_order = LAPACKE_COLROW; \
+ char jobvs, sort='N'; \
+ LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \
+ jobvs = (computeU) ? 'V' : 'N'; \
+ m_matU.resize(n, n); \
+ lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
+ m_matT = matrix; \
+ lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
+ Matrix<EIGTYPE, Dynamic, Dynamic> w; \
+ w.resize(n, 1);\
+ info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
+ if(info == 0) \
+ m_info = Success; \
+ else \
+ m_info = NoConvergence; \
+\
+ m_isInitialized = true; \
+ m_matUisUptodate = computeU; \
+ return *this; \
+\
+}
+
+EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/EigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/EigenSolver.h
new file mode 100644
index 000000000..572b29e4e
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/EigenSolver.h
@@ -0,0 +1,622 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EIGENSOLVER_H
+#define EIGEN_EIGENSOLVER_H
+
+#include "./RealSchur.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class EigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of general matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template. Currently, only real matrices are supported.
+ *
+ * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+ * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+ * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
+ *
+ * The eigenvalues and eigenvectors of a matrix may be complex, even when the
+ * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
+ * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
+ * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
+ * have blocks of the form
+ * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
+ * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
+ * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
+ * this variant of the eigendecomposition the pseudo-eigendecomposition.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * EigenSolver(const MatrixType&, bool) constructor which computes the
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+ * eigenvectors() functions. The pseudoEigenvalueMatrix() and
+ * pseudoEigenvectors() methods allow the construction of the
+ * pseudo-eigendecomposition.
+ *
+ * The documentation for EigenSolver(const MatrixType&, bool) contains an
+ * example of the typical use of this class.
+ *
+ * \note The implementation is adapted from
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+ * Their code is based on EISPACK.
+ *
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class EigenSolver
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ /** \brief Complex scalar type for #MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #ComplexScalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+ *
+ * \sa compute() for an example.
+ */
+ EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {}
+
+ /** \brief Default constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa EigenSolver()
+ */
+ explicit EigenSolver(Index size)
+ : m_eivec(size, size),
+ m_eivalues(size),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realSchur(size),
+ m_matT(size, size),
+ m_tmp(size)
+ {}
+
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ *
+ * This constructor calls compute() to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
+ * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
+ *
+ * \sa compute()
+ */
+ template<typename InputType>
+ explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realSchur(matrix.cols()),
+ m_matT(matrix.rows(), matrix.cols()),
+ m_tmp(matrix.cols())
+ {
+ compute(matrix.derived(), computeEigenvectors);
+ }
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+ * matrix returned by this function is the matrix \f$ V \f$ in the
+ * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
+ *
+ * Example: \include EigenSolver_eigenvectors.cpp
+ * Output: \verbinclude EigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues(), pseudoEigenvectors()
+ */
+ EigenvectorsType eigenvectors() const;
+
+ /** \brief Returns the pseudo-eigenvectors of given matrix.
+ *
+ * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * The real matrix \f$ V \f$ returned by this function and the
+ * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
+ * satisfy \f$ AV = VD \f$.
+ *
+ * Example: \include EigenSolver_pseudoEigenvectors.cpp
+ * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
+ *
+ * \sa pseudoEigenvalueMatrix(), eigenvectors()
+ */
+ const MatrixType& pseudoEigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
+ *
+ * \returns A block-diagonal matrix.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before.
+ *
+ * The matrix \f$ D \f$ returned by this function is real and
+ * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
+ * blocks of the form
+ * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
+ * These blocks are not sorted in any particular order.
+ * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
+ * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
+ *
+ * \sa pseudoEigenvectors() for an example, eigenvalues()
+ */
+ MatrixType pseudoEigenvalueMatrix() const;
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are not sorted in any particular order.
+ *
+ * Example: \include EigenSolver_eigenvalues.cpp
+ * Output: \verbinclude EigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), pseudoEigenvalueMatrix(),
+ * MatrixBase::eigenvalues()
+ */
+ const EigenvalueType& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of the real matrix \p matrix.
+ * The eigenvalues() function can be used to retrieve them. If
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
+ * and can be retrieved by calling eigenvectors().
+ *
+ * The matrix is first reduced to real Schur form using the RealSchur
+ * class. The Schur decomposition is then used to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * The cost of the computation is dominated by the cost of the
+ * Schur decomposition, which is very approximately \f$ 25n^3 \f$
+ * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
+ * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
+ *
+ * This method reuses of the allocated data in the EigenSolver object.
+ *
+ * Example: \include EigenSolver_compute.cpp
+ * Output: \verbinclude EigenSolver_compute.out
+ */
+ template<typename InputType>
+ EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
+
+ /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Sets the maximum number of iterations allowed. */
+ EigenSolver& setMaxIterations(Index maxIters)
+ {
+ m_realSchur.setMaxIterations(maxIters);
+ return *this;
+ }
+
+ /** \brief Returns the maximum number of iterations. */
+ Index getMaxIterations()
+ {
+ return m_realSchur.getMaxIterations();
+ }
+
+ private:
+ void doComputeEigenvectors();
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
+ }
+
+ MatrixType m_eivec;
+ EigenvalueType m_eivalues;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+ ComputationInfo m_info;
+ RealSchur<MatrixType> m_realSchur;
+ MatrixType m_matT;
+
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+ ColumnVectorType m_tmp;
+};
+
+template<typename MatrixType>
+MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
+{
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
+ Index n = m_eivalues.rows();
+ MatrixType matD = MatrixType::Zero(n,n);
+ for (Index i=0; i<n; ++i)
+ {
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
+ matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
+ else
+ {
+ matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
+ -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
+ ++i;
+ }
+ }
+ return matD;
+}
+
+template<typename MatrixType>
+typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
+{
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
+ Index n = m_eivec.cols();
+ EigenvectorsType matV(n,n);
+ for (Index j=0; j<n; ++j)
+ {
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
+ {
+ // we have a real eigen value
+ matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
+ matV.col(j).normalize();
+ }
+ else
+ {
+ // we have a pair of complex eigen values
+ for (Index i=0; i<n; ++i)
+ {
+ matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
+ matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
+ }
+ matV.col(j).normalize();
+ matV.col(j+1).normalize();
+ ++j;
+ }
+ }
+ return matV;
+}
+
+template<typename MatrixType>
+template<typename InputType>
+EigenSolver<MatrixType>&
+EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
+{
+ check_template_parameters();
+
+ using std::sqrt;
+ using std::abs;
+ using numext::isfinite;
+ eigen_assert(matrix.cols() == matrix.rows());
+
+ // Reduce to real Schur form.
+ m_realSchur.compute(matrix.derived(), computeEigenvectors);
+
+ m_info = m_realSchur.info();
+
+ if (m_info == Success)
+ {
+ m_matT = m_realSchur.matrixT();
+ if (computeEigenvectors)
+ m_eivec = m_realSchur.matrixU();
+
+ // Compute eigenvalues from matT
+ m_eivalues.resize(matrix.cols());
+ Index i = 0;
+ while (i < matrix.cols())
+ {
+ if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
+ {
+ m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
+ if(!(isfinite)(m_eivalues.coeffRef(i)))
+ {
+ m_isInitialized = true;
+ m_eigenvectorsOk = false;
+ m_info = NumericalIssue;
+ return *this;
+ }
+ ++i;
+ }
+ else
+ {
+ Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
+ Scalar z;
+ // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
+ // without overflow
+ {
+ Scalar t0 = m_matT.coeff(i+1, i);
+ Scalar t1 = m_matT.coeff(i, i+1);
+ Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
+ t0 /= maxval;
+ t1 /= maxval;
+ Scalar p0 = p/maxval;
+ z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
+ }
+
+ m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
+ m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
+ if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
+ {
+ m_isInitialized = true;
+ m_eigenvectorsOk = false;
+ m_info = NumericalIssue;
+ return *this;
+ }
+ i += 2;
+ }
+ }
+
+ // Compute eigenvectors.
+ if (computeEigenvectors)
+ doComputeEigenvectors();
+ }
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+
+ return *this;
+}
+
+
+template<typename MatrixType>
+void EigenSolver<MatrixType>::doComputeEigenvectors()
+{
+ using std::abs;
+ const Index size = m_eivec.cols();
+ const Scalar eps = NumTraits<Scalar>::epsilon();
+
+ // inefficient! this is already computed in RealSchur
+ Scalar norm(0);
+ for (Index j = 0; j < size; ++j)
+ {
+ norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
+ }
+
+ // Backsubstitute to find vectors of upper triangular form
+ if (norm == Scalar(0))
+ {
+ return;
+ }
+
+ for (Index n = size-1; n >= 0; n--)
+ {
+ Scalar p = m_eivalues.coeff(n).real();
+ Scalar q = m_eivalues.coeff(n).imag();
+
+ // Scalar vector
+ if (q == Scalar(0))
+ {
+ Scalar lastr(0), lastw(0);
+ Index l = n;
+
+ m_matT.coeffRef(n,n) = Scalar(1);
+ for (Index i = n-1; i >= 0; i--)
+ {
+ Scalar w = m_matT.coeff(i,i) - p;
+ Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+
+ if (m_eivalues.coeff(i).imag() < Scalar(0))
+ {
+ lastw = w;
+ lastr = r;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == Scalar(0))
+ {
+ if (w != Scalar(0))
+ m_matT.coeffRef(i,n) = -r / w;
+ else
+ m_matT.coeffRef(i,n) = -r / (eps * norm);
+ }
+ else // Solve real equations
+ {
+ Scalar x = m_matT.coeff(i,i+1);
+ Scalar y = m_matT.coeff(i+1,i);
+ Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
+ Scalar t = (x * lastr - lastw * r) / denom;
+ m_matT.coeffRef(i,n) = t;
+ if (abs(x) > abs(lastw))
+ m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
+ else
+ m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
+ }
+
+ // Overflow control
+ Scalar t = abs(m_matT.coeff(i,n));
+ if ((eps * t) * t > Scalar(1))
+ m_matT.col(n).tail(size-i) /= t;
+ }
+ }
+ }
+ else if (q < Scalar(0) && n > 0) // Complex vector
+ {
+ Scalar lastra(0), lastsa(0), lastw(0);
+ Index l = n-1;
+
+ // Last vector component imaginary so matrix is triangular
+ if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
+ {
+ m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
+ m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
+ }
+ else
+ {
+ ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
+ m_matT.coeffRef(n-1,n-1) = numext::real(cc);
+ m_matT.coeffRef(n-1,n) = numext::imag(cc);
+ }
+ m_matT.coeffRef(n,n-1) = Scalar(0);
+ m_matT.coeffRef(n,n) = Scalar(1);
+ for (Index i = n-2; i >= 0; i--)
+ {
+ Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
+ Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+ Scalar w = m_matT.coeff(i,i) - p;
+
+ if (m_eivalues.coeff(i).imag() < Scalar(0))
+ {
+ lastw = w;
+ lastra = ra;
+ lastsa = sa;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == RealScalar(0))
+ {
+ ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
+ m_matT.coeffRef(i,n-1) = numext::real(cc);
+ m_matT.coeffRef(i,n) = numext::imag(cc);
+ }
+ else
+ {
+ // Solve complex equations
+ Scalar x = m_matT.coeff(i,i+1);
+ Scalar y = m_matT.coeff(i+1,i);
+ Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
+ Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
+ if ((vr == Scalar(0)) && (vi == Scalar(0)))
+ vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
+
+ ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
+ m_matT.coeffRef(i,n-1) = numext::real(cc);
+ m_matT.coeffRef(i,n) = numext::imag(cc);
+ if (abs(x) > (abs(lastw) + abs(q)))
+ {
+ m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
+ m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
+ }
+ else
+ {
+ cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
+ m_matT.coeffRef(i+1,n-1) = numext::real(cc);
+ m_matT.coeffRef(i+1,n) = numext::imag(cc);
+ }
+ }
+
+ // Overflow control
+ Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
+ if ((eps * t) * t > Scalar(1))
+ m_matT.block(i, n-1, size-i, 2) /= t;
+
+ }
+ }
+
+ // We handled a pair of complex conjugate eigenvalues, so need to skip them both
+ n--;
+ }
+ else
+ {
+ eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
+ }
+ }
+
+ // Back transformation to get eigenvectors of original matrix
+ for (Index j = size-1; j >= 0; j--)
+ {
+ m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
+ m_eivec.col(j) = m_tmp;
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_EIGENSOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
new file mode 100644
index 000000000..87d789b3f
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -0,0 +1,418 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
+#define EIGEN_GENERALIZEDEIGENSOLVER_H
+
+#include "./RealQZ.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class GeneralizedEigenSolver
+ *
+ * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
+ *
+ * \tparam _MatrixType the type of the matrices of which we are computing the
+ * eigen-decomposition; this is expected to be an instantiation of the Matrix
+ * class template. Currently, only real matrices are supported.
+ *
+ * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+ * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+ * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
+ *
+ * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
+ * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
+ * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
+ * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
+ * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
+ * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
+ * called the left eigenvector.
+ *
+ * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
+ * a given matrix pair. Alternatively, you can use the
+ * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+ * eigenvectors() functions.
+ *
+ * Here is an usage example of this class:
+ * Example: \include GeneralizedEigenSolver.cpp
+ * Output: \verbinclude GeneralizedEigenSolver.out
+ *
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class GeneralizedEigenSolver
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ /** \brief Complex scalar type for #MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
+ *
+ * This is a column vector with entries of type #Scalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
+
+ /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
+ *
+ * This is a column vector with entries of type #ComplexScalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
+
+ /** \brief Expression type for the eigenvalues as returned by eigenvalues().
+ */
+ typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
+
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+ *
+ * \sa compute() for an example.
+ */
+ GeneralizedEigenSolver()
+ : m_eivec(),
+ m_alphas(),
+ m_betas(),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
+ m_realQZ()
+ {}
+
+ /** \brief Default constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa GeneralizedEigenSolver()
+ */
+ explicit GeneralizedEigenSolver(Index size)
+ : m_eivec(size, size),
+ m_alphas(size),
+ m_betas(size),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
+ m_realQZ(size),
+ m_tmp(size)
+ {}
+
+ /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
+ *
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are computed.
+ *
+ * This constructor calls compute() to compute the generalized eigenvalues
+ * and eigenvectors.
+ *
+ * \sa compute()
+ */
+ GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
+ : m_eivec(A.rows(), A.cols()),
+ m_alphas(A.cols()),
+ m_betas(A.cols()),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
+ m_realQZ(A.cols()),
+ m_tmp(A.cols())
+ {
+ compute(A, B, computeEigenvectors);
+ }
+
+ /* \brief Returns the computed generalized eigenvectors.
+ *
+ * \returns %Matrix whose columns are the (possibly complex) right eigenvectors.
+ * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
+ *
+ * \pre Either the constructor
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
+ * compute(const MatrixType&, const MatrixType& bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * \sa eigenvalues()
+ */
+ EigenvectorsType eigenvectors() const {
+ eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
+ return m_eivec;
+ }
+
+ /** \brief Returns an expression of the computed generalized eigenvalues.
+ *
+ * \returns An expression of the column vector containing the eigenvalues.
+ *
+ * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
+ * Not that betas might contain zeros. It is therefore not recommended to use this function,
+ * but rather directly deal with the alphas and betas vectors.
+ *
+ * \pre Either the constructor
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
+ * compute(const MatrixType&,const MatrixType&,bool) has been called before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are not sorted in any particular order.
+ *
+ * \sa alphas(), betas(), eigenvectors()
+ */
+ EigenvalueType eigenvalues() const
+ {
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
+ return EigenvalueType(m_alphas,m_betas);
+ }
+
+ /** \returns A const reference to the vectors containing the alpha values
+ *
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+ *
+ * \sa betas(), eigenvalues() */
+ ComplexVectorType alphas() const
+ {
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
+ return m_alphas;
+ }
+
+ /** \returns A const reference to the vectors containing the beta values
+ *
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+ *
+ * \sa alphas(), eigenvalues() */
+ VectorType betas() const
+ {
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
+ return m_betas;
+ }
+
+ /** \brief Computes generalized eigendecomposition of given matrix.
+ *
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of the real matrix \p matrix.
+ * The eigenvalues() function can be used to retrieve them. If
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
+ * and can be retrieved by calling eigenvectors().
+ *
+ * The matrix is first reduced to real generalized Schur form using the RealQZ
+ * class. The generalized Schur decomposition is then used to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * The cost of the computation is dominated by the cost of the
+ * generalized Schur decomposition.
+ *
+ * This method reuses of the allocated data in the GeneralizedEigenSolver object.
+ */
+ GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
+
+ ComputationInfo info() const
+ {
+ eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
+ return m_realQZ.info();
+ }
+
+ /** Sets the maximal number of iterations allowed.
+ */
+ GeneralizedEigenSolver& setMaxIterations(Index maxIters)
+ {
+ m_realQZ.setMaxIterations(maxIters);
+ return *this;
+ }
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
+ }
+
+ EigenvectorsType m_eivec;
+ ComplexVectorType m_alphas;
+ VectorType m_betas;
+ bool m_valuesOkay, m_vectorsOkay;
+ RealQZ<MatrixType> m_realQZ;
+ ComplexVectorType m_tmp;
+};
+
+template<typename MatrixType>
+GeneralizedEigenSolver<MatrixType>&
+GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
+{
+ check_template_parameters();
+
+ using std::sqrt;
+ using std::abs;
+ eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
+ Index size = A.cols();
+ m_valuesOkay = false;
+ m_vectorsOkay = false;
+ // Reduce to generalized real Schur form:
+ // A = Q S Z and B = Q T Z
+ m_realQZ.compute(A, B, computeEigenvectors);
+ if (m_realQZ.info() == Success)
+ {
+ // Resize storage
+ m_alphas.resize(size);
+ m_betas.resize(size);
+ if (computeEigenvectors)
+ {
+ m_eivec.resize(size,size);
+ m_tmp.resize(size);
+ }
+
+ // Aliases:
+ Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
+ ComplexVectorType &cv = m_tmp;
+ const MatrixType &mS = m_realQZ.matrixS();
+ const MatrixType &mT = m_realQZ.matrixT();
+
+ Index i = 0;
+ while (i < size)
+ {
+ if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
+ {
+ // Real eigenvalue
+ m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
+ m_betas.coeffRef(i) = mT.diagonal().coeff(i);
+ if (computeEigenvectors)
+ {
+ v.setConstant(Scalar(0.0));
+ v.coeffRef(i) = Scalar(1.0);
+ // For singular eigenvalues do nothing more
+ if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
+ {
+ // Non-singular eigenvalue
+ const Scalar alpha = real(m_alphas.coeffRef(i));
+ const Scalar beta = m_betas.coeffRef(i);
+ for (Index j = i-1; j >= 0; j--)
+ {
+ const Index st = j+1;
+ const Index sz = i-j;
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
+ {
+ // 2x2 block
+ Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
+ Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
+ j--;
+ }
+ else
+ {
+ v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
+ }
+ }
+ }
+ m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v;
+ m_eivec.col(i).real().normalize();
+ m_eivec.col(i).imag().setConstant(0);
+ }
+ ++i;
+ }
+ else
+ {
+ // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
+ // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
+
+ // T = [a 0]
+ // [0 b]
+ RealScalar a = mT.diagonal().coeff(i),
+ b = mT.diagonal().coeff(i+1);
+ const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
+
+ // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
+ Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
+
+ Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
+ Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
+ const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
+ m_alphas.coeffRef(i) = conj(alpha);
+ m_alphas.coeffRef(i+1) = alpha;
+
+ if (computeEigenvectors) {
+ // Compute eigenvector in position (i+1) and then position (i) is just the conjugate
+ cv.setZero();
+ cv.coeffRef(i+1) = Scalar(1.0);
+ // here, the "static_cast" workaound expression template issues.
+ cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
+ / (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i));
+ for (Index j = i-1; j >= 0; j--)
+ {
+ const Index st = j+1;
+ const Index sz = i+1-j;
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
+ {
+ // 2x2 block
+ Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
+ Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
+ j--;
+ } else {
+ cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
+ / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
+ }
+ }
+ m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv);
+ m_eivec.col(i+1).normalize();
+ m_eivec.col(i) = m_eivec.col(i+1).conjugate();
+ }
+ i += 2;
+ }
+ }
+
+ m_valuesOkay = true;
+ m_vectorsOkay = computeEigenvectors;
+ }
+ return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
new file mode 100644
index 000000000..d0f9091be
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
@@ -0,0 +1,226 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class GeneralizedSelfAdjointEigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template.
+ *
+ * This class solves the generalized eigenvalue problem
+ * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
+ * selfadjoint and the matrix \f$ B \f$ should be positive definite.
+ *
+ * Only the \b lower \b triangular \b part of the input matrix is referenced.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+ * constructor which computes the eigenvalues and eigenvectors at construction time.
+ * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
+ * and eigenvectors() functions.
+ *
+ * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+ * contains an example of the typical use of this class.
+ *
+ * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
+{
+ typedef SelfAdjointEigenSolver<_MatrixType> Base;
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ /** \brief Default constructor for fixed-size matrices.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). This constructor
+ * can only be used if \p _MatrixType is a fixed-size matrix; use
+ * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
+ */
+ GeneralizedSelfAdjointEigenSolver() : Base() {}
+
+ /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+ *
+ * \param [in] size Positive integer, size of the matrix whose
+ * eigenvalues and eigenvectors will be computed.
+ *
+ * This constructor is useful for dynamic-size matrices, when the user
+ * intends to perform decompositions via compute(). The \p size
+ * parameter is only used as a hint. It is not an error to give a wrong
+ * \p size, but it may impair performance.
+ *
+ * \sa compute() for an example
+ */
+ explicit GeneralizedSelfAdjointEigenSolver(Index size)
+ : Base(size)
+ {}
+
+ /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
+ *
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
+ * \param[in] matB Positive-definite matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
+ * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+ * Default is #ComputeEigenvectors|#Ax_lBx.
+ *
+ * This constructor calls compute(const MatrixType&, const MatrixType&, int)
+ * to compute the eigenvalues and (if requested) the eigenvectors of the
+ * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
+ * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
+ * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
+ * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
+ * \a options contains ComputeEigenvectors.
+ *
+ * In addition, the two following variants can be solved via \p options:
+ * - \c ABx_lx: \f$ ABx = \lambda x \f$
+ * - \c BAx_lx: \f$ BAx = \lambda x \f$
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
+ *
+ * \sa compute(const MatrixType&, const MatrixType&, int)
+ */
+ GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
+ int options = ComputeEigenvectors|Ax_lBx)
+ : Base(matA.cols())
+ {
+ compute(matA, matB, options);
+ }
+
+ /** \brief Computes generalized eigendecomposition of given matrix pencil.
+ *
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
+ * \param[in] matB Positive-definite matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
+ * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+ * Default is #ComputeEigenvectors|#Ax_lBx.
+ *
+ * \returns Reference to \c *this
+ *
+ * According to \p options, this function computes eigenvalues and (if requested)
+ * the eigenvectors of one of the following three generalized eigenproblems:
+ * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
+ * - \c ABx_lx: \f$ ABx = \lambda x \f$
+ * - \c BAx_lx: \f$ BAx = \lambda x \f$
+ * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
+ * matrix \f$ B \f$.
+ * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
+ *
+ * The eigenvalues() function can be used to retrieve
+ * the eigenvalues. If \p options contains ComputeEigenvectors, then the
+ * eigenvectors are also computed and can be retrieved by calling
+ * eigenvectors().
+ *
+ * The implementation uses LLT to compute the Cholesky decomposition
+ * \f$ B = LL^* \f$ and computes the classical eigendecomposition
+ * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
+ * and of \f$ L^{*} A L \f$ otherwise. This solves the
+ * generalized eigenproblem, because any solution of the generalized
+ * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
+ * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
+ * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
+ * can be made for the two other variants.
+ *
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
+ *
+ * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+ */
+ GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
+ int options = ComputeEigenvectors|Ax_lBx);
+
+ protected:
+
+};
+
+
+template<typename MatrixType>
+GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
+compute(const MatrixType& matA, const MatrixType& matB, int options)
+{
+ eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
+ || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
+ && "invalid option parameter");
+
+ bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
+
+ // Compute the cholesky decomposition of matB = L L' = U'U
+ LLT<MatrixType> cholB(matB);
+
+ int type = (options&GenEigMask);
+ if(type==0)
+ type = Ax_lBx;
+
+ if(type==Ax_lBx)
+ {
+ // compute C = inv(L) A inv(L')
+ MatrixType matC = matA.template selfadjointView<Lower>();
+ cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
+ cholB.matrixU().template solveInPlace<OnTheRight>(matC);
+
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
+
+ // transform back the eigen vectors: evecs = inv(U) * evecs
+ if(computeEigVecs)
+ cholB.matrixU().solveInPlace(Base::m_eivec);
+ }
+ else if(type==ABx_lx)
+ {
+ // compute C = L' A L
+ MatrixType matC = matA.template selfadjointView<Lower>();
+ matC = matC * cholB.matrixL();
+ matC = cholB.matrixU() * matC;
+
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+ // transform back the eigen vectors: evecs = inv(U) * evecs
+ if(computeEigVecs)
+ cholB.matrixU().solveInPlace(Base::m_eivec);
+ }
+ else if(type==BAx_lx)
+ {
+ // compute C = L' A L
+ MatrixType matC = matA.template selfadjointView<Lower>();
+ matC = matC * cholB.matrixL();
+ matC = cholB.matrixU() * matC;
+
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+ // transform back the eigen vectors: evecs = L * evecs
+ if(computeEigVecs)
+ Base::m_eivec = cholB.matrixL() * Base::m_eivec;
+ }
+
+ return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h
new file mode 100644
index 000000000..1f2113934
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h
@@ -0,0 +1,374 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
+#define EIGEN_HESSENBERGDECOMPOSITION_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
+template<typename MatrixType>
+struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
+{
+ typedef MatrixType ReturnType;
+};
+
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class HessenbergDecomposition
+ *
+ * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
+ *
+ * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
+ * the real case, the Hessenberg decomposition consists of an orthogonal
+ * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H
+ * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its
+ * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the
+ * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition
+ * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is,
+ * \f$ Q^{-1} = Q^* \f$).
+ *
+ * Call the function compute() to compute the Hessenberg decomposition of a
+ * given matrix. Alternatively, you can use the
+ * HessenbergDecomposition(const MatrixType&) constructor which computes the
+ * Hessenberg decomposition at construction time. Once the decomposition is
+ * computed, you can use the matrixH() and matrixQ() functions to construct
+ * the matrices H and Q in the decomposition.
+ *
+ * The documentation for matrixH() contains an example of the typical use of
+ * this class.
+ *
+ * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
+ */
+template<typename _MatrixType> class HessenbergDecomposition
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ Size = MatrixType::RowsAtCompileTime,
+ SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
+ Options = MatrixType::Options,
+ MaxSize = MatrixType::MaxRowsAtCompileTime,
+ MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ /** \brief Type for vector of Householder coefficients.
+ *
+ * This is column vector with entries of type #Scalar. The length of the
+ * vector is one less than the size of #MatrixType, if it is a fixed-side
+ * type.
+ */
+ typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
+
+ /** \brief Return type of matrixQ() */
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
+
+ typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;
+
+ /** \brief Default constructor; the decomposition will be computed later.
+ *
+ * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
+ : m_matrix(size,size),
+ m_temp(size),
+ m_isInitialized(false)
+ {
+ if(size>1)
+ m_hCoeffs.resize(size-1);
+ }
+
+ /** \brief Constructor; computes Hessenberg decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
+ *
+ * This constructor calls compute() to compute the Hessenberg
+ * decomposition.
+ *
+ * \sa matrixH() for an example.
+ */
+ template<typename InputType>
+ explicit HessenbergDecomposition(const EigenBase<InputType>& matrix)
+ : m_matrix(matrix.derived()),
+ m_temp(matrix.rows()),
+ m_isInitialized(false)
+ {
+ if(matrix.rows()<2)
+ {
+ m_isInitialized = true;
+ return;
+ }
+ m_hCoeffs.resize(matrix.rows()-1,1);
+ _compute(m_matrix, m_hCoeffs, m_temp);
+ m_isInitialized = true;
+ }
+
+ /** \brief Computes Hessenberg decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
+ * \returns Reference to \c *this
+ *
+ * The Hessenberg decomposition is computed by bringing the columns of the
+ * matrix successively in the required form using Householder reflections
+ * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix
+ * Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$
+ * denotes the size of the given matrix.
+ *
+ * This method reuses of the allocated data in the HessenbergDecomposition
+ * object.
+ *
+ * Example: \include HessenbergDecomposition_compute.cpp
+ * Output: \verbinclude HessenbergDecomposition_compute.out
+ */
+ template<typename InputType>
+ HessenbergDecomposition& compute(const EigenBase<InputType>& matrix)
+ {
+ m_matrix = matrix.derived();
+ if(matrix.rows()<2)
+ {
+ m_isInitialized = true;
+ return *this;
+ }
+ m_hCoeffs.resize(matrix.rows()-1,1);
+ _compute(m_matrix, m_hCoeffs, m_temp);
+ m_isInitialized = true;
+ return *this;
+ }
+
+ /** \brief Returns the Householder coefficients.
+ *
+ * \returns a const reference to the vector of Householder coefficients
+ *
+ * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+ * or the member function compute(const MatrixType&) has been called
+ * before to compute the Hessenberg decomposition of a matrix.
+ *
+ * The Householder coefficients allow the reconstruction of the matrix
+ * \f$ Q \f$ in the Hessenberg decomposition from the packed data.
+ *
+ * \sa packedMatrix(), \ref Householder_Module "Householder module"
+ */
+ const CoeffVectorType& householderCoefficients() const
+ {
+ eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+ return m_hCoeffs;
+ }
+
+ /** \brief Returns the internal representation of the decomposition
+ *
+ * \returns a const reference to a matrix with the internal representation
+ * of the decomposition.
+ *
+ * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+ * or the member function compute(const MatrixType&) has been called
+ * before to compute the Hessenberg decomposition of a matrix.
+ *
+ * The returned matrix contains the following information:
+ * - the upper part and lower sub-diagonal represent the Hessenberg matrix H
+ * - the rest of the lower part contains the Householder vectors that, combined with
+ * Householder coefficients returned by householderCoefficients(),
+ * allows to reconstruct the matrix Q as
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+ * Here, the matrices \f$ H_i \f$ are the Householder transformations
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
+ * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
+ * \f$ v_i \f$ is the Householder vector defined by
+ * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
+ * with M the matrix returned by this function.
+ *
+ * See LAPACK for further details on this packed storage.
+ *
+ * Example: \include HessenbergDecomposition_packedMatrix.cpp
+ * Output: \verbinclude HessenbergDecomposition_packedMatrix.out
+ *
+ * \sa householderCoefficients()
+ */
+ const MatrixType& packedMatrix() const
+ {
+ eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+ return m_matrix;
+ }
+
+ /** \brief Reconstructs the orthogonal matrix Q in the decomposition
+ *
+ * \returns object representing the matrix Q
+ *
+ * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+ * or the member function compute(const MatrixType&) has been called
+ * before to compute the Hessenberg decomposition of a matrix.
+ *
+ * This function returns a light-weight object of template class
+ * HouseholderSequence. You can either apply it directly to a matrix or
+ * you can convert it to a matrix of type #MatrixType.
+ *
+ * \sa matrixH() for an example, class HouseholderSequence
+ */
+ HouseholderSequenceType matrixQ() const
+ {
+ eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+ return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
+ .setLength(m_matrix.rows() - 1)
+ .setShift(1);
+ }
+
+ /** \brief Constructs the Hessenberg matrix H in the decomposition
+ *
+ * \returns expression object representing the matrix H
+ *
+ * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+ * or the member function compute(const MatrixType&) has been called
+ * before to compute the Hessenberg decomposition of a matrix.
+ *
+ * The object returned by this function constructs the Hessenberg matrix H
+ * when it is assigned to a matrix or otherwise evaluated. The matrix H is
+ * constructed from the packed matrix as returned by packedMatrix(): The
+ * upper part (including the subdiagonal) of the packed matrix contains
+ * the matrix H. It may sometimes be better to directly use the packed
+ * matrix instead of constructing the matrix H.
+ *
+ * Example: \include HessenbergDecomposition_matrixH.cpp
+ * Output: \verbinclude HessenbergDecomposition_matrixH.out
+ *
+ * \sa matrixQ(), packedMatrix()
+ */
+ MatrixHReturnType matrixH() const
+ {
+ eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+ return MatrixHReturnType(*this);
+ }
+
+ private:
+
+ typedef Matrix<Scalar, 1, Size, int(Options) | int(RowMajor), 1, MaxSize> VectorType;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
+
+ protected:
+ MatrixType m_matrix;
+ CoeffVectorType m_hCoeffs;
+ VectorType m_temp;
+ bool m_isInitialized;
+};
+
+/** \internal
+ * Performs a tridiagonal decomposition of \a matA in place.
+ *
+ * \param matA the input selfadjoint matrix
+ * \param hCoeffs returned Householder coefficients
+ *
+ * The result is written in the lower triangular part of \a matA.
+ *
+ * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1.
+ *
+ * \sa packedMatrix()
+ */
+template<typename MatrixType>
+void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
+{
+ eigen_assert(matA.rows()==matA.cols());
+ Index n = matA.rows();
+ temp.resize(n);
+ for (Index i = 0; i<n-1; ++i)
+ {
+ // let's consider the vector v = i-th column starting at position i+1
+ Index remainingSize = n-i-1;
+ RealScalar beta;
+ Scalar h;
+ matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
+ matA.col(i).coeffRef(i+1) = beta;
+ hCoeffs.coeffRef(i) = h;
+
+ // Apply similarity transformation to remaining columns,
+ // i.e., compute A = H A H'
+
+ // A = H A
+ matA.bottomRightCorner(remainingSize, remainingSize)
+ .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));
+
+ // A = A H'
+ matA.rightCols(remainingSize)
+ .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1), numext::conj(h), &temp.coeffRef(0));
+ }
+}
+
+namespace internal {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \brief Expression type for return value of HessenbergDecomposition::matrixH()
+ *
+ * \tparam MatrixType type of matrix in the Hessenberg decomposition
+ *
+ * Objects of this type represent the Hessenberg matrix in the Hessenberg
+ * decomposition of some matrix. The object holds a reference to the
+ * HessenbergDecomposition class until the it is assigned or evaluated for
+ * some other reason (the reference should remain valid during the life time
+ * of this object). This class is the return type of
+ * HessenbergDecomposition::matrixH(); there is probably no other use for this
+ * class.
+ */
+template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
+: public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
+{
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] hess Hessenberg decomposition
+ */
+ HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }
+
+ /** \brief Hessenberg matrix in decomposition.
+ *
+ * \param[out] result Hessenberg matrix in decomposition \p hess which
+ * was passed to the constructor
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ result = m_hess.packedMatrix();
+ Index n = result.rows();
+ if (n>2)
+ result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
+ }
+
+ Index rows() const { return m_hess.packedMatrix().rows(); }
+ Index cols() const { return m_hess.packedMatrix().cols(); }
+
+ protected:
+ const HessenbergDecomposition<MatrixType>& m_hess;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_HESSENBERGDECOMPOSITION_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
new file mode 100644
index 000000000..66e5a3dbb
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
@@ -0,0 +1,158 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
+#define EIGEN_MATRIXBASEEIGENVALUES_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Derived, bool IsComplex>
+struct eigenvalues_selector
+{
+ // this is the implementation for the case IsComplex = true
+ static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+ run(const MatrixBase<Derived>& m)
+ {
+ typedef typename Derived::PlainObject PlainObject;
+ PlainObject m_eval(m);
+ return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
+ }
+};
+
+template<typename Derived>
+struct eigenvalues_selector<Derived, false>
+{
+ static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+ run(const MatrixBase<Derived>& m)
+ {
+ typedef typename Derived::PlainObject PlainObject;
+ PlainObject m_eval(m);
+ return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
+ }
+};
+
+} // end namespace internal
+
+/** \brief Computes the eigenvalues of a matrix
+ * \returns Column vector containing the eigenvalues.
+ *
+ * \eigenvalues_module
+ * This function computes the eigenvalues with the help of the EigenSolver
+ * class (for real matrices) or the ComplexEigenSolver class (for complex
+ * matrices).
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix.
+ *
+ * The SelfAdjointView class provides a better algorithm for selfadjoint
+ * matrices.
+ *
+ * Example: \include MatrixBase_eigenvalues.cpp
+ * Output: \verbinclude MatrixBase_eigenvalues.out
+ *
+ * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
+ * SelfAdjointView::eigenvalues()
+ */
+template<typename Derived>
+inline typename MatrixBase<Derived>::EigenvaluesReturnType
+MatrixBase<Derived>::eigenvalues() const
+{
+ return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
+}
+
+/** \brief Computes the eigenvalues of a matrix
+ * \returns Column vector containing the eigenvalues.
+ *
+ * \eigenvalues_module
+ * This function computes the eigenvalues with the help of the
+ * SelfAdjointEigenSolver class. The eigenvalues are repeated according to
+ * their algebraic multiplicity, so there are as many eigenvalues as rows in
+ * the matrix.
+ *
+ * Example: \include SelfAdjointView_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointView_eigenvalues.out
+ *
+ * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
+ */
+template<typename MatrixType, unsigned int UpLo>
+EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
+SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
+{
+ PlainObject thisAsMatrix(*this);
+ return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
+}
+
+
+
+/** \brief Computes the L2 operator norm
+ * \returns Operator norm of the matrix.
+ *
+ * \eigenvalues_module
+ * This function computes the L2 operator norm of a matrix, which is also
+ * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
+ * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
+ * where the maximum is over all vectors and the norm on the right is the
+ * Euclidean vector norm. The norm equals the largest singular value, which is
+ * the square root of the largest eigenvalue of the positive semi-definite
+ * matrix \f$ A^*A \f$.
+ *
+ * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
+ * by SelfAdjointView::eigenvalues(), to compute the operator norm of a
+ * matrix. The SelfAdjointView class provides a better algorithm for
+ * selfadjoint matrices.
+ *
+ * Example: \include MatrixBase_operatorNorm.cpp
+ * Output: \verbinclude MatrixBase_operatorNorm.out
+ *
+ * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
+ */
+template<typename Derived>
+inline typename MatrixBase<Derived>::RealScalar
+MatrixBase<Derived>::operatorNorm() const
+{
+ using std::sqrt;
+ typename Derived::PlainObject m_eval(derived());
+ // FIXME if it is really guaranteed that the eigenvalues are already sorted,
+ // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
+ return sqrt((m_eval*m_eval.adjoint())
+ .eval()
+ .template selfadjointView<Lower>()
+ .eigenvalues()
+ .maxCoeff()
+ );
+}
+
+/** \brief Computes the L2 operator norm
+ * \returns Operator norm of the matrix.
+ *
+ * \eigenvalues_module
+ * This function computes the L2 operator norm of a self-adjoint matrix. For a
+ * self-adjoint matrix, the operator norm is the largest eigenvalue.
+ *
+ * The current implementation uses the eigenvalues of the matrix, as computed
+ * by eigenvalues(), to compute the operator norm of the matrix.
+ *
+ * Example: \include SelfAdjointView_operatorNorm.cpp
+ * Output: \verbinclude SelfAdjointView_operatorNorm.out
+ *
+ * \sa eigenvalues(), MatrixBase::operatorNorm()
+ */
+template<typename MatrixType, unsigned int UpLo>
+EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
+SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
+{
+ return eigenvalues().cwiseAbs().maxCoeff();
+}
+
+} // end namespace Eigen
+
+#endif
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h
new file mode 100644
index 000000000..509130184
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h
@@ -0,0 +1,657 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REAL_QZ_H
+#define EIGEN_REAL_QZ_H
+
+namespace Eigen {
+
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class RealQZ
+ *
+ * \brief Performs a real QZ decomposition of a pair of square matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * real QZ decomposition; this is expected to be an instantiation of the
+ * Matrix class template.
+ *
+ * Given a real square matrices A and B, this class computes the real QZ
+ * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
+ * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
+ * quasi-triangular matrix. An orthogonal matrix is a matrix whose
+ * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
+ * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
+ * blocks and 2-by-2 blocks where further reduction is impossible due to
+ * complex eigenvalues.
+ *
+ * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
+ * 1x1 and 2x2 blocks on the diagonals of S and T.
+ *
+ * Call the function compute() to compute the real QZ decomposition of a
+ * given pair of matrices. Alternatively, you can use the
+ * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
+ * constructor which computes the real QZ decomposition at construction
+ * time. Once the decomposition is computed, you can use the matrixS(),
+ * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
+ * S, T, Q and Z in the decomposition. If computeQZ==false, some time
+ * is saved by not computing matrices Q and Z.
+ *
+ * Example: \include RealQZ_compute.cpp
+ * Output: \include RealQZ_compute.out
+ *
+ * \note The implementation is based on the algorithm in "Matrix Computations"
+ * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
+ * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
+ *
+ * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
+ */
+
+ template<typename _MatrixType> class RealQZ
+ {
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) :
+ m_S(size, size),
+ m_T(size, size),
+ m_Q(size, size),
+ m_Z(size, size),
+ m_workspace(size*2),
+ m_maxIters(400),
+ m_isInitialized(false),
+ m_computeQZ(true)
+ {}
+
+ /** \brief Constructor; computes real QZ decomposition of given matrices
+ *
+ * \param[in] A Matrix A.
+ * \param[in] B Matrix B.
+ * \param[in] computeQZ If false, A and Z are not computed.
+ *
+ * This constructor calls compute() to compute the QZ decomposition.
+ */
+ RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
+ m_S(A.rows(),A.cols()),
+ m_T(A.rows(),A.cols()),
+ m_Q(A.rows(),A.cols()),
+ m_Z(A.rows(),A.cols()),
+ m_workspace(A.rows()*2),
+ m_maxIters(400),
+ m_isInitialized(false),
+ m_computeQZ(true)
+ {
+ compute(A, B, computeQZ);
+ }
+
+ /** \brief Returns matrix Q in the QZ decomposition.
+ *
+ * \returns A const reference to the matrix Q.
+ */
+ const MatrixType& matrixQ() const {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
+ return m_Q;
+ }
+
+ /** \brief Returns matrix Z in the QZ decomposition.
+ *
+ * \returns A const reference to the matrix Z.
+ */
+ const MatrixType& matrixZ() const {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
+ return m_Z;
+ }
+
+ /** \brief Returns matrix S in the QZ decomposition.
+ *
+ * \returns A const reference to the matrix S.
+ */
+ const MatrixType& matrixS() const {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ return m_S;
+ }
+
+ /** \brief Returns matrix S in the QZ decomposition.
+ *
+ * \returns A const reference to the matrix S.
+ */
+ const MatrixType& matrixT() const {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ return m_T;
+ }
+
+ /** \brief Computes QZ decomposition of given matrix.
+ *
+ * \param[in] A Matrix A.
+ * \param[in] B Matrix B.
+ * \param[in] computeQZ If false, A and Z are not computed.
+ * \returns Reference to \c *this
+ */
+ RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Returns number of performed QR-like iterations.
+ */
+ Index iterations() const
+ {
+ eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+ return m_global_iter;
+ }
+
+ /** Sets the maximal number of iterations allowed to converge to one eigenvalue
+ * or decouple the problem.
+ */
+ RealQZ& setMaxIterations(Index maxIters)
+ {
+ m_maxIters = maxIters;
+ return *this;
+ }
+
+ private:
+
+ MatrixType m_S, m_T, m_Q, m_Z;
+ Matrix<Scalar,Dynamic,1> m_workspace;
+ ComputationInfo m_info;
+ Index m_maxIters;
+ bool m_isInitialized;
+ bool m_computeQZ;
+ Scalar m_normOfT, m_normOfS;
+ Index m_global_iter;
+
+ typedef Matrix<Scalar,3,1> Vector3s;
+ typedef Matrix<Scalar,2,1> Vector2s;
+ typedef Matrix<Scalar,2,2> Matrix2s;
+ typedef JacobiRotation<Scalar> JRs;
+
+ void hessenbergTriangular();
+ void computeNorms();
+ Index findSmallSubdiagEntry(Index iu);
+ Index findSmallDiagEntry(Index f, Index l);
+ void splitOffTwoRows(Index i);
+ void pushDownZero(Index z, Index f, Index l);
+ void step(Index f, Index l, Index iter);
+
+ }; // RealQZ
+
+ /** \internal Reduces S and T to upper Hessenberg - triangular form */
+ template<typename MatrixType>
+ void RealQZ<MatrixType>::hessenbergTriangular()
+ {
+
+ const Index dim = m_S.cols();
+
+ // perform QR decomposition of T, overwrite T with R, save Q
+ HouseholderQR<MatrixType> qrT(m_T);
+ m_T = qrT.matrixQR();
+ m_T.template triangularView<StrictlyLower>().setZero();
+ m_Q = qrT.householderQ();
+ // overwrite S with Q* S
+ m_S.applyOnTheLeft(m_Q.adjoint());
+ // init Z as Identity
+ if (m_computeQZ)
+ m_Z = MatrixType::Identity(dim,dim);
+ // reduce S to upper Hessenberg with Givens rotations
+ for (Index j=0; j<=dim-3; j++) {
+ for (Index i=dim-1; i>=j+2; i--) {
+ JRs G;
+ // kill S(i,j)
+ if(m_S.coeff(i,j) != 0)
+ {
+ G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
+ m_S.coeffRef(i,j) = Scalar(0.0);
+ m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
+ m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
+ // update Q
+ if (m_computeQZ)
+ m_Q.applyOnTheRight(i-1,i,G);
+ }
+ // kill T(i,i-1)
+ if(m_T.coeff(i,i-1)!=Scalar(0))
+ {
+ G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
+ m_T.coeffRef(i,i-1) = Scalar(0.0);
+ m_S.applyOnTheRight(i,i-1,G);
+ m_T.topRows(i).applyOnTheRight(i,i-1,G);
+ // update Z
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(i,i-1,G.adjoint());
+ }
+ }
+ }
+ }
+
+ /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
+ template<typename MatrixType>
+ inline void RealQZ<MatrixType>::computeNorms()
+ {
+ const Index size = m_S.cols();
+ m_normOfS = Scalar(0.0);
+ m_normOfT = Scalar(0.0);
+ for (Index j = 0; j < size; ++j)
+ {
+ m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
+ m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
+ }
+ }
+
+
+ /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
+ template<typename MatrixType>
+ inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
+ {
+ using std::abs;
+ Index res = iu;
+ while (res > 0)
+ {
+ Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
+ if (s == Scalar(0.0))
+ s = m_normOfS;
+ if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
+ break;
+ res--;
+ }
+ return res;
+ }
+
+ /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
+ template<typename MatrixType>
+ inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
+ {
+ using std::abs;
+ Index res = l;
+ while (res >= f) {
+ if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
+ break;
+ res--;
+ }
+ return res;
+ }
+
+ /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
+ template<typename MatrixType>
+ inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
+ {
+ using std::abs;
+ using std::sqrt;
+ const Index dim=m_S.cols();
+ if (abs(m_S.coeff(i+1,i))==Scalar(0))
+ return;
+ Index j = findSmallDiagEntry(i,i+1);
+ if (j==i-1)
+ {
+ // block of (S T^{-1})
+ Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
+ template solve<OnTheRight>(m_S.template block<2,2>(i,i));
+ Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
+ Scalar q = p*p + STi(1,0)*STi(0,1);
+ if (q>=0) {
+ Scalar z = sqrt(q);
+ // one QR-like iteration for ABi - lambda I
+ // is enough - when we know exact eigenvalue in advance,
+ // convergence is immediate
+ JRs G;
+ if (p>=0)
+ G.makeGivens(p + z, STi(1,0));
+ else
+ G.makeGivens(p - z, STi(1,0));
+ m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
+ m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
+ // update Q
+ if (m_computeQZ)
+ m_Q.applyOnTheRight(i,i+1,G);
+
+ G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
+ m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
+ m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
+ // update Z
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(i+1,i,G.adjoint());
+
+ m_S.coeffRef(i+1,i) = Scalar(0.0);
+ m_T.coeffRef(i+1,i) = Scalar(0.0);
+ }
+ }
+ else
+ {
+ pushDownZero(j,i,i+1);
+ }
+ }
+
+ /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
+ template<typename MatrixType>
+ inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
+ {
+ JRs G;
+ const Index dim = m_S.cols();
+ for (Index zz=z; zz<l; zz++)
+ {
+ // push 0 down
+ Index firstColS = zz>f ? (zz-1) : zz;
+ G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
+ m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
+ m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
+ m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
+ // update Q
+ if (m_computeQZ)
+ m_Q.applyOnTheRight(zz,zz+1,G);
+ // kill S(zz+1, zz-1)
+ if (zz>f)
+ {
+ G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
+ m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
+ m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
+ m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
+ // update Z
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
+ }
+ }
+ // finally kill S(l,l-1)
+ G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
+ m_S.applyOnTheRight(l,l-1,G);
+ m_T.applyOnTheRight(l,l-1,G);
+ m_S.coeffRef(l,l-1)=Scalar(0.0);
+ // update Z
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(l,l-1,G.adjoint());
+ }
+
+ /** \internal QR-like iterative step for block f..l */
+ template<typename MatrixType>
+ inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
+ {
+ using std::abs;
+ const Index dim = m_S.cols();
+
+ // x, y, z
+ Scalar x, y, z;
+ if (iter==10)
+ {
+ // Wilkinson ad hoc shift
+ const Scalar
+ a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
+ a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
+ b12=m_T.coeff(f+0,f+1),
+ b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
+ b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
+ a87=m_S.coeff(l-1,l-2),
+ a98=m_S.coeff(l-0,l-1),
+ b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
+ b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
+ Scalar ss = abs(a87*b77i) + abs(a98*b88i),
+ lpl = Scalar(1.5)*ss,
+ ll = ss*ss;
+ x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
+ - a11*a21*b12*b11i*b11i*b22i;
+ y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
+ - a21*a21*b12*b11i*b11i*b22i;
+ z = a21*a32*b11i*b22i;
+ }
+ else if (iter==16)
+ {
+ // another exceptional shift
+ x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
+ (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
+ y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
+ z = 0;
+ }
+ else if (iter>23 && !(iter%8))
+ {
+ // extremely exceptional shift
+ x = internal::random<Scalar>(-1.0,1.0);
+ y = internal::random<Scalar>(-1.0,1.0);
+ z = internal::random<Scalar>(-1.0,1.0);
+ }
+ else
+ {
+ // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
+ // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
+ // U and V are 2x2 bottom right sub matrices of A and B. Thus:
+ // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
+ // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
+ // Since we are only interested in having x, y, z with a correct ratio, we have:
+ const Scalar
+ a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
+ a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
+ a32 = m_S.coeff(f+2,f+1),
+
+ a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
+ a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
+
+ b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
+ b22 = m_T.coeff(f+1,f+1),
+
+ b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
+ b99 = m_T.coeff(l,l);
+
+ x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+ + a12/b22 - (a11/b11)*(b12/b22);
+ y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
+ z = a32/b22;
+ }
+
+ JRs G;
+
+ for (Index k=f; k<=l-2; k++)
+ {
+ // variables for Householder reflections
+ Vector2s essential2;
+ Scalar tau, beta;
+
+ Vector3s hr(x,y,z);
+
+ // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
+ hr.makeHouseholderInPlace(tau, beta);
+ essential2 = hr.template bottomRows<2>();
+ Index fc=(std::max)(k-1,Index(0)); // first col to update
+ m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
+ m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
+ if (m_computeQZ)
+ m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
+ if (k>f)
+ m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
+
+ // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
+ hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
+ hr.makeHouseholderInPlace(tau, beta);
+ essential2 = hr.template bottomRows<2>();
+ {
+ Index lr = (std::min)(k+4,dim); // last row to update
+ Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
+ // S
+ tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
+ tmp += m_S.col(k+2).head(lr);
+ m_S.col(k+2).head(lr) -= tau*tmp;
+ m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
+ // T
+ tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
+ tmp += m_T.col(k+2).head(lr);
+ m_T.col(k+2).head(lr) -= tau*tmp;
+ m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
+ }
+ if (m_computeQZ)
+ {
+ // Z
+ Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
+ tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
+ tmp += m_Z.row(k+2);
+ m_Z.row(k+2) -= tau*tmp;
+ m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
+ }
+ m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
+
+ // Z_{k2} to annihilate T(k+1,k)
+ G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
+ m_S.applyOnTheRight(k+1,k,G);
+ m_T.applyOnTheRight(k+1,k,G);
+ // update Z
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(k+1,k,G.adjoint());
+ m_T.coeffRef(k+1,k) = Scalar(0.0);
+
+ // update x,y,z
+ x = m_S.coeff(k+1,k);
+ y = m_S.coeff(k+2,k);
+ if (k < l-2)
+ z = m_S.coeff(k+3,k);
+ } // loop over k
+
+ // Q_{n-1} to annihilate y = S(l,l-2)
+ G.makeGivens(x,y);
+ m_S.applyOnTheLeft(l-1,l,G.adjoint());
+ m_T.applyOnTheLeft(l-1,l,G.adjoint());
+ if (m_computeQZ)
+ m_Q.applyOnTheRight(l-1,l,G);
+ m_S.coeffRef(l,l-2) = Scalar(0.0);
+
+ // Z_{n-1} to annihilate T(l,l-1)
+ G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
+ m_S.applyOnTheRight(l,l-1,G);
+ m_T.applyOnTheRight(l,l-1,G);
+ if (m_computeQZ)
+ m_Z.applyOnTheLeft(l,l-1,G.adjoint());
+ m_T.coeffRef(l,l-1) = Scalar(0.0);
+ }
+
+ template<typename MatrixType>
+ RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
+ {
+
+ const Index dim = A_in.cols();
+
+ eigen_assert (A_in.rows()==dim && A_in.cols()==dim
+ && B_in.rows()==dim && B_in.cols()==dim
+ && "Need square matrices of the same dimension");
+
+ m_isInitialized = true;
+ m_computeQZ = computeQZ;
+ m_S = A_in; m_T = B_in;
+ m_workspace.resize(dim*2);
+ m_global_iter = 0;
+
+ // entrance point: hessenberg triangular decomposition
+ hessenbergTriangular();
+ // compute L1 vector norms of T, S into m_normOfS, m_normOfT
+ computeNorms();
+
+ Index l = dim-1,
+ f,
+ local_iter = 0;
+
+ while (l>0 && local_iter<m_maxIters)
+ {
+ f = findSmallSubdiagEntry(l);
+ // now rows and columns f..l (including) decouple from the rest of the problem
+ if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
+ if (f == l) // One root found
+ {
+ l--;
+ local_iter = 0;
+ }
+ else if (f == l-1) // Two roots found
+ {
+ splitOffTwoRows(f);
+ l -= 2;
+ local_iter = 0;
+ }
+ else // No convergence yet
+ {
+ // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
+ Index z = findSmallDiagEntry(f,l);
+ if (z>=f)
+ {
+ // zero found
+ pushDownZero(z,f,l);
+ }
+ else
+ {
+ // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
+ // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
+ // apply a QR-like iteration to rows and columns f..l.
+ step(f,l, local_iter);
+ local_iter++;
+ m_global_iter++;
+ }
+ }
+ }
+ // check if we converged before reaching iterations limit
+ m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
+
+ // For each non triangular 2x2 diagonal block of S,
+ // reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
+ // This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
+ // and is in par with Lapack/Matlab QZ.
+ if(m_info==Success)
+ {
+ for(Index i=0; i<dim-1; ++i)
+ {
+ if(m_S.coeff(i+1, i) != Scalar(0))
+ {
+ JacobiRotation<Scalar> j_left, j_right;
+ internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
+
+ // Apply resulting Jacobi rotations
+ m_S.applyOnTheLeft(i,i+1,j_left);
+ m_S.applyOnTheRight(i,i+1,j_right);
+ m_T.applyOnTheLeft(i,i+1,j_left);
+ m_T.applyOnTheRight(i,i+1,j_right);
+ m_T(i+1,i) = m_T(i,i+1) = Scalar(0);
+
+ if(m_computeQZ) {
+ m_Q.applyOnTheRight(i,i+1,j_left.transpose());
+ m_Z.applyOnTheLeft(i,i+1,j_right.transpose());
+ }
+
+ i++;
+ }
+ }
+ }
+
+ return *this;
+ } // end compute
+
+} // end namespace Eigen
+
+#endif //EIGEN_REAL_QZ
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur.h
new file mode 100644
index 000000000..7304ef344
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur.h
@@ -0,0 +1,558 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REAL_SCHUR_H
+#define EIGEN_REAL_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class RealSchur
+ *
+ * \brief Performs a real Schur decomposition of a square matrix
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * real Schur decomposition; this is expected to be an instantiation of the
+ * Matrix class template.
+ *
+ * Given a real square matrix A, this class computes the real Schur
+ * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
+ * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
+ * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
+ * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
+ * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
+ * blocks on the diagonal of T are the same as the eigenvalues of the matrix
+ * A, and thus the real Schur decomposition is used in EigenSolver to compute
+ * the eigendecomposition of a matrix.
+ *
+ * Call the function compute() to compute the real Schur decomposition of a
+ * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
+ * constructor which computes the real Schur decomposition at construction
+ * time. Once the decomposition is computed, you can use the matrixU() and
+ * matrixT() functions to retrieve the matrices U and T in the decomposition.
+ *
+ * The documentation of RealSchur(const MatrixType&, bool) contains an example
+ * of the typical use of this class.
+ *
+ * \note The implementation is adapted from
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+ * Their code is based on EISPACK.
+ *
+ * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType> class RealSchur
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
+ : m_matT(size, size),
+ m_matU(size, size),
+ m_workspaceVector(size),
+ m_hess(size),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ { }
+
+ /** \brief Constructor; computes real Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+ *
+ * This constructor calls compute() to compute the Schur decomposition.
+ *
+ * Example: \include RealSchur_RealSchur_MatrixType.cpp
+ * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
+ */
+ template<typename InputType>
+ explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
+ : m_matT(matrix.rows(),matrix.cols()),
+ m_matU(matrix.rows(),matrix.cols()),
+ m_workspaceVector(matrix.rows()),
+ m_hess(matrix.rows()),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ {
+ compute(matrix.derived(), computeU);
+ }
+
+ /** \brief Returns the orthogonal matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix U.
+ *
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+ * member function compute(const MatrixType&, bool) has been called before
+ * to compute the Schur decomposition of a matrix, and \p computeU was set
+ * to true (the default value).
+ *
+ * \sa RealSchur(const MatrixType&, bool) for an example
+ */
+ const MatrixType& matrixU() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
+ return m_matU;
+ }
+
+ /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix T.
+ *
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+ * member function compute(const MatrixType&, bool) has been called before
+ * to compute the Schur decomposition of a matrix.
+ *
+ * \sa RealSchur(const MatrixType&, bool) for an example
+ */
+ const MatrixType& matrixT() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_matT;
+ }
+
+ /** \brief Computes Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+ * \returns Reference to \c *this
+ *
+ * The Schur decomposition is computed by first reducing the matrix to
+ * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
+ * matrix is then reduced to triangular form by performing Francis QR
+ * iterations with implicit double shift. The cost of computing the Schur
+ * decomposition depends on the number of iterations; as a rough guide, it
+ * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
+ * \f$10n^3\f$ flops if \a computeU is false.
+ *
+ * Example: \include RealSchur_compute.cpp
+ * Output: \verbinclude RealSchur_compute.out
+ *
+ * \sa compute(const MatrixType&, bool, Index)
+ */
+ template<typename InputType>
+ RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
+
+ /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
+ * \param[in] matrixH Matrix in Hessenberg form H
+ * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
+ * \param computeU Computes the matriX U of the Schur vectors
+ * \return Reference to \c *this
+ *
+ * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
+ * using either the class HessenbergDecomposition or another mean.
+ * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
+ * When computeU is true, this routine computes the matrix U such that
+ * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
+ *
+ * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
+ * is not available, the user should give an identity matrix (Q.setIdentity())
+ *
+ * \sa compute(const MatrixType&, bool)
+ */
+ template<typename HessMatrixType, typename OrthMatrixType>
+ RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Sets the maximum number of iterations allowed.
+ *
+ * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
+ * of the matrix.
+ */
+ RealSchur& setMaxIterations(Index maxIters)
+ {
+ m_maxIters = maxIters;
+ return *this;
+ }
+
+ /** \brief Returns the maximum number of iterations. */
+ Index getMaxIterations()
+ {
+ return m_maxIters;
+ }
+
+ /** \brief Maximum number of iterations per row.
+ *
+ * If not otherwise specified, the maximum number of iterations is this number times the size of the
+ * matrix. It is currently set to 40.
+ */
+ static const int m_maxIterationsPerRow = 40;
+
+ private:
+
+ MatrixType m_matT;
+ MatrixType m_matU;
+ ColumnVectorType m_workspaceVector;
+ HessenbergDecomposition<MatrixType> m_hess;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_matUisUptodate;
+ Index m_maxIters;
+
+ typedef Matrix<Scalar,3,1> Vector3s;
+
+ Scalar computeNormOfT();
+ Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
+ void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
+ void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
+ void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
+ void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
+};
+
+
+template<typename MatrixType>
+template<typename InputType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
+{
+ const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
+
+ eigen_assert(matrix.cols() == matrix.rows());
+ Index maxIters = m_maxIters;
+ if (maxIters == -1)
+ maxIters = m_maxIterationsPerRow * matrix.rows();
+
+ Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
+ if(scale<considerAsZero)
+ {
+ m_matT.setZero(matrix.rows(),matrix.cols());
+ if(computeU)
+ m_matU.setIdentity(matrix.rows(),matrix.cols());
+ m_info = Success;
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+ return *this;
+ }
+
+ // Step 1. Reduce to Hessenberg form
+ m_hess.compute(matrix.derived()/scale);
+
+ // Step 2. Reduce to real Schur form
+ // Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg
+ // to be able to pass our working-space buffer for the Householder to Dense evaluation.
+ m_workspaceVector.resize(matrix.cols());
+ if(computeU)
+ m_hess.matrixQ().evalTo(m_matU, m_workspaceVector);
+ computeFromHessenberg(m_hess.matrixH(), m_matU, computeU);
+
+ m_matT *= scale;
+
+ return *this;
+}
+template<typename MatrixType>
+template<typename HessMatrixType, typename OrthMatrixType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
+{
+ using std::abs;
+
+ m_matT = matrixH;
+ m_workspaceVector.resize(m_matT.cols());
+ if(computeU && !internal::is_same_dense(m_matU,matrixQ))
+ m_matU = matrixQ;
+
+ Index maxIters = m_maxIters;
+ if (maxIters == -1)
+ maxIters = m_maxIterationsPerRow * matrixH.rows();
+ Scalar* workspace = &m_workspaceVector.coeffRef(0);
+
+ // The matrix m_matT is divided in three parts.
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
+ // Rows il,...,iu is the part we are working on (the active window).
+ // Rows iu+1,...,end are already brought in triangular form.
+ Index iu = m_matT.cols() - 1;
+ Index iter = 0; // iteration count for current eigenvalue
+ Index totalIter = 0; // iteration count for whole matrix
+ Scalar exshift(0); // sum of exceptional shifts
+ Scalar norm = computeNormOfT();
+ // sub-diagonal entries smaller than considerAsZero will be treated as zero.
+ // We use eps^2 to enable more precision in small eigenvalues.
+ Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
+ (std::numeric_limits<Scalar>::min)() );
+
+ if(norm!=Scalar(0))
+ {
+ while (iu >= 0)
+ {
+ Index il = findSmallSubdiagEntry(iu,considerAsZero);
+
+ // Check for convergence
+ if (il == iu) // One root found
+ {
+ m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
+ if (iu > 0)
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
+ iu--;
+ iter = 0;
+ }
+ else if (il == iu-1) // Two roots found
+ {
+ splitOffTwoRows(iu, computeU, exshift);
+ iu -= 2;
+ iter = 0;
+ }
+ else // No convergence yet
+ {
+ // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
+ Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
+ computeShift(iu, iter, exshift, shiftInfo);
+ iter = iter + 1;
+ totalIter = totalIter + 1;
+ if (totalIter > maxIters) break;
+ Index im;
+ initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
+ performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
+ }
+ }
+ }
+ if(totalIter <= maxIters)
+ m_info = Success;
+ else
+ m_info = NoConvergence;
+
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+ return *this;
+}
+
+/** \internal Computes and returns vector L1 norm of T */
+template<typename MatrixType>
+inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
+{
+ const Index size = m_matT.cols();
+ // FIXME to be efficient the following would requires a triangular reduxion code
+ // Scalar norm = m_matT.upper().cwiseAbs().sum()
+ // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
+ Scalar norm(0);
+ for (Index j = 0; j < size; ++j)
+ norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
+ return norm;
+}
+
+/** \internal Look for single small sub-diagonal element and returns its index */
+template<typename MatrixType>
+inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero)
+{
+ using std::abs;
+ Index res = iu;
+ while (res > 0)
+ {
+ Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
+
+ s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero);
+
+ if (abs(m_matT.coeff(res,res-1)) <= s)
+ break;
+ res--;
+ }
+ return res;
+}
+
+/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
+{
+ using std::sqrt;
+ using std::abs;
+ const Index size = m_matT.cols();
+
+ // The eigenvalues of the 2x2 matrix [a b; c d] are
+ // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
+ Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
+ Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
+ m_matT.coeffRef(iu,iu) += exshift;
+ m_matT.coeffRef(iu-1,iu-1) += exshift;
+
+ if (q >= Scalar(0)) // Two real eigenvalues
+ {
+ Scalar z = sqrt(abs(q));
+ JacobiRotation<Scalar> rot;
+ if (p >= Scalar(0))
+ rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
+ else
+ rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
+
+ m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
+ m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
+ if (computeU)
+ m_matU.applyOnTheRight(iu-1, iu, rot);
+ }
+
+ if (iu > 1)
+ m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
+}
+
+/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
+{
+ using std::sqrt;
+ using std::abs;
+ shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
+ shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
+ shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
+
+ // Wilkinson's original ad hoc shift
+ if (iter == 10)
+ {
+ exshift += shiftInfo.coeff(0);
+ for (Index i = 0; i <= iu; ++i)
+ m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
+ Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
+ shiftInfo.coeffRef(0) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(1) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+ if (iter == 30)
+ {
+ Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = s * s + shiftInfo.coeff(2);
+ if (s > Scalar(0))
+ {
+ s = sqrt(s);
+ if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
+ s = -s;
+ s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
+ exshift += s;
+ for (Index i = 0; i <= iu; ++i)
+ m_matT.coeffRef(i,i) -= s;
+ shiftInfo.setConstant(Scalar(0.964));
+ }
+ }
+}
+
+/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
+{
+ using std::abs;
+ Vector3s& v = firstHouseholderVector; // alias to save typing
+
+ for (im = iu-2; im >= il; --im)
+ {
+ const Scalar Tmm = m_matT.coeff(im,im);
+ const Scalar r = shiftInfo.coeff(0) - Tmm;
+ const Scalar s = shiftInfo.coeff(1) - Tmm;
+ v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
+ v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
+ v.coeffRef(2) = m_matT.coeff(im+2,im+1);
+ if (im == il) {
+ break;
+ }
+ const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
+ const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
+ if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
+ break;
+ }
+}
+
+/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
+{
+ eigen_assert(im >= il);
+ eigen_assert(im <= iu-2);
+
+ const Index size = m_matT.cols();
+
+ for (Index k = im; k <= iu-2; ++k)
+ {
+ bool firstIteration = (k == im);
+
+ Vector3s v;
+ if (firstIteration)
+ v = firstHouseholderVector;
+ else
+ v = m_matT.template block<3,1>(k,k-1);
+
+ Scalar tau, beta;
+ Matrix<Scalar, 2, 1> ess;
+ v.makeHouseholder(ess, tau, beta);
+
+ if (beta != Scalar(0)) // if v is not zero
+ {
+ if (firstIteration && k > il)
+ m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
+ else if (!firstIteration)
+ m_matT.coeffRef(k,k-1) = beta;
+
+ // These Householder transformations form the O(n^3) part of the algorithm
+ m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
+ m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+ if (computeU)
+ m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+ }
+ }
+
+ Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
+ Scalar tau, beta;
+ Matrix<Scalar, 1, 1> ess;
+ v.makeHouseholder(ess, tau, beta);
+
+ if (beta != Scalar(0)) // if v is not zero
+ {
+ m_matT.coeffRef(iu-1, iu-2) = beta;
+ m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
+ m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+ if (computeU)
+ m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+ }
+
+ // clean up pollution due to round-off errors
+ for (Index i = im+2; i <= iu; ++i)
+ {
+ m_matT.coeffRef(i,i-2) = Scalar(0);
+ if (i > im+2)
+ m_matT.coeffRef(i,i-3) = Scalar(0);
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_REAL_SCHUR_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h
new file mode 100644
index 000000000..2c2251715
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h
@@ -0,0 +1,77 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+ be used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ * Content : Eigen bindings to LAPACKe
+ * Real Schur needed to real unsymmetrical eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_REAL_SCHUR_LAPACKE_H
+#define EIGEN_REAL_SCHUR_LAPACKE_H
+
+namespace Eigen {
+
+/** \internal Specialization for the data types supported by LAPACKe */
+
+#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
+template<> template<typename InputType> inline \
+RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
+{ \
+ eigen_assert(matrix.cols() == matrix.rows()); \
+\
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
+ lapack_int matrix_order = LAPACKE_COLROW; \
+ char jobvs, sort='N'; \
+ LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \
+ jobvs = (computeU) ? 'V' : 'N'; \
+ m_matU.resize(n, n); \
+ lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
+ m_matT = matrix; \
+ lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
+ Matrix<EIGTYPE, Dynamic, Dynamic> wr, wi; \
+ wr.resize(n, 1); wi.resize(n, 1); \
+ info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
+ if(info == 0) \
+ m_info = Success; \
+ else \
+ m_info = NoConvergence; \
+\
+ m_isInitialized = true; \
+ m_matUisUptodate = computeU; \
+ return *this; \
+\
+}
+
+EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_REAL_SCHUR_LAPACKE_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
new file mode 100644
index 000000000..14692365f
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -0,0 +1,904 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
+#define EIGEN_SELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen {
+
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver;
+
+namespace internal {
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
+
+template<typename MatrixType, typename DiagType, typename SubDiagType>
+EIGEN_DEVICE_FUNC
+ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class SelfAdjointEigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template.
+ *
+ * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
+ * matrices, this means that the matrix is symmetric: it equals its
+ * transpose. This class computes the eigenvalues and eigenvectors of a
+ * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
+ * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
+ * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
+ * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
+ * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
+ * eigendecomposition.
+ *
+ * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
+ * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
+ * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
+ * equal to its transpose, \f$ V^{-1} = V^T \f$.
+ *
+ * The algorithm exploits the fact that the matrix is selfadjoint, making it
+ * faster and more accurate than the general purpose eigenvalue algorithms
+ * implemented in EigenSolver and ComplexEigenSolver.
+ *
+ * Only the \b lower \b triangular \b part of the input matrix is referenced.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
+ * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
+ * and eigenvectors are computed, they can be retrieved with the eigenvalues()
+ * and eigenvectors() functions.
+ *
+ * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
+ * contains an example of the typical use of this class.
+ *
+ * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
+ * the likes, see the class GeneralizedSelfAdjointEigenSolver.
+ *
+ * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType> class SelfAdjointEigenSolver
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ enum {
+ Size = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type \p _MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Real scalar type for \p _MatrixType.
+ *
+ * This is just \c Scalar if #Scalar is real (e.g., \c float or
+ * \c double), and the type of the real part of \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #RealScalar.
+ * The length of the vector is the size of \p _MatrixType.
+ */
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
+ typedef Tridiagonalization<MatrixType> TridiagonalizationType;
+ typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
+
+ /** \brief Default constructor for fixed-size matrices.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). This constructor
+ * can only be used if \p _MatrixType is a fixed-size matrix; use
+ * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
+ */
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver()
+ : m_eivec(),
+ m_eivalues(),
+ m_subdiag(),
+ m_hcoeffs(),
+ m_info(InvalidInput),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ { }
+
+ /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+ *
+ * \param [in] size Positive integer, size of the matrix whose
+ * eigenvalues and eigenvectors will be computed.
+ *
+ * This constructor is useful for dynamic-size matrices, when the user
+ * intends to perform decompositions via compute(). The \p size
+ * parameter is only used as a hint. It is not an error to give a wrong
+ * \p size, but it may impair performance.
+ *
+ * \sa compute() for an example
+ */
+ EIGEN_DEVICE_FUNC
+ explicit SelfAdjointEigenSolver(Index size)
+ : m_eivec(size, size),
+ m_eivalues(size),
+ m_subdiag(size > 1 ? size - 1 : 1),
+ m_hcoeffs(size > 1 ? size - 1 : 1),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ {}
+
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed. Only the lower triangular part of the matrix is referenced.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ *
+ * This constructor calls compute(const MatrixType&, int) to compute the
+ * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
+ *
+ * \sa compute(const MatrixType&, int)
+ */
+ template<typename InputType>
+ EIGEN_DEVICE_FUNC
+ explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
+ m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false)
+ {
+ compute(matrix.derived(), options);
+ }
+
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed. Only the lower triangular part of the matrix is referenced.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of \p matrix. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ * This implementation uses a symmetric QR algorithm. The matrix is first
+ * reduced to tridiagonal form using the Tridiagonalization class. The
+ * tridiagonal matrix is then brought to diagonal form with implicit
+ * symmetric QR steps with Wilkinson shift. Details can be found in
+ * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
+ *
+ * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
+ * are required and \f$ 4n^3/3 \f$ if they are not required.
+ *
+ * This method reuses the memory in the SelfAdjointEigenSolver object that
+ * was allocated when the object was constructed, if the size of the
+ * matrix does not change.
+ *
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
+ *
+ * \sa SelfAdjointEigenSolver(const MatrixType&, int)
+ */
+ template<typename InputType>
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
+
+ /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
+ *
+ * This is a variant of compute(const MatrixType&, int options) which
+ * directly solves the underlying polynomial equation.
+ *
+ * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
+ *
+ * This method is usually significantly faster than the QR iterative algorithm
+ * but it might also be less accurate. It is also worth noting that
+ * for 3x3 matrices it involves trigonometric operations which are
+ * not necessarily available for all scalar types.
+ *
+ * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
+ * - double: 1e-8
+ * - float: 1e-3
+ *
+ * \sa compute(const MatrixType&, int options)
+ */
+ EIGEN_DEVICE_FUNC
+ SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
+
+ /**
+ *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
+ *
+ * \param[in] diag The vector containing the diagonal of the matrix.
+ * \param[in] subdiag The subdiagonal of the matrix.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \returns Reference to \c *this
+ *
+ * This function assumes that the matrix has been reduced to tridiagonal form.
+ *
+ * \sa compute(const MatrixType&, int) for more information
+ */
+ SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
+ *
+ * \pre The eigenvectors have been computed before.
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+ * this object was used to solve the eigenproblem for the selfadjoint
+ * matrix \f$ A \f$, then the matrix returned by this function is the
+ * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
+ *
+ * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
+ * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
+ * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
+ * equal to its transpose, \f$ V^{-1} = V^T \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues()
+ */
+ EIGEN_DEVICE_FUNC
+ const EigenvectorsType& eigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre The eigenvalues have been computed before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are sorted in increasing order.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), MatrixBase::eigenvalues()
+ */
+ EIGEN_DEVICE_FUNC
+ const RealVectorType& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes the positive-definite square root of the matrix.
+ *
+ * \returns the positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * The square root of a positive-definite matrix \f$ A \f$ is the
+ * positive-definite matrix whose square equals \f$ A \f$. This function
+ * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+ * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+ *
+ * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
+ */
+ EIGEN_DEVICE_FUNC
+ MatrixType operatorSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Computes the inverse square root of the matrix.
+ *
+ * \returns the inverse positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+ * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+ * cheaper than first computing the square root with operatorSqrt() and
+ * then its inverse with MatrixBase::inverse().
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+ *
+ * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
+ */
+ EIGEN_DEVICE_FUNC
+ MatrixType operatorInverseSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful, \c NoConvergence otherwise.
+ */
+ EIGEN_DEVICE_FUNC
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Maximum number of iterations.
+ *
+ * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
+ * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
+ */
+ static const int m_maxIterations = 30;
+
+ protected:
+ static EIGEN_DEVICE_FUNC
+ void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ EigenvectorsType m_eivec;
+ RealVectorType m_eivalues;
+ typename TridiagonalizationType::SubDiagonalType m_subdiag;
+ typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+};
+
+namespace internal {
+/** \internal
+ *
+ * \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ * Performs a QR step on a tridiagonal symmetric matrix represented as a
+ * pair of two vectors \a diag and \a subdiag.
+ *
+ * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
+ * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
+ * \param start starting index of the submatrix to work on
+ * \param end last+1 index of the submatrix to work on
+ * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
+ * \param n size of the input matrix
+ *
+ * For compilation efficiency reasons, this procedure does not use eigen expression
+ * for its arguments.
+ *
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
+ * "implicit symmetric QR step with Wilkinson shift"
+ */
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+EIGEN_DEVICE_FUNC
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
+}
+
+template<typename MatrixType>
+template<typename InputType>
+EIGEN_DEVICE_FUNC
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::compute(const EigenBase<InputType>& a_matrix, int options)
+{
+ check_template_parameters();
+
+ const InputType &matrix(a_matrix.derived());
+
+ EIGEN_USING_STD(abs);
+ eigen_assert(matrix.cols() == matrix.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+ Index n = matrix.cols();
+ m_eivalues.resize(n,1);
+
+ if(n==1)
+ {
+ m_eivec = matrix;
+ m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
+ if(computeEigenvectors)
+ m_eivec.setOnes(n,n);
+ m_info = Success;
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+ }
+
+ // declare some aliases
+ RealVectorType& diag = m_eivalues;
+ EigenvectorsType& mat = m_eivec;
+
+ // map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ mat = matrix.template triangularView<Lower>();
+ RealScalar scale = mat.cwiseAbs().maxCoeff();
+ if(scale==RealScalar(0)) scale = RealScalar(1);
+ mat.template triangularView<Lower>() /= scale;
+ m_subdiag.resize(n-1);
+ m_hcoeffs.resize(n-1);
+ internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
+
+ m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
+
+ // scale back the eigen values
+ m_eivalues *= scale;
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+}
+
+template<typename MatrixType>
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
+{
+ //TODO : Add an option to scale the values beforehand
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ m_eivalues = diag;
+ m_subdiag = subdiag;
+ if (computeEigenvectors)
+ {
+ m_eivec.setIdentity(diag.size(), diag.size());
+ }
+ m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+ return *this;
+}
+
+namespace internal {
+/**
+ * \internal
+ * \brief Compute the eigendecomposition from a tridiagonal matrix
+ *
+ * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
+ * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
+ * \param[in] maxIterations : the maximum number of iterations
+ * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
+ * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
+ * \returns \c Success or \c NoConvergence
+ */
+template<typename MatrixType, typename DiagType, typename SubDiagType>
+EIGEN_DEVICE_FUNC
+ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
+{
+ ComputationInfo info;
+ typedef typename MatrixType::Scalar Scalar;
+
+ Index n = diag.size();
+ Index end = n-1;
+ Index start = 0;
+ Index iter = 0; // total number of iterations
+
+ typedef typename DiagType::RealScalar RealScalar;
+ const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
+ const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
+ while (end>0)
+ {
+ for (Index i = start; i<end; ++i) {
+ if (numext::abs(subdiag[i]) < considerAsZero) {
+ subdiag[i] = RealScalar(0);
+ } else {
+ // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
+ // Scaled to prevent underflows.
+ const RealScalar scaled_subdiag = precision_inv * subdiag[i];
+ if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
+ subdiag[i] = RealScalar(0);
+ }
+ }
+ }
+
+ // find the largest unreduced block at the end of the matrix.
+ while (end>0 && subdiag[end-1]==RealScalar(0))
+ {
+ end--;
+ }
+ if (end<=0)
+ break;
+
+ // if we spent too many iterations, we give up
+ iter++;
+ if(iter > maxIterations * n) break;
+
+ start = end - 1;
+ while (start>0 && subdiag[start-1]!=0)
+ start--;
+
+ internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
+ }
+ if (iter <= maxIterations * n)
+ info = Success;
+ else
+ info = NoConvergence;
+
+ // Sort eigenvalues and corresponding vectors.
+ // TODO make the sort optional ?
+ // TODO use a better sort algorithm !!
+ if (info == Success)
+ {
+ for (Index i = 0; i < n-1; ++i)
+ {
+ Index k;
+ diag.segment(i,n-i).minCoeff(&k);
+ if (k > 0)
+ {
+ numext::swap(diag[i], diag[k+i]);
+ if(computeEigenvectors)
+ eivec.col(i).swap(eivec.col(k+i));
+ }
+ }
+ }
+ return info;
+}
+
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
+{
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
+ { eig.compute(A,options); }
+};
+
+template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
+{
+ typedef typename SolverType::MatrixType MatrixType;
+ typedef typename SolverType::RealVectorType VectorType;
+ typedef typename SolverType::Scalar Scalar;
+ typedef typename SolverType::EigenvectorsType EigenvectorsType;
+
+
+ /** \internal
+ * Computes the roots of the characteristic polynomial of \a m.
+ * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
+ */
+ EIGEN_DEVICE_FUNC
+ static inline void computeRoots(const MatrixType& m, VectorType& roots)
+ {
+ EIGEN_USING_STD(sqrt)
+ EIGEN_USING_STD(atan2)
+ EIGEN_USING_STD(cos)
+ EIGEN_USING_STD(sin)
+ const Scalar s_inv3 = Scalar(1)/Scalar(3);
+ const Scalar s_sqrt3 = sqrt(Scalar(3));
+
+ // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
+ // eigenvalues are the roots to this equation, all guaranteed to be
+ // real-valued, because the matrix is symmetric.
+ Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
+ Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
+ Scalar c2 = m(0,0) + m(1,1) + m(2,2);
+
+ // Construct the parameters used in classifying the roots of the equation
+ // and in solving the equation for the roots in closed form.
+ Scalar c2_over_3 = c2*s_inv3;
+ Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
+ a_over_3 = numext::maxi(a_over_3, Scalar(0));
+
+ Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
+
+ Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
+ q = numext::maxi(q, Scalar(0));
+
+ // Compute the eigenvalues by solving for the roots of the polynomial.
+ Scalar rho = sqrt(a_over_3);
+ Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
+ Scalar cos_theta = cos(theta);
+ Scalar sin_theta = sin(theta);
+ // roots are already sorted, since cos is monotonically decreasing on [0, pi]
+ roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
+ roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
+ roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
+ {
+ EIGEN_USING_STD(abs);
+ EIGEN_USING_STD(sqrt);
+ Index i0;
+ // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
+ mat.diagonal().cwiseAbs().maxCoeff(&i0);
+ // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
+ // so let's save it:
+ representative = mat.col(i0);
+ Scalar n0, n1;
+ VectorType c0, c1;
+ n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
+ n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
+ if(n0>n1) res = c0/sqrt(n0);
+ else res = c1/sqrt(n1);
+
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& solver, const MatrixType& mat, int options)
+ {
+ eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ EigenvectorsType& eivecs = solver.m_eivec;
+ VectorType& eivals = solver.m_eivalues;
+
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(3);
+ // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
+ MatrixType scaledMat = mat.template selfadjointView<Lower>();
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
+
+ // compute the eigenvalues
+ computeRoots(scaledMat,eivals);
+
+ // compute the eigenvectors
+ if(computeEigenvectors)
+ {
+ if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
+ {
+ // All three eigenvalues are numerically the same
+ eivecs.setIdentity();
+ }
+ else
+ {
+ MatrixType tmp;
+ tmp = scaledMat;
+
+ // Compute the eigenvector of the most distinct eigenvalue
+ Scalar d0 = eivals(2) - eivals(1);
+ Scalar d1 = eivals(1) - eivals(0);
+ Index k(0), l(2);
+ if(d0 > d1)
+ {
+ numext::swap(k,l);
+ d0 = d1;
+ }
+
+ // Compute the eigenvector of index k
+ {
+ tmp.diagonal().array () -= eivals(k);
+ // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
+ extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
+ }
+
+ // Compute eigenvector of index l
+ if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
+ {
+ // If d0 is too small, then the two other eigenvalues are numerically the same,
+ // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
+ eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
+ eivecs.col(l).normalize();
+ }
+ else
+ {
+ tmp = scaledMat;
+ tmp.diagonal().array () -= eivals(l);
+
+ VectorType dummy;
+ extract_kernel(tmp, eivecs.col(l), dummy);
+ }
+
+ // Compute last eigenvector from the other two
+ eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
+ }
+ }
+
+ // Rescale back to the original size.
+ eivals *= scale;
+ eivals.array() += shift;
+
+ solver.m_info = Success;
+ solver.m_isInitialized = true;
+ solver.m_eigenvectorsOk = computeEigenvectors;
+ }
+};
+
+// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
+template<typename SolverType>
+struct direct_selfadjoint_eigenvalues<SolverType,2,false>
+{
+ typedef typename SolverType::MatrixType MatrixType;
+ typedef typename SolverType::RealVectorType VectorType;
+ typedef typename SolverType::Scalar Scalar;
+ typedef typename SolverType::EigenvectorsType EigenvectorsType;
+
+ EIGEN_DEVICE_FUNC
+ static inline void computeRoots(const MatrixType& m, VectorType& roots)
+ {
+ EIGEN_USING_STD(sqrt);
+ const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
+ const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
+ roots(0) = t1 - t0;
+ roots(1) = t1 + t0;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(SolverType& solver, const MatrixType& mat, int options)
+ {
+ EIGEN_USING_STD(sqrt);
+ EIGEN_USING_STD(abs);
+
+ eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
+ && (options&EigVecMask)!=EigVecMask
+ && "invalid option parameter");
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+
+ EigenvectorsType& eivecs = solver.m_eivec;
+ VectorType& eivals = solver.m_eivalues;
+
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(2);
+ MatrixType scaledMat = mat;
+ scaledMat.coeffRef(0,1) = mat.coeff(1,0);
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > Scalar(0))
+ scaledMat /= scale;
+
+ // Compute the eigenvalues
+ computeRoots(scaledMat,eivals);
+
+ // compute the eigen vectors
+ if(computeEigenvectors)
+ {
+ if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
+ {
+ eivecs.setIdentity();
+ }
+ else
+ {
+ scaledMat.diagonal().array () -= eivals(1);
+ Scalar a2 = numext::abs2(scaledMat(0,0));
+ Scalar c2 = numext::abs2(scaledMat(1,1));
+ Scalar b2 = numext::abs2(scaledMat(1,0));
+ if(a2>c2)
+ {
+ eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
+ eivecs.col(1) /= sqrt(a2+b2);
+ }
+ else
+ {
+ eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
+ eivecs.col(1) /= sqrt(c2+b2);
+ }
+
+ eivecs.col(0) << eivecs.col(1).unitOrthogonal();
+ }
+ }
+
+ // Rescale back to the original size.
+ eivals *= scale;
+ eivals.array() += shift;
+
+ solver.m_info = Success;
+ solver.m_isInitialized = true;
+ solver.m_eigenvectorsOk = computeEigenvectors;
+ }
+};
+
+}
+
+template<typename MatrixType>
+EIGEN_DEVICE_FUNC
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::computeDirect(const MatrixType& matrix, int options)
+{
+ internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
+ return *this;
+}
+
+namespace internal {
+
+// Francis implicit QR step.
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+EIGEN_DEVICE_FUNC
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
+{
+ // Wilkinson Shift.
+ RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
+ RealScalar e = subdiag[end-1];
+ // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
+ // underflow thus leading to inf/NaN values when using the following commented code:
+ // RealScalar e2 = numext::abs2(subdiag[end-1]);
+ // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
+ // This explain the following, somewhat more complicated, version:
+ RealScalar mu = diag[end];
+ if(td==RealScalar(0)) {
+ mu -= numext::abs(e);
+ } else if (e != RealScalar(0)) {
+ const RealScalar e2 = numext::abs2(e);
+ const RealScalar h = numext::hypot(td,e);
+ if(e2 == RealScalar(0)) {
+ mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
+ } else {
+ mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
+ }
+ }
+
+ RealScalar x = diag[start] - mu;
+ RealScalar z = subdiag[start];
+ // If z ever becomes zero, the Givens rotation will be the identity and
+ // z will stay zero for all future iterations.
+ for (Index k = start; k < end && z != RealScalar(0); ++k)
+ {
+ JacobiRotation<RealScalar> rot;
+ rot.makeGivens(x, z);
+
+ // do T = G' T G
+ RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
+ RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
+
+ diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
+ diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
+ subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
+
+ if (k > start)
+ subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
+
+ // "Chasing the bulge" to return to triangular form.
+ x = subdiag[k];
+ if (k < end - 1)
+ {
+ z = -rot.s() * subdiag[k+1];
+ subdiag[k + 1] = rot.c() * subdiag[k+1];
+ }
+
+ // apply the givens rotation to the unit matrix Q = Q * G
+ if (matrixQ)
+ {
+ // FIXME if StorageOrder == RowMajor this operation is not very efficient
+ Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
+ q.applyOnTheRight(k,k+1,rot);
+ }
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h
new file mode 100644
index 000000000..b0c947dc0
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h
@@ -0,0 +1,87 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+ be used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ * Content : Eigen bindings to LAPACKe
+ * Self-adjoint eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H
+#define EIGEN_SAEIGENSOLVER_LAPACKE_H
+
+namespace Eigen {
+
+/** \internal Specialization for the data types supported by LAPACKe */
+
+#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \
+template<> template<typename InputType> inline \
+SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \
+{ \
+ eigen_assert(matrix.cols() == matrix.rows()); \
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0 \
+ && (options&EigVecMask)!=EigVecMask \
+ && "invalid option parameter"); \
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \
+ m_eivalues.resize(n,1); \
+ m_subdiag.resize(n-1); \
+ m_eivec = matrix; \
+\
+ if(n==1) \
+ { \
+ m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \
+ if(computeEigenvectors) m_eivec.setOnes(n,n); \
+ m_info = Success; \
+ m_isInitialized = true; \
+ m_eigenvectorsOk = computeEigenvectors; \
+ return *this; \
+ } \
+\
+ lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \
+ char jobz, uplo='L'/*, range='A'*/; \
+ jobz = computeEigenvectors ? 'V' : 'N'; \
+\
+ info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
+ m_info = (info==0) ? Success : NoConvergence; \
+ m_isInitialized = true; \
+ m_eigenvectorsOk = computeEigenvectors; \
+ return *this; \
+}
+
+#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \
+ EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \
+ EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor )
+
+EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev)
+EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev)
+EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev)
+EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev)
+
+} // end namespace Eigen
+
+#endif // EIGEN_SAEIGENSOLVER_H
diff --git a/src/3rdparty/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h b/src/3rdparty/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h
new file mode 100644
index 000000000..674c92a39
--- /dev/null
+++ b/src/3rdparty/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -0,0 +1,561 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRIDIAGONALIZATION_H
+#define EIGEN_TRIDIAGONALIZATION_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
+template<typename MatrixType>
+struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
+ : public traits<typename MatrixType::PlainObject>
+{
+ typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
+ enum { Flags = 0 };
+};
+
+template<typename MatrixType, typename CoeffVectorType>
+EIGEN_DEVICE_FUNC
+void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class Tridiagonalization
+ *
+ * \brief Tridiagonal decomposition of a selfadjoint matrix
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * tridiagonal decomposition; this is expected to be an instantiation of the
+ * Matrix class template.
+ *
+ * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
+ * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
+ *
+ * A tridiagonal matrix is a matrix which has nonzero elements only on the
+ * main diagonal and the first diagonal below and above it. The Hessenberg
+ * decomposition of a selfadjoint matrix is in fact a tridiagonal
+ * decomposition. This class is used in SelfAdjointEigenSolver to compute the
+ * eigenvalues and eigenvectors of a selfadjoint matrix.
+ *
+ * Call the function compute() to compute the tridiagonal decomposition of a
+ * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
+ * constructor which computes the tridiagonal Schur decomposition at
+ * construction time. Once the decomposition is computed, you can use the
+ * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
+ * decomposition.
+ *
+ * The documentation of Tridiagonalization(const MatrixType&) contains an
+ * example of the typical use of this class.
+ *
+ * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class Tridiagonalization
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ enum {
+ Size = MatrixType::RowsAtCompileTime,
+ SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
+ Options = MatrixType::Options,
+ MaxSize = MatrixType::MaxRowsAtCompileTime,
+ MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
+ };
+
+ typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
+ typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
+ typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
+ typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
+
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+ typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
+ const Diagonal<const MatrixType>
+ >::type DiagonalReturnType;
+
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+ typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
+ const Diagonal<const MatrixType, -1>
+ >::type SubDiagonalReturnType;
+
+ /** \brief Return type of matrixQ() */
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
+
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose tridiagonal
+ * decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
+ : m_matrix(size,size),
+ m_hCoeffs(size > 1 ? size-1 : 1),
+ m_isInitialized(false)
+ {}
+
+ /** \brief Constructor; computes tridiagonal decomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
+ * is to be computed.
+ *
+ * This constructor calls compute() to compute the tridiagonal decomposition.
+ *
+ * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
+ * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
+ */
+ template<typename InputType>
+ explicit Tridiagonalization(const EigenBase<InputType>& matrix)
+ : m_matrix(matrix.derived()),
+ m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
+ m_isInitialized(false)
+ {
+ internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
+ m_isInitialized = true;
+ }
+
+ /** \brief Computes tridiagonal decomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
+ * is to be computed.
+ * \returns Reference to \c *this
+ *
+ * The tridiagonal decomposition is computed by bringing the columns of
+ * the matrix successively in the required form using Householder
+ * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
+ * the size of the given matrix.
+ *
+ * This method reuses of the allocated data in the Tridiagonalization
+ * object, if the size of the matrix does not change.
+ *
+ * Example: \include Tridiagonalization_compute.cpp
+ * Output: \verbinclude Tridiagonalization_compute.out
+ */
+ template<typename InputType>
+ Tridiagonalization& compute(const EigenBase<InputType>& matrix)
+ {
+ m_matrix = matrix.derived();
+ m_hCoeffs.resize(matrix.rows()-1, 1);
+ internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
+ m_isInitialized = true;
+ return *this;
+ }
+
+ /** \brief Returns the Householder coefficients.
+ *
+ * \returns a const reference to the vector of Householder coefficients
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * The Householder coefficients allow the reconstruction of the matrix
+ * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
+ *
+ * Example: \include Tridiagonalization_householderCoefficients.cpp
+ * Output: \verbinclude Tridiagonalization_householderCoefficients.out
+ *
+ * \sa packedMatrix(), \ref Householder_Module "Householder module"
+ */
+ inline CoeffVectorType householderCoefficients() const
+ {
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return m_hCoeffs;
+ }
+
+ /** \brief Returns the internal representation of the decomposition
+ *
+ * \returns a const reference to a matrix with the internal representation
+ * of the decomposition.
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * The returned matrix contains the following information:
+ * - the strict upper triangular part is equal to the input matrix A.
+ * - the diagonal and lower sub-diagonal represent the real tridiagonal
+ * symmetric matrix T.
+ * - the rest of the lower part contains the Householder vectors that,
+ * combined with Householder coefficients returned by
+ * householderCoefficients(), allows to reconstruct the matrix Q as
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+ * Here, the matrices \f$ H_i \f$ are the Householder transformations
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
+ * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
+ * \f$ v_i \f$ is the Householder vector defined by
+ * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
+ * with M the matrix returned by this function.
+ *
+ * See LAPACK for further details on this packed storage.
+ *
+ * Example: \include Tridiagonalization_packedMatrix.cpp
+ * Output: \verbinclude Tridiagonalization_packedMatrix.out
+ *
+ * \sa householderCoefficients()
+ */
+ inline const MatrixType& packedMatrix() const
+ {
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return m_matrix;
+ }
+
+ /** \brief Returns the unitary matrix Q in the decomposition
+ *
+ * \returns object representing the matrix Q
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * This function returns a light-weight object of template class
+ * HouseholderSequence. You can either apply it directly to a matrix or
+ * you can convert it to a matrix of type #MatrixType.
+ *
+ * \sa Tridiagonalization(const MatrixType&) for an example,
+ * matrixT(), class HouseholderSequence
+ */
+ HouseholderSequenceType matrixQ() const
+ {
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
+ .setLength(m_matrix.rows() - 1)
+ .setShift(1);
+ }
+
+ /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
+ *
+ * \returns expression object representing the matrix T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * Currently, this function can be used to extract the matrix T from internal
+ * data and copy it to a dense matrix object. In most cases, it may be
+ * sufficient to directly use the packed matrix or the vector expressions
+ * returned by diagonal() and subDiagonal() instead of creating a new
+ * dense copy matrix with this function.
+ *
+ * \sa Tridiagonalization(const MatrixType&) for an example,
+ * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
+ */
+ MatrixTReturnType matrixT() const
+ {
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return MatrixTReturnType(m_matrix.real());
+ }
+
+ /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
+ *
+ * \returns expression representing the diagonal of T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * Example: \include Tridiagonalization_diagonal.cpp
+ * Output: \verbinclude Tridiagonalization_diagonal.out
+ *
+ * \sa matrixT(), subDiagonal()
+ */
+ DiagonalReturnType diagonal() const;
+
+ /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
+ *
+ * \returns expression representing the subdiagonal of T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * \sa diagonal() for an example, matrixT()
+ */
+ SubDiagonalReturnType subDiagonal() const;
+
+ protected:
+
+ MatrixType m_matrix;
+ CoeffVectorType m_hCoeffs;
+ bool m_isInitialized;
+};
+
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::DiagonalReturnType
+Tridiagonalization<MatrixType>::diagonal() const
+{
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return m_matrix.diagonal().real();
+}
+
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
+Tridiagonalization<MatrixType>::subDiagonal() const
+{
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+ return m_matrix.template diagonal<-1>().real();
+}
+
+namespace internal {
+
+/** \internal
+ * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
+ *
+ * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
+ * On output, the strict upper part is left unchanged, and the lower triangular part
+ * represents the T and Q matrices in packed format has detailed below.
+ * \param[out] hCoeffs returned Householder coefficients (see below)
+ *
+ * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
+ * and lower sub-diagonal of the matrix \a matA.
+ * The unitary matrix Q is represented in a compact way as a product of
+ * Householder reflectors \f$ H_i \f$ such that:
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+ * The Householder reflectors are defined as
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
+ * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
+ * \f$ v_i \f$ is the Householder vector defined by
+ * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
+ *
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
+ *
+ * \sa Tridiagonalization::packedMatrix()
+ */
+template<typename MatrixType, typename CoeffVectorType>
+EIGEN_DEVICE_FUNC
+void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
+{
+ using numext::conj;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ Index n = matA.rows();
+ eigen_assert(n==matA.cols());
+ eigen_assert(n==hCoeffs.size()+1 || n==1);
+
+ for (Index i = 0; i<n-1; ++i)
+ {
+ Index remainingSize = n-i-1;
+ RealScalar beta;
+ Scalar h;
+ matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
+
+ // Apply similarity transformation to remaining columns,
+ // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
+ matA.col(i).coeffRef(i+1) = 1;
+
+ hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
+ * (conj(h) * matA.col(i).tail(remainingSize)));
+
+ hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
+
+ matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
+ .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
+
+ matA.col(i).coeffRef(i+1) = beta;
+ hCoeffs.coeffRef(i) = h;
+ }
+}
+
+// forward declaration, implementation at the end of this file
+template<typename MatrixType,
+ int Size=MatrixType::ColsAtCompileTime,
+ bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
+struct tridiagonalization_inplace_selector;
+
+/** \brief Performs a full tridiagonalization in place
+ *
+ * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
+ * decomposition is to be computed. Only the lower triangular part referenced.
+ * The rest is left unchanged. On output, the orthogonal matrix Q
+ * in the decomposition if \p extractQ is true.
+ * \param[out] diag The diagonal of the tridiagonal matrix T in the
+ * decomposition.
+ * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
+ * the decomposition.
+ * \param[in] extractQ If true, the orthogonal matrix Q in the
+ * decomposition is computed and stored in \p mat.
+ *
+ * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
+ * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
+ * symmetric tridiagonal matrix.
+ *
+ * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
+ * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
+ * part of the matrix \p mat is destroyed.
+ *
+ * The vectors \p diag and \p subdiag are not resized. The function
+ * assumes that they are already of the correct size. The length of the
+ * vector \p diag should equal the number of rows in \p mat, and the
+ * length of the vector \p subdiag should be one left.
+ *
+ * This implementation contains an optimized path for 3-by-3 matrices
+ * which is especially useful for plane fitting.
+ *
+ * \note Currently, it requires two temporary vectors to hold the intermediate
+ * Householder coefficients, and to reconstruct the matrix Q from the Householder
+ * reflectors.
+ *
+ * Example (this uses the same matrix as the example in
+ * Tridiagonalization::Tridiagonalization(const MatrixType&)):
+ * \include Tridiagonalization_decomposeInPlace.cpp
+ * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
+ *
+ * \sa class Tridiagonalization
+ */
+template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
+EIGEN_DEVICE_FUNC
+void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
+ CoeffVectorType& hcoeffs, bool extractQ)
+{
+ eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
+ tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
+}
+
+/** \internal
+ * General full tridiagonalization
+ */
+template<typename MatrixType, int Size, bool IsComplex>
+struct tridiagonalization_inplace_selector
+{
+ typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
+ typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
+ template<typename DiagonalType, typename SubDiagonalType>
+ static EIGEN_DEVICE_FUNC
+ void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
+ {
+ tridiagonalization_inplace(mat, hCoeffs);
+ diag = mat.diagonal().real();
+ subdiag = mat.template diagonal<-1>().real();
+ if(extractQ)
+ mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
+ .setLength(mat.rows() - 1)
+ .setShift(1);
+ }
+};
+
+/** \internal
+ * Specialization for 3x3 real matrices.
+ * Especially useful for plane fitting.
+ */
+template<typename MatrixType>
+struct tridiagonalization_inplace_selector<MatrixType,3,false>
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+
+ template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
+ {
+ using std::sqrt;
+ const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
+ diag[0] = mat(0,0);
+ RealScalar v1norm2 = numext::abs2(mat(2,0));
+ if(v1norm2 <= tol)
+ {
+ diag[1] = mat(1,1);
+ diag[2] = mat(2,2);
+ subdiag[0] = mat(1,0);
+ subdiag[1] = mat(2,1);
+ if (extractQ)
+ mat.setIdentity();
+ }
+ else
+ {
+ RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
+ RealScalar invBeta = RealScalar(1)/beta;
+ Scalar m01 = mat(1,0) * invBeta;
+ Scalar m02 = mat(2,0) * invBeta;
+ Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
+ diag[1] = mat(1,1) + m02*q;
+ diag[2] = mat(2,2) - m02*q;
+ subdiag[0] = beta;
+ subdiag[1] = mat(2,1) - m01 * q;
+ if (extractQ)
+ {
+ mat << 1, 0, 0,
+ 0, m01, m02,
+ 0, m02, -m01;
+ }
+ }
+ }
+};
+
+/** \internal
+ * Trivial specialization for 1x1 matrices
+ */
+template<typename MatrixType, bool IsComplex>
+struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
+{
+ typedef typename MatrixType::Scalar Scalar;
+
+ template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
+ static EIGEN_DEVICE_FUNC
+ void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
+ {
+ diag(0,0) = numext::real(mat(0,0));
+ if(extractQ)
+ mat(0,0) = Scalar(1);
+ }
+};
+
+/** \internal
+ * \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ * \brief Expression type for return value of Tridiagonalization::matrixT()
+ *
+ * \tparam MatrixType type of underlying dense matrix
+ */
+template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
+: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
+{
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] mat The underlying dense matrix
+ */
+ TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
+
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ result.setZero();
+ result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
+ result.diagonal() = m_matrix.diagonal();
+ result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
+ }
+
+ EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
+ EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
+
+ protected:
+ typename MatrixType::Nested m_matrix;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRIDIAGONALIZATION_H